summaryrefslogtreecommitdiff
path: root/hw/riscv/boot.c
blob: adb421b91b68697eb7909245155f7f3be747ebbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
 * QEMU RISC-V Boot Helper
 *
 * Copyright (c) 2017 SiFive, Inc.
 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2 or later, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 * You should have received a copy of the GNU General Public License along with
 * this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/units.h"
#include "qemu/error-report.h"
#include "exec/cpu-defs.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/riscv/boot.h"
#include "elf.h"
#include "sysemu/qtest.h"

#if defined(TARGET_RISCV32)
# define KERNEL_BOOT_ADDRESS 0x80400000
#else
# define KERNEL_BOOT_ADDRESS 0x80200000
#endif

void riscv_find_and_load_firmware(MachineState *machine,
                                  const char *default_machine_firmware,
                                  hwaddr firmware_load_addr,
                                  symbol_fn_t sym_cb)
{
    char *firmware_filename = NULL;

    if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
        /*
         * The user didn't specify -bios, or has specified "-bios default".
         * That means we are going to load the OpenSBI binary included in
         * the QEMU source.
         */
        firmware_filename = riscv_find_firmware(default_machine_firmware);
    } else if (strcmp(machine->firmware, "none")) {
        firmware_filename = riscv_find_firmware(machine->firmware);
    }

    if (firmware_filename) {
        /* If not "none" load the firmware */
        riscv_load_firmware(firmware_filename, firmware_load_addr, sym_cb);
        g_free(firmware_filename);
    }
}

char *riscv_find_firmware(const char *firmware_filename)
{
    char *filename;

    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
    if (filename == NULL) {
        if (!qtest_enabled()) {
            /*
             * We only ship plain binary bios images in the QEMU source.
             * With Spike machine that uses ELF images as the default bios,
             * running QEMU test will complain hence let's suppress the error
             * report for QEMU testing.
             */
            error_report("Unable to load the RISC-V firmware \"%s\"",
                         firmware_filename);
            exit(1);
        }
    }

    return filename;
}

target_ulong riscv_load_firmware(const char *firmware_filename,
                                 hwaddr firmware_load_addr,
                                 symbol_fn_t sym_cb)
{
    uint64_t firmware_entry, firmware_start, firmware_end;

    if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
                         &firmware_entry, &firmware_start, &firmware_end, NULL,
                         0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
        return firmware_entry;
    }

    if (load_image_targphys_as(firmware_filename, firmware_load_addr,
                               ram_size, NULL) > 0) {
        return firmware_load_addr;
    }

    error_report("could not load firmware '%s'", firmware_filename);
    exit(1);
}

target_ulong riscv_load_kernel(const char *kernel_filename, symbol_fn_t sym_cb)
{
    uint64_t kernel_entry, kernel_high;

    if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
                         &kernel_entry, NULL, &kernel_high, NULL, 0,
                         EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
        return kernel_entry;
    }

    if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
                       NULL, NULL, NULL) > 0) {
        return kernel_entry;
    }

    if (load_image_targphys_as(kernel_filename, KERNEL_BOOT_ADDRESS,
                               ram_size, NULL) > 0) {
        return KERNEL_BOOT_ADDRESS;
    }

    error_report("could not load kernel '%s'", kernel_filename);
    exit(1);
}

hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
                         uint64_t kernel_entry, hwaddr *start)
{
    int size;

    /*
     * We want to put the initrd far enough into RAM that when the
     * kernel is uncompressed it will not clobber the initrd. However
     * on boards without much RAM we must ensure that we still leave
     * enough room for a decent sized initrd, and on boards with large
     * amounts of RAM we must avoid the initrd being so far up in RAM
     * that it is outside lowmem and inaccessible to the kernel.
     * So for boards with less  than 256MB of RAM we put the initrd
     * halfway into RAM, and for boards with 256MB of RAM or more we put
     * the initrd at 128MB.
     */
    *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);

    size = load_ramdisk(filename, *start, mem_size - *start);
    if (size == -1) {
        size = load_image_targphys(filename, *start, mem_size - *start);
        if (size == -1) {
            error_report("could not load ramdisk '%s'", filename);
            exit(1);
        }
    }

    return *start + size;
}