1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
|
/*
* ASPEED Interrupt Controller (New)
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright 2015, 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
/* The hardware exposes two register sets, a legacy set and a 'new' set. The
* model implements the 'new' register set, and logs warnings on accesses to
* the legacy IO space.
*
* The hardware uses 32bit registers to manage 51 IRQs, with low and high
* registers for each conceptual register. The device model's implementation
* uses 64bit data types to store both low and high register values (in the one
* member), but must cope with access offset values in multiples of 4 passed to
* the callbacks. As such the read() and write() implementations process the
* provided offset to understand whether the access is requesting the lower or
* upper 32 bits of the 64bit member.
*
* Additionally, the "Interrupt Enable", "Edge Status" and "Software Interrupt"
* fields have separate "enable"/"status" and "clear" registers, where set bits
* are written to one or the other to change state (avoiding a
* read-modify-write sequence).
*/
#include "qemu/osdep.h"
#include "hw/intc/aspeed_vic.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "trace.h"
#define AVIC_NEW_BASE_OFFSET 0x80
#define AVIC_L_MASK 0xFFFFFFFFU
#define AVIC_H_MASK 0x0007FFFFU
#define AVIC_EVENT_W_MASK (0x78000ULL << 32)
static void aspeed_vic_update(AspeedVICState *s)
{
uint64_t new = (s->raw & s->enable);
uint64_t flags;
flags = new & s->select;
trace_aspeed_vic_update_fiq(!!flags);
qemu_set_irq(s->fiq, !!flags);
flags = new & ~s->select;
trace_aspeed_vic_update_irq(!!flags);
qemu_set_irq(s->irq, !!flags);
}
static void aspeed_vic_set_irq(void *opaque, int irq, int level)
{
uint64_t irq_mask;
bool raise;
AspeedVICState *s = (AspeedVICState *)opaque;
if (irq > ASPEED_VIC_NR_IRQS) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: Invalid interrupt number: %d\n",
__func__, irq);
return;
}
trace_aspeed_vic_set_irq(irq, level);
irq_mask = BIT(irq);
if (s->sense & irq_mask) {
/* level-triggered */
if (s->event & irq_mask) {
/* high-sensitive */
raise = level;
} else {
/* low-sensitive */
raise = !level;
}
s->raw = deposit64(s->raw, irq, 1, raise);
} else {
uint64_t old_level = s->level & irq_mask;
/* edge-triggered */
if (s->dual_edge & irq_mask) {
raise = (!!old_level) != (!!level);
} else {
if (s->event & irq_mask) {
/* rising-sensitive */
raise = !old_level && level;
} else {
/* falling-sensitive */
raise = old_level && !level;
}
}
if (raise) {
s->raw = deposit64(s->raw, irq, 1, raise);
}
}
s->level = deposit64(s->level, irq, 1, level);
aspeed_vic_update(s);
}
static uint64_t aspeed_vic_read(void *opaque, hwaddr offset, unsigned size)
{
uint64_t val;
const bool high = !!(offset & 0x4);
hwaddr n_offset = (offset & ~0x4);
AspeedVICState *s = (AspeedVICState *)opaque;
if (offset < AVIC_NEW_BASE_OFFSET) {
qemu_log_mask(LOG_UNIMP, "%s: Ignoring read from legacy registers "
"at 0x%" HWADDR_PRIx "[%u]\n", __func__, offset, size);
return 0;
}
n_offset -= AVIC_NEW_BASE_OFFSET;
switch (n_offset) {
case 0x0: /* IRQ Status */
val = s->raw & ~s->select & s->enable;
break;
case 0x08: /* FIQ Status */
val = s->raw & s->select & s->enable;
break;
case 0x10: /* Raw Interrupt Status */
val = s->raw;
break;
case 0x18: /* Interrupt Selection */
val = s->select;
break;
case 0x20: /* Interrupt Enable */
val = s->enable;
break;
case 0x30: /* Software Interrupt */
val = s->trigger;
break;
case 0x40: /* Interrupt Sensitivity */
val = s->sense;
break;
case 0x48: /* Interrupt Both Edge Trigger Control */
val = s->dual_edge;
break;
case 0x50: /* Interrupt Event */
val = s->event;
break;
case 0x60: /* Edge Triggered Interrupt Status */
val = s->raw & ~s->sense;
break;
/* Illegal */
case 0x28: /* Interrupt Enable Clear */
case 0x38: /* Software Interrupt Clear */
case 0x58: /* Edge Triggered Interrupt Clear */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only register with offset 0x%"
HWADDR_PRIx "\n", __func__, offset);
val = 0;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
val = 0;
break;
}
if (high) {
val = extract64(val, 32, 19);
}
trace_aspeed_vic_read(offset, size, val);
return val;
}
static void aspeed_vic_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size)
{
const bool high = !!(offset & 0x4);
hwaddr n_offset = (offset & ~0x4);
AspeedVICState *s = (AspeedVICState *)opaque;
if (offset < AVIC_NEW_BASE_OFFSET) {
qemu_log_mask(LOG_UNIMP,
"%s: Ignoring write to legacy registers at 0x%"
HWADDR_PRIx "[%u] <- 0x%" PRIx64 "\n", __func__, offset,
size, data);
return;
}
n_offset -= AVIC_NEW_BASE_OFFSET;
trace_aspeed_vic_write(offset, size, data);
/* Given we have members using separate enable/clear registers, deposit64()
* isn't quite the tool for the job. Instead, relocate the incoming bits to
* the required bit offset based on the provided access address
*/
if (high) {
data &= AVIC_H_MASK;
data <<= 32;
} else {
data &= AVIC_L_MASK;
}
switch (n_offset) {
case 0x18: /* Interrupt Selection */
/* Register has deposit64() semantics - overwrite requested 32 bits */
if (high) {
s->select &= AVIC_L_MASK;
} else {
s->select &= ((uint64_t) AVIC_H_MASK) << 32;
}
s->select |= data;
break;
case 0x20: /* Interrupt Enable */
s->enable |= data;
break;
case 0x28: /* Interrupt Enable Clear */
s->enable &= ~data;
break;
case 0x30: /* Software Interrupt */
qemu_log_mask(LOG_UNIMP, "%s: Software interrupts unavailable. "
"IRQs requested: 0x%016" PRIx64 "\n", __func__, data);
break;
case 0x38: /* Software Interrupt Clear */
qemu_log_mask(LOG_UNIMP, "%s: Software interrupts unavailable. "
"IRQs to be cleared: 0x%016" PRIx64 "\n", __func__, data);
break;
case 0x50: /* Interrupt Event */
/* Register has deposit64() semantics - overwrite the top four valid
* IRQ bits, as only the top four IRQs (GPIOs) can change their event
* type */
if (high) {
s->event &= ~AVIC_EVENT_W_MASK;
s->event |= (data & AVIC_EVENT_W_MASK);
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"Ignoring invalid write to interrupt event register");
}
break;
case 0x58: /* Edge Triggered Interrupt Clear */
s->raw &= ~(data & ~s->sense);
break;
case 0x00: /* IRQ Status */
case 0x08: /* FIQ Status */
case 0x10: /* Raw Interrupt Status */
case 0x40: /* Interrupt Sensitivity */
case 0x48: /* Interrupt Both Edge Trigger Control */
case 0x60: /* Edge Triggered Interrupt Status */
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write of read-only register with offset 0x%"
HWADDR_PRIx "\n", __func__, offset);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bad register at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
aspeed_vic_update(s);
}
static const MemoryRegionOps aspeed_vic_ops = {
.read = aspeed_vic_read,
.write = aspeed_vic_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static void aspeed_vic_reset(DeviceState *dev)
{
AspeedVICState *s = ASPEED_VIC(dev);
s->level = 0;
s->raw = 0;
s->select = 0;
s->enable = 0;
s->trigger = 0;
s->sense = 0x1F07FFF8FFFFULL;
s->dual_edge = 0xF800070000ULL;
s->event = 0x5F07FFF8FFFFULL;
}
#define AVIC_IO_REGION_SIZE 0x20000
static void aspeed_vic_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedVICState *s = ASPEED_VIC(dev);
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_vic_ops, s,
TYPE_ASPEED_VIC, AVIC_IO_REGION_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
qdev_init_gpio_in(dev, aspeed_vic_set_irq, ASPEED_VIC_NR_IRQS);
sysbus_init_irq(sbd, &s->irq);
sysbus_init_irq(sbd, &s->fiq);
}
static const VMStateDescription vmstate_aspeed_vic = {
.name = "aspeed.new-vic",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT64(level, AspeedVICState),
VMSTATE_UINT64(raw, AspeedVICState),
VMSTATE_UINT64(select, AspeedVICState),
VMSTATE_UINT64(enable, AspeedVICState),
VMSTATE_UINT64(trigger, AspeedVICState),
VMSTATE_UINT64(sense, AspeedVICState),
VMSTATE_UINT64(dual_edge, AspeedVICState),
VMSTATE_UINT64(event, AspeedVICState),
VMSTATE_END_OF_LIST()
}
};
static void aspeed_vic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_vic_realize;
dc->reset = aspeed_vic_reset;
dc->desc = "ASPEED Interrupt Controller (New)";
dc->vmsd = &vmstate_aspeed_vic;
}
static const TypeInfo aspeed_vic_info = {
.name = TYPE_ASPEED_VIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedVICState),
.class_init = aspeed_vic_class_init,
};
static void aspeed_vic_register_types(void)
{
type_register_static(&aspeed_vic_info);
}
type_init(aspeed_vic_register_types);
|