summaryrefslogtreecommitdiff
path: root/hw/intc/arm_gicv3_cpuif.c
blob: a9ee7fddf9e65de370d030c6676dbbfda28b9bc9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
/*
 * ARM Generic Interrupt Controller v3
 *
 * Copyright (c) 2016 Linaro Limited
 * Written by Peter Maydell
 *
 * This code is licensed under the GPL, version 2 or (at your option)
 * any later version.
 */

/* This file contains the code for the system register interface
 * portions of the GICv3.
 */

#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "trace.h"
#include "gicv3_internal.h"
#include "cpu.h"

static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
{
    /* Given the CPU, find the right GICv3CPUState struct.
     * Since we registered the CPU interface with the EL change hook as
     * the opaque pointer, we can just directly get from the CPU to it.
     */
    return arm_get_el_change_hook_opaque(arm_env_get_cpu(env));
}

static bool gicv3_use_ns_bank(CPUARMState *env)
{
    /* Return true if we should use the NonSecure bank for a banked GIC
     * CPU interface register. Note that this differs from the
     * access_secure_reg() function because GICv3 banked registers are
     * banked even for AArch64, unlike the other CPU system registers.
     */
    return !arm_is_secure_below_el3(env);
}

/* The minimum BPR for the virtual interface is a configurable property */
static inline int icv_min_vbpr(GICv3CPUState *cs)
{
    return 7 - cs->vprebits;
}

/* Simple accessor functions for LR fields */
static uint32_t ich_lr_vintid(uint64_t lr)
{
    return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
}

static uint32_t ich_lr_pintid(uint64_t lr)
{
    return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
}

static uint32_t ich_lr_prio(uint64_t lr)
{
    return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
}

static int ich_lr_state(uint64_t lr)
{
    return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
}

static bool icv_access(CPUARMState *env, int hcr_flags)
{
    /* Return true if this ICC_ register access should really be
     * directed to an ICV_ access. hcr_flags is a mask of
     * HCR_EL2 bits to check: we treat this as an ICV_ access
     * if we are in NS EL1 and at least one of the specified
     * HCR_EL2 bits is set.
     *
     * ICV registers fall into four categories:
     *  * access if NS EL1 and HCR_EL2.FMO == 1:
     *    all ICV regs with '0' in their name
     *  * access if NS EL1 and HCR_EL2.IMO == 1:
     *    all ICV regs with '1' in their name
     *  * access if NS EL1 and either IMO or FMO == 1:
     *    CTLR, DIR, PMR, RPR
     */
    return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1
        && !arm_is_secure_below_el3(env);
}

static int read_vbpr(GICv3CPUState *cs, int grp)
{
    /* Read VBPR value out of the VMCR field (caller must handle
     * VCBPR effects if required)
     */
    if (grp == GICV3_G0) {
        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
                     ICH_VMCR_EL2_VBPR0_LENGTH);
    } else {
        return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
                         ICH_VMCR_EL2_VBPR1_LENGTH);
    }
}

static void write_vbpr(GICv3CPUState *cs, int grp, int value)
{
    /* Write new VBPR1 value, handling the "writing a value less than
     * the minimum sets it to the minimum" semantics.
     */
    int min = icv_min_vbpr(cs);

    if (grp != GICV3_G0) {
        min++;
    }

    value = MAX(value, min);

    if (grp == GICV3_G0) {
        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
                                     ICH_VMCR_EL2_VBPR0_LENGTH, value);
    } else {
        cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
                                     ICH_VMCR_EL2_VBPR1_LENGTH, value);
    }
}

static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
{
    /* Return a mask word which clears the unimplemented priority bits
     * from a priority value for a virtual interrupt. (Not to be confused
     * with the group priority, whose mask depends on the value of VBPR
     * for the interrupt group.)
     */
    return ~0U << (8 - cs->vpribits);
}

static int ich_highest_active_virt_prio(GICv3CPUState *cs)
{
    /* Calculate the current running priority based on the set bits
     * in the ICH Active Priority Registers.
     */
    int i;
    int aprmax = 1 << (cs->vprebits - 5);

    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));

    for (i = 0; i < aprmax; i++) {
        uint32_t apr = cs->ich_apr[GICV3_G0][i] |
            cs->ich_apr[GICV3_G1NS][i];

        if (!apr) {
            continue;
        }
        return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
    }
    /* No current active interrupts: return idle priority */
    return 0xff;
}

static int hppvi_index(GICv3CPUState *cs)
{
    /* Return the list register index of the highest priority pending
     * virtual interrupt, as per the HighestPriorityVirtualInterrupt
     * pseudocode. If no pending virtual interrupts, return -1.
     */
    int idx = -1;
    int i;
    /* Note that a list register entry with a priority of 0xff will
     * never be reported by this function; this is the architecturally
     * correct behaviour.
     */
    int prio = 0xff;

    if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
        /* Both groups disabled, definitely nothing to do */
        return idx;
    }

    for (i = 0; i < cs->num_list_regs; i++) {
        uint64_t lr = cs->ich_lr_el2[i];
        int thisprio;

        if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
            /* Not Pending */
            continue;
        }

        /* Ignore interrupts if relevant group enable not set */
        if (lr & ICH_LR_EL2_GROUP) {
            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
                continue;
            }
        } else {
            if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
                continue;
            }
        }

        thisprio = ich_lr_prio(lr);

        if (thisprio < prio) {
            prio = thisprio;
            idx = i;
        }
    }

    return idx;
}

static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
{
    /* Return a mask word which clears the subpriority bits from
     * a priority value for a virtual interrupt in the specified group.
     * This depends on the VBPR value:
     *  a BPR of 0 means the group priority bits are [7:1];
     *  a BPR of 1 means they are [7:2], and so on down to
     *  a BPR of 7 meaning no group priority bits at all.
     * Which BPR to use depends on the group of the interrupt and
     * the current ICH_VMCR_EL2.VCBPR settings.
     */
    if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
        group = GICV3_G0;
    }

    return ~0U << (read_vbpr(cs, group) + 1);
}

static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
{
    /* Return true if we can signal this virtual interrupt defined by
     * the given list register value; see the pseudocode functions
     * CanSignalVirtualInterrupt and CanSignalVirtualInt.
     * Compare also icc_hppi_can_preempt() which is the non-virtual
     * equivalent of these checks.
     */
    int grp;
    uint32_t mask, prio, rprio, vpmr;

    if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
        /* Virtual interface disabled */
        return false;
    }

    /* We don't need to check that this LR is in Pending state because
     * that has already been done in hppvi_index().
     */

    prio = ich_lr_prio(lr);
    vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
                     ICH_VMCR_EL2_VPMR_LENGTH);

    if (prio >= vpmr) {
        /* Priority mask masks this interrupt */
        return false;
    }

    rprio = ich_highest_active_virt_prio(cs);
    if (rprio == 0xff) {
        /* No running interrupt so we can preempt */
        return true;
    }

    grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;

    mask = icv_gprio_mask(cs, grp);

    /* We only preempt a running interrupt if the pending interrupt's
     * group priority is sufficient (the subpriorities are not considered).
     */
    if ((prio & mask) < (rprio & mask)) {
        return true;
    }

    return false;
}

static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
                                                uint32_t *misr)
{
    /* Return a set of bits indicating the EOI maintenance interrupt status
     * for each list register. The EOI maintenance interrupt status is
     * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
     * (see the GICv3 spec for the ICH_EISR_EL2 register).
     * If misr is not NULL then we should also collect the information
     * about the MISR.EOI, MISR.NP and MISR.U bits.
     */
    uint32_t value = 0;
    int validcount = 0;
    bool seenpending = false;
    int i;

    for (i = 0; i < cs->num_list_regs; i++) {
        uint64_t lr = cs->ich_lr_el2[i];

        if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
            == ICH_LR_EL2_EOI) {
            value |= (1 << i);
        }
        if ((lr & ICH_LR_EL2_STATE_MASK)) {
            validcount++;
        }
        if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
            seenpending = true;
        }
    }

    if (misr) {
        if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
            *misr |= ICH_MISR_EL2_U;
        }
        if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
            *misr |= ICH_MISR_EL2_NP;
        }
        if (value) {
            *misr |= ICH_MISR_EL2_EOI;
        }
    }
    return value;
}

static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
{
    /* Return a set of bits indicating the maintenance interrupt status
     * (as seen in the ICH_MISR_EL2 register).
     */
    uint32_t value = 0;

    /* Scan list registers and fill in the U, NP and EOI bits */
    eoi_maintenance_interrupt_state(cs, &value);

    if (cs->ich_hcr_el2 & (ICH_HCR_EL2_LRENPIE | ICH_HCR_EL2_EOICOUNT_MASK)) {
        value |= ICH_MISR_EL2_LRENP;
    }

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
        value |= ICH_MISR_EL2_VGRP0E;
    }

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
        value |= ICH_MISR_EL2_VGRP0D;
    }
    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
        (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
        value |= ICH_MISR_EL2_VGRP1E;
    }

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
        !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
        value |= ICH_MISR_EL2_VGRP1D;
    }

    return value;
}

static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
{
    /* Tell the CPU about any pending virtual interrupts or
     * maintenance interrupts, following a change to the state
     * of the CPU interface relevant to virtual interrupts.
     *
     * CAUTION: this function will call qemu_set_irq() on the
     * CPU maintenance IRQ line, which is typically wired up
     * to the GIC as a per-CPU interrupt. This means that it
     * will recursively call back into the GIC code via
     * gicv3_redist_set_irq() and thus into the CPU interface code's
     * gicv3_cpuif_update(). It is therefore important that this
     * function is only called as the final action of a CPU interface
     * register write implementation, after all the GIC state
     * fields have been updated. gicv3_cpuif_update() also must
     * not cause this function to be called, but that happens
     * naturally as a result of there being no architectural
     * linkage between the physical and virtual GIC logic.
     */
    int idx;
    int irqlevel = 0;
    int fiqlevel = 0;
    int maintlevel = 0;

    idx = hppvi_index(cs);
    trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx);
    if (idx >= 0) {
        uint64_t lr = cs->ich_lr_el2[idx];

        if (icv_hppi_can_preempt(cs, lr)) {
            /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
            if (lr & ICH_LR_EL2_GROUP) {
                irqlevel = 1;
            } else {
                fiqlevel = 1;
            }
        }
    }

    if (cs->ich_hcr_el2 & ICH_HCR_EL2_EN) {
        maintlevel = maintenance_interrupt_state(cs);
    }

    trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel,
                                    irqlevel, maintlevel);

    qemu_set_irq(cs->parent_vfiq, fiqlevel);
    qemu_set_irq(cs->parent_virq, irqlevel);
    qemu_set_irq(cs->maintenance_irq, maintlevel);
}

static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
    uint64_t value = cs->ich_apr[grp][regno];

    trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
    return value;
}

static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;

    trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);

    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;

    gicv3_cpuif_virt_update(cs);
    return;
}

static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
    uint64_t bpr;
    bool satinc = false;

    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
        /* reads return bpr0 + 1 saturated to 7, writes ignored */
        grp = GICV3_G0;
        satinc = true;
    }

    bpr = read_vbpr(cs, grp);

    if (satinc) {
        bpr++;
        bpr = MIN(bpr, 7);
    }

    trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);

    return bpr;
}

static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;

    trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
                              gicv3_redist_affid(cs), value);

    if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
        /* reads return bpr0 + 1 saturated to 7, writes ignored */
        return;
    }

    write_vbpr(cs, grp, value);

    gicv3_cpuif_virt_update(cs);
}

static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
                      ICH_VMCR_EL2_VPMR_LENGTH);

    trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
    return value;
}

static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);

    value &= icv_fullprio_mask(cs);

    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
                                 ICH_VMCR_EL2_VPMR_LENGTH, value);

    gicv3_cpuif_virt_update(cs);
}

static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int enbit;
    uint64_t value;

    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
    value = extract64(cs->ich_vmcr_el2, enbit, 1);

    trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
                                gicv3_redist_affid(cs), value);
    return value;
}

static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int enbit;

    trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
                                 gicv3_redist_affid(cs), value);

    enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;

    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
    gicv3_cpuif_virt_update(cs);
}

static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
     * should match the ones reported in ich_vtr_read().
     */
    value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);

    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
        value |= ICC_CTLR_EL1_EOIMODE;
    }

    if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
        value |= ICC_CTLR_EL1_CBPR;
    }

    trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
    return value;
}

static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);

    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
                                 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
    cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
                                 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);

    gicv3_cpuif_virt_update(cs);
}

static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int prio = ich_highest_active_virt_prio(cs);

    trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
    return prio;
}

static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
    int idx = hppvi_index(cs);
    uint64_t value = INTID_SPURIOUS;

    if (idx >= 0) {
        uint64_t lr = cs->ich_lr_el2[idx];
        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;

        if (grp == thisgrp) {
            value = ich_lr_vintid(lr);
        }
    }

    trace_gicv3_icv_hppir_read(grp, gicv3_redist_affid(cs), value);
    return value;
}

static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
{
    /* Activate the interrupt in the specified list register
     * by moving it from Pending to Active state, and update the
     * Active Priority Registers.
     */
    uint32_t mask = icv_gprio_mask(cs, grp);
    int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
    int aprbit = prio >> (8 - cs->vprebits);
    int regno = aprbit / 32;
    int regbit = aprbit % 32;

    cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
    cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
    cs->ich_apr[grp][regno] |= (1 << regbit);
}

static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
    int idx = hppvi_index(cs);
    uint64_t intid = INTID_SPURIOUS;

    if (idx >= 0) {
        uint64_t lr = cs->ich_lr_el2[idx];
        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;

        if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
            intid = ich_lr_vintid(lr);
            if (intid < INTID_SECURE) {
                icv_activate_irq(cs, idx, grp);
            } else {
                /* Interrupt goes from Pending to Invalid */
                cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
                /* We will now return the (bogus) ID from the list register,
                 * as per the pseudocode.
                 */
            }
        }
    }

    trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
                             gicv3_redist_affid(cs), intid);
    return intid;
}

static int icc_highest_active_prio(GICv3CPUState *cs)
{
    /* Calculate the current running priority based on the set bits
     * in the Active Priority Registers.
     */
    int i;

    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
        uint32_t apr = cs->icc_apr[GICV3_G0][i] |
            cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];

        if (!apr) {
            continue;
        }
        return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
    }
    /* No current active interrupts: return idle priority */
    return 0xff;
}

static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
{
    /* Return a mask word which clears the subpriority bits from
     * a priority value for an interrupt in the specified group.
     * This depends on the BPR value:
     *  a BPR of 0 means the group priority bits are [7:1];
     *  a BPR of 1 means they are [7:2], and so on down to
     *  a BPR of 7 meaning no group priority bits at all.
     * Which BPR to use depends on the group of the interrupt and
     * the current ICC_CTLR.CBPR settings.
     */
    if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
        (group == GICV3_G1NS &&
         cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
        group = GICV3_G0;
    }

    return ~0U << ((cs->icc_bpr[group] & 7) + 1);
}

static bool icc_no_enabled_hppi(GICv3CPUState *cs)
{
    /* Return true if there is no pending interrupt, or the
     * highest priority pending interrupt is in a group which has been
     * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
     */
    return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
}

static bool icc_hppi_can_preempt(GICv3CPUState *cs)
{
    /* Return true if we have a pending interrupt of sufficient
     * priority to preempt.
     */
    int rprio;
    uint32_t mask;

    if (icc_no_enabled_hppi(cs)) {
        return false;
    }

    if (cs->hppi.prio >= cs->icc_pmr_el1) {
        /* Priority mask masks this interrupt */
        return false;
    }

    rprio = icc_highest_active_prio(cs);
    if (rprio == 0xff) {
        /* No currently running interrupt so we can preempt */
        return true;
    }

    mask = icc_gprio_mask(cs, cs->hppi.grp);

    /* We only preempt a running interrupt if the pending interrupt's
     * group priority is sufficient (the subpriorities are not considered).
     */
    if ((cs->hppi.prio & mask) < (rprio & mask)) {
        return true;
    }

    return false;
}

void gicv3_cpuif_update(GICv3CPUState *cs)
{
    /* Tell the CPU about its highest priority pending interrupt */
    int irqlevel = 0;
    int fiqlevel = 0;
    ARMCPU *cpu = ARM_CPU(cs->cpu);
    CPUARMState *env = &cpu->env;

    trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
                             cs->hppi.grp, cs->hppi.prio);

    if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
        /* If a Security-enabled GIC sends a G1S interrupt to a
         * Security-disabled CPU, we must treat it as if it were G0.
         */
        cs->hppi.grp = GICV3_G0;
    }

    if (icc_hppi_can_preempt(cs)) {
        /* We have an interrupt: should we signal it as IRQ or FIQ?
         * This is described in the GICv3 spec section 4.6.2.
         */
        bool isfiq;

        switch (cs->hppi.grp) {
        case GICV3_G0:
            isfiq = true;
            break;
        case GICV3_G1:
            isfiq = (!arm_is_secure(env) ||
                     (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
            break;
        case GICV3_G1NS:
            isfiq = arm_is_secure(env);
            break;
        default:
            g_assert_not_reached();
        }

        if (isfiq) {
            fiqlevel = 1;
        } else {
            irqlevel = 1;
        }
    }

    trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);

    qemu_set_irq(cs->parent_fiq, fiqlevel);
    qemu_set_irq(cs->parent_irq, irqlevel);
}

static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint32_t value = cs->icc_pmr_el1;

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        return icv_pmr_read(env, ri);
    }

    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
        (env->cp15.scr_el3 & SCR_FIQ)) {
        /* NS access and Group 0 is inaccessible to NS: return the
         * NS view of the current priority
         */
        if (value & 0x80) {
            /* Secure priorities not visible to NS */
            value = 0;
        } else if (value != 0xff) {
            value = (value << 1) & 0xff;
        }
    }

    trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);

    return value;
}

static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        return icv_pmr_write(env, ri, value);
    }

    trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);

    value &= 0xff;

    if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
        (env->cp15.scr_el3 & SCR_FIQ)) {
        /* NS access and Group 0 is inaccessible to NS: return the
         * NS view of the current priority
         */
        if (!(cs->icc_pmr_el1 & 0x80)) {
            /* Current PMR in the secure range, don't allow NS to change it */
            return;
        }
        value = (value >> 1) & 0x80;
    }
    cs->icc_pmr_el1 = value;
    gicv3_cpuif_update(cs);
}

static void icc_activate_irq(GICv3CPUState *cs, int irq)
{
    /* Move the interrupt from the Pending state to Active, and update
     * the Active Priority Registers
     */
    uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
    int prio = cs->hppi.prio & mask;
    int aprbit = prio >> 1;
    int regno = aprbit / 32;
    int regbit = aprbit % 32;

    cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);

    if (irq < GIC_INTERNAL) {
        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
        cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
        gicv3_redist_update(cs);
    } else {
        gicv3_gicd_active_set(cs->gic, irq);
        gicv3_gicd_pending_clear(cs->gic, irq);
        gicv3_update(cs->gic, irq, 1);
    }
}

static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
{
    /* Return the highest priority pending interrupt register value
     * for group 0.
     */
    bool irq_is_secure;

    if (cs->hppi.prio == 0xff) {
        return INTID_SPURIOUS;
    }

    /* Check whether we can return the interrupt or if we should return
     * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
     * is always zero.)
     */
    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
                     (cs->hppi.grp != GICV3_G1NS));

    if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
        return INTID_SPURIOUS;
    }
    if (irq_is_secure && !arm_is_secure(env)) {
        /* Secure interrupts not visible to Nonsecure */
        return INTID_SPURIOUS;
    }

    if (cs->hppi.grp != GICV3_G0) {
        /* Indicate to EL3 that there's a Group 1 interrupt for the other
         * state pending.
         */
        return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
    }

    return cs->hppi.irq;
}

static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
{
    /* Return the highest priority pending interrupt register value
     * for group 1.
     */
    bool irq_is_secure;

    if (cs->hppi.prio == 0xff) {
        return INTID_SPURIOUS;
    }

    /* Check whether we can return the interrupt or if we should return
     * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
     * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
     * is always zero.)
     */
    irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
                     (cs->hppi.grp != GICV3_G1NS));

    if (cs->hppi.grp == GICV3_G0) {
        /* Group 0 interrupts not visible via HPPIR1 */
        return INTID_SPURIOUS;
    }
    if (irq_is_secure) {
        if (!arm_is_secure(env)) {
            /* Secure interrupts not visible in Non-secure */
            return INTID_SPURIOUS;
        }
    } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
        /* Group 1 non-secure interrupts not visible in Secure EL1 */
        return INTID_SPURIOUS;
    }

    return cs->hppi.irq;
}

static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t intid;

    if (icv_access(env, HCR_FMO)) {
        return icv_iar_read(env, ri);
    }

    if (!icc_hppi_can_preempt(cs)) {
        intid = INTID_SPURIOUS;
    } else {
        intid = icc_hppir0_value(cs, env);
    }

    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
        icc_activate_irq(cs, intid);
    }

    trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
    return intid;
}

static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t intid;

    if (icv_access(env, HCR_IMO)) {
        return icv_iar_read(env, ri);
    }

    if (!icc_hppi_can_preempt(cs)) {
        intid = INTID_SPURIOUS;
    } else {
        intid = icc_hppir1_value(cs, env);
    }

    if (!(intid >= INTID_SECURE && intid <= INTID_SPURIOUS)) {
        icc_activate_irq(cs, intid);
    }

    trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
    return intid;
}

static void icc_drop_prio(GICv3CPUState *cs, int grp)
{
    /* Drop the priority of the currently active interrupt in
     * the specified group.
     *
     * Note that we can guarantee (because of the requirement to nest
     * ICC_IAR reads [which activate an interrupt and raise priority]
     * with ICC_EOIR writes [which drop the priority for the interrupt])
     * that the interrupt we're being called for is the highest priority
     * active interrupt, meaning that it has the lowest set bit in the
     * APR registers.
     *
     * If the guest does not honour the ordering constraints then the
     * behaviour of the GIC is UNPREDICTABLE, which for us means that
     * the values of the APR registers might become incorrect and the
     * running priority will be wrong, so interrupts that should preempt
     * might not do so, and interrupts that should not preempt might do so.
     */
    int i;

    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
        uint64_t *papr = &cs->icc_apr[grp][i];

        if (!*papr) {
            continue;
        }
        /* Clear the lowest set bit */
        *papr &= *papr - 1;
        break;
    }

    /* running priority change means we need an update for this cpu i/f */
    gicv3_cpuif_update(cs);
}

static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
{
    /* Return true if we should split priority drop and interrupt
     * deactivation, ie whether the relevant EOIMode bit is set.
     */
    if (arm_is_el3_or_mon(env)) {
        return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
    }
    if (arm_is_secure_below_el3(env)) {
        return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
    } else {
        return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
    }
}

static int icc_highest_active_group(GICv3CPUState *cs)
{
    /* Return the group with the highest priority active interrupt.
     * We can do this by just comparing the APRs to see which one
     * has the lowest set bit.
     * (If more than one group is active at the same priority then
     * we're in UNPREDICTABLE territory.)
     */
    int i;

    for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
        int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
        int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
        int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);

        if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
            return GICV3_G1NS;
        }
        if (g1ctz < g0ctz) {
            return GICV3_G1;
        }
        if (g0ctz < 32) {
            return GICV3_G0;
        }
    }
    /* No set active bits? UNPREDICTABLE; return -1 so the caller
     * ignores the spurious EOI attempt.
     */
    return -1;
}

static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
{
    if (irq < GIC_INTERNAL) {
        cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
        gicv3_redist_update(cs);
    } else {
        gicv3_gicd_active_clear(cs->gic, irq);
        gicv3_update(cs->gic, irq, 1);
    }
}

static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
{
    /* Return true if we should split priority drop and interrupt
     * deactivation, ie whether the virtual EOIMode bit is set.
     */
    return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
}

static int icv_find_active(GICv3CPUState *cs, int irq)
{
    /* Given an interrupt number for an active interrupt, return the index
     * of the corresponding list register, or -1 if there is no match.
     * Corresponds to FindActiveVirtualInterrupt pseudocode.
     */
    int i;

    for (i = 0; i < cs->num_list_regs; i++) {
        uint64_t lr = cs->ich_lr_el2[i];

        if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
            return i;
        }
    }

    return -1;
}

static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
{
    /* Deactivate the interrupt in the specified list register index */
    uint64_t lr = cs->ich_lr_el2[idx];

    if (lr & ICH_LR_EL2_HW) {
        /* Deactivate the associated physical interrupt */
        int pirq = ich_lr_pintid(lr);

        if (pirq < INTID_SECURE) {
            icc_deactivate_irq(cs, pirq);
        }
    }

    /* Clear the 'active' part of the state, so ActivePending->Pending
     * and Active->Invalid.
     */
    lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
    cs->ich_lr_el2[idx] = lr;
}

static void icv_increment_eoicount(GICv3CPUState *cs)
{
    /* Increment the EOICOUNT field in ICH_HCR_EL2 */
    int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
                             ICH_HCR_EL2_EOICOUNT_LENGTH);

    cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
                                ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
}

static int icv_drop_prio(GICv3CPUState *cs)
{
    /* Drop the priority of the currently active virtual interrupt
     * (favouring group 0 if there is a set active bit at
     * the same priority for both group 0 and group 1).
     * Return the priority value for the bit we just cleared,
     * or 0xff if no bits were set in the AP registers at all.
     * Note that though the ich_apr[] are uint64_t only the low
     * 32 bits are actually relevant.
     */
    int i;
    int aprmax = 1 << (cs->vprebits - 5);

    assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));

    for (i = 0; i < aprmax; i++) {
        uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
        uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
        int apr0count, apr1count;

        if (!*papr0 && !*papr1) {
            continue;
        }

        /* We can't just use the bit-twiddling hack icc_drop_prio() does
         * because we need to return the bit number we cleared so
         * it can be compared against the list register's priority field.
         */
        apr0count = ctz32(*papr0);
        apr1count = ctz32(*papr1);

        if (apr0count <= apr1count) {
            *papr0 &= *papr0 - 1;
            return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
        } else {
            *papr1 &= *papr1 - 1;
            return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
        }
    }
    return 0xff;
}

static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Deactivate interrupt */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int idx;
    int irq = value & 0xffffff;

    trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);

    if (irq >= cs->gic->num_irq) {
        /* Also catches special interrupt numbers and LPIs */
        return;
    }

    if (!icv_eoi_split(env, cs)) {
        return;
    }

    idx = icv_find_active(cs, irq);

    if (idx < 0) {
        /* No list register matching this, so increment the EOI count
         * (might trigger a maintenance interrupt)
         */
        icv_increment_eoicount(cs);
    } else {
        icv_deactivate_irq(cs, idx);
    }

    gicv3_cpuif_virt_update(cs);
}

static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* End of Interrupt */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int irq = value & 0xffffff;
    int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
    int idx, dropprio;

    trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
                               gicv3_redist_affid(cs), value);

    if (irq >= cs->gic->num_irq) {
        /* Also catches special interrupt numbers and LPIs */
        return;
    }

    /* We implement the IMPDEF choice of "drop priority before doing
     * error checks" (because that lets us avoid scanning the AP
     * registers twice).
     */
    dropprio = icv_drop_prio(cs);
    if (dropprio == 0xff) {
        /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
         * whether the list registers are checked in this
         * situation; we choose not to.
         */
        return;
    }

    idx = icv_find_active(cs, irq);

    if (idx < 0) {
        /* No valid list register corresponding to EOI ID */
        icv_increment_eoicount(cs);
    } else {
        uint64_t lr = cs->ich_lr_el2[idx];
        int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
        int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);

        if (thisgrp == grp && lr_gprio == dropprio) {
            if (!icv_eoi_split(env, cs)) {
                /* Priority drop and deactivate not split: deactivate irq now */
                icv_deactivate_irq(cs, idx);
            }
        }
    }

    gicv3_cpuif_virt_update(cs);
}

static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* End of Interrupt */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int irq = value & 0xffffff;
    int grp;

    if (icv_access(env, ri->crm == 8 ? HCR_FMO : HCR_IMO)) {
        icv_eoir_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_eoir_write(ri->crm == 8 ? 0 : 1,
                               gicv3_redist_affid(cs), value);

    if (ri->crm == 8) {
        /* EOIR0 */
        grp = GICV3_G0;
    } else {
        /* EOIR1 */
        if (arm_is_secure(env)) {
            grp = GICV3_G1;
        } else {
            grp = GICV3_G1NS;
        }
    }

    if (irq >= cs->gic->num_irq) {
        /* This handles two cases:
         * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
         * to the GICC_EOIR, the GIC ignores that write.
         * 2. If software writes the number of a non-existent interrupt
         * this must be a subcase of "value written does not match the last
         * valid interrupt value read from the Interrupt Acknowledge
         * register" and so this is UNPREDICTABLE. We choose to ignore it.
         */
        return;
    }

    if (icc_highest_active_group(cs) != grp) {
        return;
    }

    icc_drop_prio(cs, grp);

    if (!icc_eoi_split(env, cs)) {
        /* Priority drop and deactivate not split: deactivate irq now */
        icc_deactivate_irq(cs, irq);
    }
}

static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    if (icv_access(env, HCR_FMO)) {
        return icv_hppir_read(env, ri);
    }

    value = icc_hppir0_value(cs, env);
    trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
    return value;
}

static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    if (icv_access(env, HCR_IMO)) {
        return icv_hppir_read(env, ri);
    }

    value = icc_hppir1_value(cs, env);
    trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
    return value;
}

static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
    bool satinc = false;
    uint64_t bpr;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        return icv_bpr_read(env, ri);
    }

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
         * modify BPR0
         */
        grp = GICV3_G0;
    }

    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
        /* reads return bpr0 + 1 sat to 7, writes ignored */
        grp = GICV3_G0;
        satinc = true;
    }

    bpr = cs->icc_bpr[grp];
    if (satinc) {
        bpr++;
        bpr = MIN(bpr, 7);
    }

    trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);

    return bpr;
}

static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        icv_bpr_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
                              gicv3_redist_affid(cs), value);

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
        (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
        /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
         * modify BPR0
         */
        grp = GICV3_G0;
    }

    if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
        (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
        /* reads return bpr0 + 1 sat to 7, writes ignored */
        return;
    }

    cs->icc_bpr[grp] = value & 7;
    gicv3_cpuif_update(cs);
}

static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        return icv_ap_read(env, ri);
    }

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    value = cs->icc_apr[grp][regno];

    trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
    return value;
}

static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        icv_ap_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    /* It's not possible to claim that a Non-secure interrupt is active
     * at a priority outside the Non-secure range (128..255), since this
     * would otherwise allow malicious NS code to block delivery of S interrupts
     * by writing a bad value to these registers.
     */
    if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
        return;
    }

    cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
    gicv3_cpuif_update(cs);
}

static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    /* Deactivate interrupt */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int irq = value & 0xffffff;
    bool irq_is_secure, single_sec_state, irq_is_grp0;
    bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        icv_dir_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);

    if (irq >= cs->gic->num_irq) {
        /* Also catches special interrupt numbers and LPIs */
        return;
    }

    if (!icc_eoi_split(env, cs)) {
        return;
    }

    int grp = gicv3_irq_group(cs->gic, cs, irq);

    single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
    irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
    irq_is_grp0 = grp == GICV3_G0;

    /* Check whether we're allowed to deactivate this interrupt based
     * on its group and the current CPU state.
     * These checks are laid out to correspond to the spec's pseudocode.
     */
    route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
    route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
    /* No need to include !IsSecure in route_*_to_el2 as it's only
     * tested in cases where we know !IsSecure is true.
     */
    route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;
    route_irq_to_el2 = env->cp15.hcr_el2 & HCR_FMO;

    switch (arm_current_el(env)) {
    case 3:
        break;
    case 2:
        if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
            break;
        }
        if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
            break;
        }
        return;
    case 1:
        if (!arm_is_secure_below_el3(env)) {
            if (single_sec_state && irq_is_grp0 &&
                !route_fiq_to_el3 && !route_fiq_to_el2) {
                break;
            }
            if (!irq_is_secure && !irq_is_grp0 &&
                !route_irq_to_el3 && !route_irq_to_el2) {
                break;
            }
        } else {
            if (irq_is_grp0 && !route_fiq_to_el3) {
                break;
            }
            if (!irq_is_grp0 &&
                (!irq_is_secure || !single_sec_state) &&
                !route_irq_to_el3) {
                break;
            }
        }
        return;
    default:
        g_assert_not_reached();
    }

    icc_deactivate_irq(cs, irq);
}

static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int prio;

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        return icv_rpr_read(env, ri);
    }

    prio = icc_highest_active_prio(cs);

    if (arm_feature(env, ARM_FEATURE_EL3) &&
        !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
        /* NS GIC access and Group 0 is inaccessible to NS */
        if (prio & 0x80) {
            /* NS mustn't see priorities in the Secure half of the range */
            prio = 0;
        } else if (prio != 0xff) {
            /* Non-idle priority: show the Non-secure view of it */
            prio = (prio << 1) & 0xff;
        }
    }

    trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
    return prio;
}

static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
                             uint64_t value, int grp, bool ns)
{
    GICv3State *s = cs->gic;

    /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
    uint64_t aff = extract64(value, 48, 8) << 16 |
        extract64(value, 32, 8) << 8 |
        extract64(value, 16, 8);
    uint32_t targetlist = extract64(value, 0, 16);
    uint32_t irq = extract64(value, 24, 4);
    bool irm = extract64(value, 40, 1);
    int i;

    if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
        /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
         * interrupts as Group 0 interrupts and must send Secure Group 0
         * interrupts to the target CPUs.
         */
        grp = GICV3_G0;
    }

    trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
                                 aff, targetlist);

    for (i = 0; i < s->num_cpu; i++) {
        GICv3CPUState *ocs = &s->cpu[i];

        if (irm) {
            /* IRM == 1 : route to all CPUs except self */
            if (cs == ocs) {
                continue;
            }
        } else {
            /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
             * where the corresponding bit is set in targetlist
             */
            int aff0;

            if (ocs->gicr_typer >> 40 != aff) {
                continue;
            }
            aff0 = extract64(ocs->gicr_typer, 32, 8);
            if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
                continue;
            }
        }

        /* The redistributor will check against its own GICR_NSACR as needed */
        gicv3_redist_send_sgi(ocs, grp, irq, ns);
    }
}

static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Generate Secure Group 0 SGI. */
    GICv3CPUState *cs = icc_cs_from_env(env);
    bool ns = !arm_is_secure(env);

    icc_generate_sgi(env, cs, value, GICV3_G0, ns);
}

static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
{
    /* Generate Group 1 SGI for the current Security state */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp;
    bool ns = !arm_is_secure(env);

    grp = ns ? GICV3_G1NS : GICV3_G1;
    icc_generate_sgi(env, cs, value, grp, ns);
}

static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    /* Generate Group 1 SGI for the Security state that is not
     * the current state
     */
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp;
    bool ns = !arm_is_secure(env);

    grp = ns ? GICV3_G1 : GICV3_G1NS;
    icc_generate_sgi(env, cs, value, grp, ns);
}

static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
    uint64_t value;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        return icv_igrpen_read(env, ri);
    }

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    value = cs->icc_igrpen[grp];
    trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
                                gicv3_redist_affid(cs), value);
    return value;
}

static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
                             uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;

    if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
        icv_igrpen_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
                                 gicv3_redist_affid(cs), value);

    if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
        grp = GICV3_G1NS;
    }

    cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
    gicv3_cpuif_update(cs);
}

static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
    value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
    trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
    return value;
}

static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                                  uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);

    /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
    cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
    cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
    gicv3_cpuif_update(cs);
}

static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
    uint64_t value;

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        return icv_ctlr_read(env, ri);
    }

    value = cs->icc_ctlr_el1[bank];
    trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
    return value;
}

static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
    uint64_t mask;

    if (icv_access(env, HCR_FMO | HCR_IMO)) {
        icv_ctlr_write(env, ri, value);
        return;
    }

    trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);

    /* Only CBPR and EOIMODE can be RW;
     * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
     * the asseciated priority-based routing of them);
     * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
     */
    if (arm_feature(env, ARM_FEATURE_EL3) &&
        ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
        mask = ICC_CTLR_EL1_EOIMODE;
    } else {
        mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
    }

    cs->icc_ctlr_el1[bank] &= ~mask;
    cs->icc_ctlr_el1[bank] |= (value & mask);
    gicv3_cpuif_update(cs);
}


static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    value = cs->icc_ctlr_el3;
    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
        value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
    }
    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
        value |= ICC_CTLR_EL3_CBPR_EL1NS;
    }
    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
        value |= ICC_CTLR_EL3_EOIMODE_EL1S;
    }
    if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
        value |= ICC_CTLR_EL3_CBPR_EL1S;
    }

    trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
    return value;
}

static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
                               uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t mask;

    trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);

    /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
    cs->icc_ctlr_el1[GICV3_NS] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
    if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
    }
    if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
        cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
    }

    cs->icc_ctlr_el1[GICV3_S] &= (ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
    if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
    }
    if (value & ICC_CTLR_EL3_CBPR_EL1S) {
        cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
    }

    /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
    mask = ICC_CTLR_EL3_EOIMODE_EL3;

    cs->icc_ctlr_el3 &= ~mask;
    cs->icc_ctlr_el3 |= (value & mask);
    gicv3_cpuif_update(cs);
}

static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
                                          const ARMCPRegInfo *ri, bool isread)
{
    CPAccessResult r = CP_ACCESS_OK;
    GICv3CPUState *cs = icc_cs_from_env(env);
    int el = arm_current_el(env);

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
        el == 1 && !arm_is_secure_below_el3(env)) {
        /* Takes priority over a possible EL3 trap */
        return CP_ACCESS_TRAP_EL2;
    }

    if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
        switch (el) {
        case 1:
            if (arm_is_secure_below_el3(env) ||
                ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        case 2:
            r = CP_ACCESS_TRAP_EL3;
            break;
        case 3:
            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        default:
            g_assert_not_reached();
        }
    }

    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
        r = CP_ACCESS_TRAP;
    }
    return r;
}

static CPAccessResult gicv3_dir_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri, bool isread)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
        /* Takes priority over a possible EL3 trap */
        return CP_ACCESS_TRAP_EL2;
    }

    return gicv3_irqfiq_access(env, ri, isread);
}

static CPAccessResult gicv3_sgi_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri, bool isread)
{
    if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) &&
        arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
        /* Takes priority over a possible EL3 trap */
        return CP_ACCESS_TRAP_EL2;
    }

    return gicv3_irqfiq_access(env, ri, isread);
}

static CPAccessResult gicv3_fiq_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri, bool isread)
{
    CPAccessResult r = CP_ACCESS_OK;
    GICv3CPUState *cs = icc_cs_from_env(env);
    int el = arm_current_el(env);

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
        el == 1 && !arm_is_secure_below_el3(env)) {
        /* Takes priority over a possible EL3 trap */
        return CP_ACCESS_TRAP_EL2;
    }

    if (env->cp15.scr_el3 & SCR_FIQ) {
        switch (el) {
        case 1:
            if (arm_is_secure_below_el3(env) ||
                ((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        case 2:
            r = CP_ACCESS_TRAP_EL3;
            break;
        case 3:
            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        default:
            g_assert_not_reached();
        }
    }

    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
        r = CP_ACCESS_TRAP;
    }
    return r;
}

static CPAccessResult gicv3_irq_access(CPUARMState *env,
                                       const ARMCPRegInfo *ri, bool isread)
{
    CPAccessResult r = CP_ACCESS_OK;
    GICv3CPUState *cs = icc_cs_from_env(env);
    int el = arm_current_el(env);

    if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
        el == 1 && !arm_is_secure_below_el3(env)) {
        /* Takes priority over a possible EL3 trap */
        return CP_ACCESS_TRAP_EL2;
    }

    if (env->cp15.scr_el3 & SCR_IRQ) {
        switch (el) {
        case 1:
            if (arm_is_secure_below_el3(env) ||
                ((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        case 2:
            r = CP_ACCESS_TRAP_EL3;
            break;
        case 3:
            if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
                r = CP_ACCESS_TRAP_EL3;
            }
            break;
        default:
            g_assert_not_reached();
        }
    }

    if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
        r = CP_ACCESS_TRAP;
    }
    return r;
}

static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
    cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
        (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
        (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
    cs->icc_pmr_el1 = 0;
    cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
    cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
    if (arm_feature(env, ARM_FEATURE_EL3)) {
        cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
    } else {
        cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
    }
    memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
    memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
    cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
        (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
        (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);

    memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
    cs->ich_hcr_el2 = 0;
    memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
    cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR1_SHIFT) |
        (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
}

static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
    { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
      .readfn = icc_pmr_read,
      .writefn = icc_pmr_write,
      /* We hang the whole cpu interface reset routine off here
       * rather than parcelling it out into one little function
       * per register
       */
      .resetfn = icc_reset,
    },
    { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_R, .accessfn = gicv3_fiq_access,
      .readfn = icc_iar0_read,
    },
    { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_fiq_access,
      .writefn = icc_eoir_write,
    },
    { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_R, .accessfn = gicv3_fiq_access,
      .readfn = icc_hppir0_read,
    },
    { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_bpr_read,
      .writefn = icc_bpr_write,
    },
    { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    /* All the ICC_AP1R*_EL1 registers are banked */
    { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_ap_read,
      .writefn = icc_ap_write,
    },
    { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_dir_access,
      .writefn = icc_dir_write,
    },
    { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_R, .accessfn = gicv3_irqfiq_access,
      .readfn = icc_rpr_read,
    },
    { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_sgi1r_write,
    },
    { .name = "ICC_SGI1R",
      .cp = 15, .opc1 = 0, .crm = 12,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_sgi1r_write,
    },
    { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_asgi1r_write,
    },
    { .name = "ICC_ASGI1R",
      .cp = 15, .opc1 = 1, .crm = 12,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_asgi1r_write,
    },
    { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_sgi0r_write,
    },
    { .name = "ICC_SGI0R",
      .cp = 15, .opc1 = 2, .crm = 12,
      .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_sgi_access,
      .writefn = icc_sgi0r_write,
    },
    { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_R, .accessfn = gicv3_irq_access,
      .readfn = icc_iar1_read,
    },
    { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_W, .accessfn = gicv3_irq_access,
      .writefn = icc_eoir_write,
    },
    { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_R, .accessfn = gicv3_irq_access,
      .readfn = icc_hppir1_read,
    },
    /* This register is banked */
    { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_bpr_read,
      .writefn = icc_bpr_write,
    },
    /* This register is banked */
    { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
      .readfn = icc_ctlr_el1_read,
      .writefn = icc_ctlr_el1_write,
    },
    { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
      .access = PL1_RW,
      /* We don't support IRQ/FIQ bypass and system registers are
       * always enabled, so all our bits are RAZ/WI or RAO/WI.
       * This register is banked but since it's constant we don't
       * need to do anything special.
       */
      .resetvalue = 0x7,
    },
    { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_fiq_access,
      .readfn = icc_igrpen_read,
      .writefn = icc_igrpen_write,
    },
    /* This register is banked */
    { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL1_RW, .accessfn = gicv3_irq_access,
      .readfn = icc_igrpen_read,
      .writefn = icc_igrpen_write,
    },
    { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
      .access = PL2_RW,
      /* We don't support IRQ/FIQ bypass and system registers are
       * always enabled, so all our bits are RAZ/WI or RAO/WI.
       */
      .resetvalue = 0xf,
    },
    { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL3_RW,
      .readfn = icc_ctlr_el3_read,
      .writefn = icc_ctlr_el3_write,
    },
    { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
      .type = ARM_CP_NO_RAW | ARM_CP_CONST,
      .access = PL3_RW,
      /* We don't support IRQ/FIQ bypass and system registers are
       * always enabled, so all our bits are RAZ/WI or RAO/WI.
       */
      .resetvalue = 0xf,
    },
    { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL3_RW,
      .readfn = icc_igrpen1_el3_read,
      .writefn = icc_igrpen1_el3_write,
    },
    REGINFO_SENTINEL
};

static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;
    uint64_t value;

    value = cs->ich_apr[grp][regno];
    trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
    return value;
}

static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 & 3;
    int grp = ri->crm & 1 ? GICV3_G0 : GICV3_G1NS;

    trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);

    cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
    gicv3_cpuif_virt_update(cs);
}

static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value = cs->ich_hcr_el2;

    trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
    return value;
}

static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                          uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);

    value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
        ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
        ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
        ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
        ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;

    cs->ich_hcr_el2 = value;
    gicv3_cpuif_virt_update(cs);
}

static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value = cs->ich_vmcr_el2;

    trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
    return value;
}

static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);

    trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);

    value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
        ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
        ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
    value |= ICH_VMCR_EL2_VFIQEN;

    cs->ich_vmcr_el2 = value;
    /* Enforce "writing BPRs to less than minimum sets them to the minimum"
     * by reading and writing back the fields.
     */
    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G0));
    write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));

    gicv3_cpuif_virt_update(cs);
}

static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 | ((ri->crm & 1) << 3);
    uint64_t value;

    /* This read function handles all of:
     * 64-bit reads of the whole LR
     * 32-bit reads of the low half of the LR
     * 32-bit reads of the high half of the LR
     */
    if (ri->state == ARM_CP_STATE_AA32) {
        if (ri->crm >= 14) {
            value = extract64(cs->ich_lr_el2[regno], 32, 32);
            trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
        } else {
            value = extract64(cs->ich_lr_el2[regno], 0, 32);
            trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
        }
    } else {
        value = cs->ich_lr_el2[regno];
        trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
    }

    return value;
}

static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    int regno = ri->opc2 | ((ri->crm & 1) << 3);

    /* This write function handles all of:
     * 64-bit writes to the whole LR
     * 32-bit writes to the low half of the LR
     * 32-bit writes to the high half of the LR
     */
    if (ri->state == ARM_CP_STATE_AA32) {
        if (ri->crm >= 14) {
            trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
            value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
        } else {
            trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
            value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
        }
    } else {
        trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
    }

    /* Enforce RES0 bits in priority field */
    if (cs->vpribits < 8) {
        value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
                          8 - cs->vpribits, 0);
    }

    cs->ich_lr_el2[regno] = value;
    gicv3_cpuif_virt_update(cs);
}

static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value;

    value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
        | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
        | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
        | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
        | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);

    trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
    return value;
}

static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value = maintenance_interrupt_state(cs);

    trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
    return value;
}

static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);

    trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
    return value;
}

static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    GICv3CPUState *cs = icc_cs_from_env(env);
    uint64_t value = 0;
    int i;

    for (i = 0; i < cs->num_list_regs; i++) {
        uint64_t lr = cs->ich_lr_el2[i];

        if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
            ((lr & ICH_LR_EL2_HW) == 1 || (lr & ICH_LR_EL2_EOI) == 0)) {
            value |= (1 << i);
        }
    }

    trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
    return value;
}

static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
    { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_hcr_read,
      .writefn = ich_hcr_write,
    },
    { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_R,
      .readfn = ich_vtr_read,
    },
    { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_R,
      .readfn = ich_misr_read,
    },
    { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_R,
      .readfn = ich_eisr_read,
    },
    { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_R,
      .readfn = ich_elrsr_read,
    },
    { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_vmcr_read,
      .writefn = ich_vmcr_write,
    },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
    { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    REGINFO_SENTINEL
};

static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
    { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
      .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
      .type = ARM_CP_IO | ARM_CP_NO_RAW,
      .access = PL2_RW,
      .readfn = ich_ap_read,
      .writefn = ich_ap_write,
    },
    REGINFO_SENTINEL
};

static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
{
    GICv3CPUState *cs = opaque;

    gicv3_cpuif_update(cs);
}

void gicv3_init_cpuif(GICv3State *s)
{
    /* Called from the GICv3 realize function; register our system
     * registers with the CPU
     */
    int i;

    for (i = 0; i < s->num_cpu; i++) {
        ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
        GICv3CPUState *cs = &s->cpu[i];

        /* Note that we can't just use the GICv3CPUState as an opaque pointer
         * in define_arm_cp_regs_with_opaque(), because when we're called back
         * it might be with code translated by CPU 0 but run by CPU 1, in
         * which case we'd get the wrong value.
         * So instead we define the regs with no ri->opaque info, and
         * get back to the GICv3CPUState from the ARMCPU by reading back
         * the opaque pointer from the el_change_hook, which we're going
         * to need to register anyway.
         */
        define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
        if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
            && cpu->gic_num_lrs) {
            int j;

            cs->maintenance_irq = cpu->gicv3_maintenance_interrupt;

            cs->num_list_regs = cpu->gic_num_lrs;
            cs->vpribits = cpu->gic_vpribits;
            cs->vprebits = cpu->gic_vprebits;

            /* Check against architectural constraints: getting these
             * wrong would be a bug in the CPU code defining these,
             * and the implementation relies on them holding.
             */
            g_assert(cs->vprebits <= cs->vpribits);
            g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
            g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);

            define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);

            for (j = 0; j < cs->num_list_regs; j++) {
                /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
                 * are split into two cp15 regs, LR (the low part, with the
                 * same encoding as the AArch64 LR) and LRC (the high part).
                 */
                ARMCPRegInfo lr_regset[] = {
                    { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
                      .opc0 = 3, .opc1 = 4, .crn = 12,
                      .crm = 12 + (j >> 3), .opc2 = j & 7,
                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
                      .access = PL2_RW,
                      .readfn = ich_lr_read,
                      .writefn = ich_lr_write,
                    },
                    { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
                      .cp = 15, .opc1 = 4, .crn = 12,
                      .crm = 14 + (j >> 3), .opc2 = j & 7,
                      .type = ARM_CP_IO | ARM_CP_NO_RAW,
                      .access = PL2_RW,
                      .readfn = ich_lr_read,
                      .writefn = ich_lr_write,
                    },
                    REGINFO_SENTINEL
                };
                define_arm_cp_regs(cpu, lr_regset);
            }
            if (cs->vprebits >= 6) {
                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
            }
            if (cs->vprebits == 7) {
                define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
            }
        }
        arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
    }
}