1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
|
/*
* ARM Generic/Distributed Interrupt Controller
*
* Copyright (c) 2006-2007 CodeSourcery.
* Written by Paul Brook
*
* This code is licensed under the GPL.
*/
/* This file contains implementation code for the RealView EB interrupt
* controller, MPCore distributed interrupt controller and ARMv7-M
* Nested Vectored Interrupt Controller.
* It is compiled in two ways:
* (1) as a standalone file to produce a sysbus device which is a GIC
* that can be used on the realview board and as one of the builtin
* private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
* (2) by being directly #included into armv7m_nvic.c to produce the
* armv7m_nvic device.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "gic_internal.h"
#include "qapi/error.h"
#include "qom/cpu.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "trace.h"
#include "sysemu/kvm.h"
/* #define DEBUG_GIC */
#ifdef DEBUG_GIC
#define DEBUG_GIC_GATE 1
#else
#define DEBUG_GIC_GATE 0
#endif
#define DPRINTF(fmt, ...) do { \
if (DEBUG_GIC_GATE) { \
fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
} \
} while (0)
static const uint8_t gic_id_11mpcore[] = {
0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static const uint8_t gic_id_gicv1[] = {
0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static const uint8_t gic_id_gicv2[] = {
0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
};
static inline int gic_get_current_cpu(GICState *s)
{
if (s->num_cpu > 1) {
return current_cpu->cpu_index;
}
return 0;
}
static inline int gic_get_current_vcpu(GICState *s)
{
return gic_get_current_cpu(s) + GIC_NCPU;
}
/* Return true if this GIC config has interrupt groups, which is
* true if we're a GICv2, or a GICv1 with the security extensions.
*/
static inline bool gic_has_groups(GICState *s)
{
return s->revision == 2 || s->security_extn;
}
static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
{
return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
}
static inline void gic_get_best_irq(GICState *s, int cpu,
int *best_irq, int *best_prio, int *group)
{
int irq;
int cm = 1 << cpu;
*best_irq = 1023;
*best_prio = 0x100;
for (irq = 0; irq < s->num_irq; irq++) {
if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
(!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
(irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
*best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
*best_irq = irq;
}
}
}
if (*best_irq < 1023) {
*group = GIC_DIST_TEST_GROUP(*best_irq, cm);
}
}
static inline void gic_get_best_virq(GICState *s, int cpu,
int *best_irq, int *best_prio, int *group)
{
int lr_idx = 0;
*best_irq = 1023;
*best_prio = 0x100;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t lr_entry = s->h_lr[lr_idx][cpu];
int state = GICH_LR_STATE(lr_entry);
if (state == GICH_LR_STATE_PENDING) {
int prio = GICH_LR_PRIORITY(lr_entry);
if (prio < *best_prio) {
*best_prio = prio;
*best_irq = GICH_LR_VIRT_ID(lr_entry);
*group = GICH_LR_GROUP(lr_entry);
}
}
}
}
/* Return true if IRQ signaling is enabled for the given cpu and at least one
* of the given groups:
* - in the non-virt case, the distributor must be enabled for one of the
* given groups
* - in the virt case, the virtual interface must be enabled.
* - in all cases, the (v)CPU interface must be enabled for one of the given
* groups.
*/
static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
int group_mask)
{
if (!virt && !(s->ctlr & group_mask)) {
return false;
}
if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
return false;
}
if (!(s->cpu_ctlr[cpu] & group_mask)) {
return false;
}
return true;
}
/* TODO: Many places that call this routine could be optimized. */
/* Update interrupt status after enabled or pending bits have been changed. */
static inline void gic_update_internal(GICState *s, bool virt)
{
int best_irq;
int best_prio;
int irq_level, fiq_level;
int cpu, cpu_iface;
int group = 0;
qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
for (cpu = 0; cpu < s->num_cpu; cpu++) {
cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
s->current_pending[cpu_iface] = 1023;
if (!gic_irq_signaling_enabled(s, cpu, virt,
GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
qemu_irq_lower(irq_lines[cpu]);
qemu_irq_lower(fiq_lines[cpu]);
continue;
}
if (virt) {
gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
} else {
gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
}
if (best_irq != 1023) {
trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
best_irq, best_prio,
s->priority_mask[cpu_iface],
s->running_priority[cpu_iface]);
}
irq_level = fiq_level = 0;
if (best_prio < s->priority_mask[cpu_iface]) {
s->current_pending[cpu_iface] = best_irq;
if (best_prio < s->running_priority[cpu_iface]) {
if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
if (group == 0 &&
s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
DPRINTF("Raised pending FIQ %d (cpu %d)\n",
best_irq, cpu_iface);
fiq_level = 1;
trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
fiq_level);
} else {
DPRINTF("Raised pending IRQ %d (cpu %d)\n",
best_irq, cpu_iface);
irq_level = 1;
trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
irq_level);
}
}
}
}
qemu_set_irq(irq_lines[cpu], irq_level);
qemu_set_irq(fiq_lines[cpu], fiq_level);
}
}
static void gic_update(GICState *s)
{
gic_update_internal(s, false);
}
/* Return true if this LR is empty, i.e. the corresponding bit
* in ELRSR is set.
*/
static inline bool gic_lr_entry_is_free(uint32_t entry)
{
return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
&& (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
}
/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
* corrsponding bit in EISR is set.
*/
static inline bool gic_lr_entry_is_eoi(uint32_t entry)
{
return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
&& !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
}
static inline void gic_extract_lr_info(GICState *s, int cpu,
int *num_eoi, int *num_valid, int *num_pending)
{
int lr_idx;
*num_eoi = 0;
*num_valid = 0;
*num_pending = 0;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
if (gic_lr_entry_is_eoi(*entry)) {
(*num_eoi)++;
}
if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
(*num_valid)++;
}
if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
(*num_pending)++;
}
}
}
static void gic_compute_misr(GICState *s, int cpu)
{
uint32_t value = 0;
int vcpu = cpu + GIC_NCPU;
int num_eoi, num_valid, num_pending;
gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
/* EOI */
if (num_eoi) {
value |= R_GICH_MISR_EOI_MASK;
}
/* U: true if only 0 or 1 LR entry is valid */
if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
value |= R_GICH_MISR_U_MASK;
}
/* LRENP: EOICount is not 0 */
if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
value |= R_GICH_MISR_LRENP_MASK;
}
/* NP: no pending interrupts */
if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
value |= R_GICH_MISR_NP_MASK;
}
/* VGrp0E: group0 virq signaling enabled */
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
value |= R_GICH_MISR_VGrp0E_MASK;
}
/* VGrp0D: group0 virq signaling disabled */
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
!(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
value |= R_GICH_MISR_VGrp0D_MASK;
}
/* VGrp1E: group1 virq signaling enabled */
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
value |= R_GICH_MISR_VGrp1E_MASK;
}
/* VGrp1D: group1 virq signaling disabled */
if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
!(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
value |= R_GICH_MISR_VGrp1D_MASK;
}
s->h_misr[cpu] = value;
}
static void gic_update_maintenance(GICState *s)
{
int cpu = 0;
int maint_level;
for (cpu = 0; cpu < s->num_cpu; cpu++) {
gic_compute_misr(s, cpu);
maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
trace_gic_update_maintenance_irq(cpu, maint_level);
qemu_set_irq(s->maintenance_irq[cpu], maint_level);
}
}
static void gic_update_virt(GICState *s)
{
gic_update_internal(s, true);
gic_update_maintenance(s);
}
static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
int cm, int target)
{
if (level) {
GIC_DIST_SET_LEVEL(irq, cm);
if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
DPRINTF("Set %d pending mask %x\n", irq, target);
GIC_DIST_SET_PENDING(irq, target);
}
} else {
GIC_DIST_CLEAR_LEVEL(irq, cm);
}
}
static void gic_set_irq_generic(GICState *s, int irq, int level,
int cm, int target)
{
if (level) {
GIC_DIST_SET_LEVEL(irq, cm);
DPRINTF("Set %d pending mask %x\n", irq, target);
if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
GIC_DIST_SET_PENDING(irq, target);
}
} else {
GIC_DIST_CLEAR_LEVEL(irq, cm);
}
}
/* Process a change in an external IRQ input. */
static void gic_set_irq(void *opaque, int irq, int level)
{
/* Meaning of the 'irq' parameter:
* [0..N-1] : external interrupts
* [N..N+31] : PPI (internal) interrupts for CPU 0
* [N+32..N+63] : PPI (internal interrupts for CPU 1
* ...
*/
GICState *s = (GICState *)opaque;
int cm, target;
if (irq < (s->num_irq - GIC_INTERNAL)) {
/* The first external input line is internal interrupt 32. */
cm = ALL_CPU_MASK;
irq += GIC_INTERNAL;
target = GIC_DIST_TARGET(irq);
} else {
int cpu;
irq -= (s->num_irq - GIC_INTERNAL);
cpu = irq / GIC_INTERNAL;
irq %= GIC_INTERNAL;
cm = 1 << cpu;
target = cm;
}
assert(irq >= GIC_NR_SGIS);
if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
return;
}
if (s->revision == REV_11MPCORE) {
gic_set_irq_11mpcore(s, irq, level, cm, target);
} else {
gic_set_irq_generic(s, irq, level, cm, target);
}
trace_gic_set_irq(irq, level, cm, target);
gic_update(s);
}
static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
MemTxAttrs attrs)
{
uint16_t pending_irq = s->current_pending[cpu];
if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
int group = gic_test_group(s, pending_irq, cpu);
/* On a GIC without the security extensions, reading this register
* behaves in the same way as a secure access to a GIC with them.
*/
bool secure = !gic_cpu_ns_access(s, cpu, attrs);
if (group == 0 && !secure) {
/* Group0 interrupts hidden from Non-secure access */
return 1023;
}
if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
/* Group1 interrupts only seen by Secure access if
* AckCtl bit set.
*/
return 1022;
}
}
return pending_irq;
}
static int gic_get_group_priority(GICState *s, int cpu, int irq)
{
/* Return the group priority of the specified interrupt
* (which is the top bits of its priority, with the number
* of bits masked determined by the applicable binary point register).
*/
int bpr;
uint32_t mask;
if (gic_has_groups(s) &&
!(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
gic_test_group(s, irq, cpu)) {
bpr = s->abpr[cpu] - 1;
assert(bpr >= 0);
} else {
bpr = s->bpr[cpu];
}
/* a BPR of 0 means the group priority bits are [7:1];
* a BPR of 1 means they are [7:2], and so on down to
* a BPR of 7 meaning no group priority bits at all.
*/
mask = ~0U << ((bpr & 7) + 1);
return gic_get_priority(s, irq, cpu) & mask;
}
static void gic_activate_irq(GICState *s, int cpu, int irq)
{
/* Set the appropriate Active Priority Register bit for this IRQ,
* and update the running priority.
*/
int prio = gic_get_group_priority(s, cpu, irq);
int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
int preemption_level = prio >> (min_bpr + 1);
int regno = preemption_level / 32;
int bitno = preemption_level % 32;
uint32_t *papr = NULL;
if (gic_is_vcpu(cpu)) {
assert(regno == 0);
papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
} else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
papr = &s->nsapr[regno][cpu];
} else {
papr = &s->apr[regno][cpu];
}
*papr |= (1 << bitno);
s->running_priority[cpu] = prio;
gic_set_active(s, irq, cpu);
}
static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
{
/* Recalculate the current running priority for this CPU based
* on the set bits in the Active Priority Registers.
*/
int i;
if (gic_is_vcpu(cpu)) {
uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
if (apr) {
return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
} else {
return 0x100;
}
}
for (i = 0; i < GIC_NR_APRS; i++) {
uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
if (!apr) {
continue;
}
return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
}
return 0x100;
}
static void gic_drop_prio(GICState *s, int cpu, int group)
{
/* Drop the priority of the currently active interrupt in the
* specified group.
*
* Note that we can guarantee (because of the requirement to nest
* GICC_IAR reads [which activate an interrupt and raise priority]
* with GICC_EOIR writes [which drop the priority for the interrupt])
* that the interrupt we're being called for is the highest priority
* active interrupt, meaning that it has the lowest set bit in the
* APR registers.
*
* If the guest does not honour the ordering constraints then the
* behaviour of the GIC is UNPREDICTABLE, which for us means that
* the values of the APR registers might become incorrect and the
* running priority will be wrong, so interrupts that should preempt
* might not do so, and interrupts that should not preempt might do so.
*/
if (gic_is_vcpu(cpu)) {
int rcpu = gic_get_vcpu_real_id(cpu);
if (s->h_apr[rcpu]) {
/* Clear lowest set bit */
s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
}
} else {
int i;
for (i = 0; i < GIC_NR_APRS; i++) {
uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
if (!*papr) {
continue;
}
/* Clear lowest set bit */
*papr &= *papr - 1;
break;
}
}
s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
}
static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
{
int src;
uint32_t ret;
if (!gic_is_vcpu(cpu)) {
/* Lookup the source CPU for the SGI and clear this in the
* sgi_pending map. Return the src and clear the overall pending
* state on this CPU if the SGI is not pending from any CPUs.
*/
assert(s->sgi_pending[irq][cpu] != 0);
src = ctz32(s->sgi_pending[irq][cpu]);
s->sgi_pending[irq][cpu] &= ~(1 << src);
if (s->sgi_pending[irq][cpu] == 0) {
gic_clear_pending(s, irq, cpu);
}
ret = irq | ((src & 0x7) << 10);
} else {
uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
src = GICH_LR_CPUID(*lr_entry);
gic_clear_pending(s, irq, cpu);
ret = irq | (src << 10);
}
return ret;
}
uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
{
int ret, irq;
/* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
* for the case where this GIC supports grouping and the pending interrupt
* is in the wrong group.
*/
irq = gic_get_current_pending_irq(s, cpu, attrs);
trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
gic_get_vcpu_real_id(cpu), irq);
if (irq >= GIC_MAXIRQ) {
DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
return irq;
}
if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
return 1023;
}
gic_activate_irq(s, cpu, irq);
if (s->revision == REV_11MPCORE) {
/* Clear pending flags for both level and edge triggered interrupts.
* Level triggered IRQs will be reasserted once they become inactive.
*/
gic_clear_pending(s, irq, cpu);
ret = irq;
} else {
if (irq < GIC_NR_SGIS) {
ret = gic_clear_pending_sgi(s, irq, cpu);
} else {
gic_clear_pending(s, irq, cpu);
ret = irq;
}
}
if (gic_is_vcpu(cpu)) {
gic_update_virt(s);
} else {
gic_update(s);
}
DPRINTF("ACK %d\n", irq);
return ret;
}
void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
MemTxAttrs attrs)
{
if (s->security_extn && !attrs.secure) {
if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
return; /* Ignore Non-secure access of Group0 IRQ */
}
val = 0x80 | (val >> 1); /* Non-secure view */
}
if (irq < GIC_INTERNAL) {
s->priority1[irq][cpu] = val;
} else {
s->priority2[(irq) - GIC_INTERNAL] = val;
}
}
static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
MemTxAttrs attrs)
{
uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
if (s->security_extn && !attrs.secure) {
if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
return 0; /* Non-secure access cannot read priority of Group0 IRQ */
}
prio = (prio << 1) & 0xff; /* Non-secure view */
}
return prio;
}
static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
MemTxAttrs attrs)
{
if (gic_cpu_ns_access(s, cpu, attrs)) {
if (s->priority_mask[cpu] & 0x80) {
/* Priority Mask in upper half */
pmask = 0x80 | (pmask >> 1);
} else {
/* Non-secure write ignored if priority mask is in lower half */
return;
}
}
s->priority_mask[cpu] = pmask;
}
static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
{
uint32_t pmask = s->priority_mask[cpu];
if (gic_cpu_ns_access(s, cpu, attrs)) {
if (pmask & 0x80) {
/* Priority Mask in upper half, return Non-secure view */
pmask = (pmask << 1) & 0xff;
} else {
/* Priority Mask in lower half, RAZ */
pmask = 0;
}
}
return pmask;
}
static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
{
uint32_t ret = s->cpu_ctlr[cpu];
if (gic_cpu_ns_access(s, cpu, attrs)) {
/* Construct the NS banked view of GICC_CTLR from the correct
* bits of the S banked view. We don't need to move the bypass
* control bits because we don't implement that (IMPDEF) part
* of the GIC architecture.
*/
ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
}
return ret;
}
static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
MemTxAttrs attrs)
{
uint32_t mask;
if (gic_cpu_ns_access(s, cpu, attrs)) {
/* The NS view can only write certain bits in the register;
* the rest are unchanged
*/
mask = GICC_CTLR_EN_GRP1;
if (s->revision == 2) {
mask |= GICC_CTLR_EOIMODE_NS;
}
s->cpu_ctlr[cpu] &= ~mask;
s->cpu_ctlr[cpu] |= (value << 1) & mask;
} else {
if (s->revision == 2) {
mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
} else {
mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
}
s->cpu_ctlr[cpu] = value & mask;
}
DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
"Group1 Interrupts %sabled\n", cpu,
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
(s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
}
static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
{
if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
/* Idle priority */
return 0xff;
}
if (gic_cpu_ns_access(s, cpu, attrs)) {
if (s->running_priority[cpu] & 0x80) {
/* Running priority in upper half of range: return the Non-secure
* view of the priority.
*/
return s->running_priority[cpu] << 1;
} else {
/* Running priority in lower half of range: RAZ */
return 0;
}
} else {
return s->running_priority[cpu];
}
}
/* Return true if we should split priority drop and interrupt deactivation,
* ie whether the relevant EOIMode bit is set.
*/
static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
{
if (s->revision != 2) {
/* Before GICv2 prio-drop and deactivate are not separable */
return false;
}
if (gic_cpu_ns_access(s, cpu, attrs)) {
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
}
return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
}
static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
{
int group;
if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
/*
* This handles two cases:
* 1. If software writes the ID of a spurious interrupt [ie 1023]
* to the GICC_DIR, the GIC ignores that write.
* 2. If software writes the number of a non-existent interrupt
* this must be a subcase of "value written is not an active interrupt"
* and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
* all IRQs potentially exist, so this limit does not apply.
*/
return;
}
if (!gic_eoi_split(s, cpu, attrs)) {
/* This is UNPREDICTABLE; we choose to ignore it */
qemu_log_mask(LOG_GUEST_ERROR,
"gic_deactivate_irq: GICC_DIR write when EOIMode clear");
return;
}
if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
/* This vIRQ does not have an LR entry which is either active or
* pending and active. Increment EOICount and ignore the write.
*/
int rcpu = gic_get_vcpu_real_id(cpu);
s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
/* Update the virtual interface in case a maintenance interrupt should
* be raised.
*/
gic_update_virt(s);
return;
}
group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
return;
}
gic_clear_active(s, irq, cpu);
}
static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
{
int cm = 1 << cpu;
int group;
DPRINTF("EOI %d\n", irq);
if (gic_is_vcpu(cpu)) {
/* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
* running prio is < 0x100.
*/
bool prio_drop = s->running_priority[cpu] < 0x100;
if (irq >= GIC_MAXIRQ) {
/* Ignore spurious interrupt */
return;
}
gic_drop_prio(s, cpu, 0);
if (!gic_eoi_split(s, cpu, attrs)) {
bool valid = gic_virq_is_valid(s, irq, cpu);
if (prio_drop && !valid) {
/* We are in a situation where:
* - V_CTRL.EOIMode is false (no EOI split),
* - The call to gic_drop_prio() cleared a bit in GICH_APR,
* - This vIRQ does not have an LR entry which is either
* active or pending and active.
* In that case, we must increment EOICount.
*/
int rcpu = gic_get_vcpu_real_id(cpu);
s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
} else if (valid) {
gic_clear_active(s, irq, cpu);
}
}
gic_update_virt(s);
return;
}
if (irq >= s->num_irq) {
/* This handles two cases:
* 1. If software writes the ID of a spurious interrupt [ie 1023]
* to the GICC_EOIR, the GIC ignores that write.
* 2. If software writes the number of a non-existent interrupt
* this must be a subcase of "value written does not match the last
* valid interrupt value read from the Interrupt Acknowledge
* register" and so this is UNPREDICTABLE. We choose to ignore it.
*/
return;
}
if (s->running_priority[cpu] == 0x100) {
return; /* No active IRQ. */
}
if (s->revision == REV_11MPCORE) {
/* Mark level triggered interrupts as pending if they are still
raised. */
if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
&& GIC_DIST_TEST_LEVEL(irq, cm)
&& (GIC_DIST_TARGET(irq) & cm) != 0) {
DPRINTF("Set %d pending mask %x\n", irq, cm);
GIC_DIST_SET_PENDING(irq, cm);
}
}
group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
return;
}
/* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
* interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
* i.e. go ahead and complete the irq anyway.
*/
gic_drop_prio(s, cpu, group);
/* In GICv2 the guest can choose to split priority-drop and deactivate */
if (!gic_eoi_split(s, cpu, attrs)) {
gic_clear_active(s, irq, cpu);
}
gic_update(s);
}
static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
uint32_t res;
int irq;
int i;
int cpu;
int cm;
int mask;
cpu = gic_get_current_cpu(s);
cm = 1 << cpu;
if (offset < 0x100) {
if (offset == 0) { /* GICD_CTLR */
if (s->security_extn && !attrs.secure) {
/* The NS bank of this register is just an alias of the
* EnableGrp1 bit in the S bank version.
*/
return extract32(s->ctlr, 1, 1);
} else {
return s->ctlr;
}
}
if (offset == 4)
/* Interrupt Controller Type Register */
return ((s->num_irq / 32) - 1)
| ((s->num_cpu - 1) << 5)
| (s->security_extn << 10);
if (offset < 0x08)
return 0;
if (offset >= 0x80) {
/* Interrupt Group Registers: these RAZ/WI if this is an NS
* access to a GIC with the security extensions, or if the GIC
* doesn't have groups at all.
*/
res = 0;
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
/* Every byte offset holds 8 group status bits */
irq = (offset - 0x080) * 8;
if (irq >= s->num_irq) {
goto bad_reg;
}
for (i = 0; i < 8; i++) {
if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
res |= (1 << i);
}
}
}
return res;
}
goto bad_reg;
} else if (offset < 0x200) {
/* Interrupt Set/Clear Enable. */
if (offset < 0x180)
irq = (offset - 0x100) * 8;
else
irq = (offset - 0x180) * 8;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
res |= (1 << i);
}
}
} else if (offset < 0x300) {
/* Interrupt Set/Clear Pending. */
if (offset < 0x280)
irq = (offset - 0x200) * 8;
else
irq = (offset - 0x280) * 8;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (gic_test_pending(s, irq + i, mask)) {
res |= (1 << i);
}
}
} else if (offset < 0x400) {
/* Interrupt Set/Clear Active. */
if (offset < 0x380) {
irq = (offset - 0x300) * 8;
} else if (s->revision == 2) {
irq = (offset - 0x380) * 8;
} else {
goto bad_reg;
}
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
res |= (1 << i);
}
}
} else if (offset < 0x800) {
/* Interrupt Priority. */
irq = (offset - 0x400);
if (irq >= s->num_irq)
goto bad_reg;
res = gic_dist_get_priority(s, cpu, irq, attrs);
} else if (offset < 0xc00) {
/* Interrupt CPU Target. */
if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
/* For uniprocessor GICs these RAZ/WI */
res = 0;
} else {
irq = (offset - 0x800);
if (irq >= s->num_irq) {
goto bad_reg;
}
if (irq < 29 && s->revision == REV_11MPCORE) {
res = 0;
} else if (irq < GIC_INTERNAL) {
res = cm;
} else {
res = GIC_DIST_TARGET(irq);
}
}
} else if (offset < 0xf00) {
/* Interrupt Configuration. */
irq = (offset - 0xc00) * 4;
if (irq >= s->num_irq)
goto bad_reg;
res = 0;
for (i = 0; i < 4; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_DIST_TEST_MODEL(irq + i)) {
res |= (1 << (i * 2));
}
if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
res |= (2 << (i * 2));
}
}
} else if (offset < 0xf10) {
goto bad_reg;
} else if (offset < 0xf30) {
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
if (offset < 0xf20) {
/* GICD_CPENDSGIRn */
irq = (offset - 0xf10);
} else {
irq = (offset - 0xf20);
/* GICD_SPENDSGIRn */
}
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
res = 0; /* Ignore Non-secure access of Group0 IRQ */
} else {
res = s->sgi_pending[irq][cpu];
}
} else if (offset < 0xfd0) {
goto bad_reg;
} else if (offset < 0x1000) {
if (offset & 3) {
res = 0;
} else {
switch (s->revision) {
case REV_11MPCORE:
res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
break;
case 1:
res = gic_id_gicv1[(offset - 0xfd0) >> 2];
break;
case 2:
res = gic_id_gicv2[(offset - 0xfd0) >> 2];
break;
default:
res = 0;
}
}
} else {
g_assert_not_reached();
}
return res;
bad_reg:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_dist_readb: Bad offset %x\n", (int)offset);
return 0;
}
static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
switch (size) {
case 1:
*data = gic_dist_readb(opaque, offset, attrs);
break;
case 2:
*data = gic_dist_readb(opaque, offset, attrs);
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
break;
case 4:
*data = gic_dist_readb(opaque, offset, attrs);
*data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
*data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
*data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
break;
default:
return MEMTX_ERROR;
}
trace_gic_dist_read(offset, size, *data);
return MEMTX_OK;
}
static void gic_dist_writeb(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
int irq;
int i;
int cpu;
cpu = gic_get_current_cpu(s);
if (offset < 0x100) {
if (offset == 0) {
if (s->security_extn && !attrs.secure) {
/* NS version is just an alias of the S version's bit 1 */
s->ctlr = deposit32(s->ctlr, 1, 1, value);
} else if (gic_has_groups(s)) {
s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
} else {
s->ctlr = value & GICD_CTLR_EN_GRP0;
}
DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
} else if (offset < 4) {
/* ignored. */
} else if (offset >= 0x80) {
/* Interrupt Group Registers: RAZ/WI for NS access to secure
* GIC, or for GICs without groups.
*/
if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
/* Every byte offset holds 8 group status bits */
irq = (offset - 0x80) * 8;
if (irq >= s->num_irq) {
goto bad_reg;
}
for (i = 0; i < 8; i++) {
/* Group bits are banked for private interrupts */
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (value & (1 << i)) {
/* Group1 (Non-secure) */
GIC_DIST_SET_GROUP(irq + i, cm);
} else {
/* Group0 (Secure) */
GIC_DIST_CLEAR_GROUP(irq + i, cm);
}
}
}
} else {
goto bad_reg;
}
} else if (offset < 0x180) {
/* Interrupt Set Enable. */
irq = (offset - 0x100) * 8;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0xff;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
int mask =
(irq < GIC_INTERNAL) ? (1 << cpu)
: GIC_DIST_TARGET(irq + i);
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
DPRINTF("Enabled IRQ %d\n", irq + i);
trace_gic_enable_irq(irq + i);
}
GIC_DIST_SET_ENABLED(irq + i, cm);
/* If a raised level triggered IRQ enabled then mark
is as pending. */
if (GIC_DIST_TEST_LEVEL(irq + i, mask)
&& !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
DPRINTF("Set %d pending mask %x\n", irq + i, mask);
GIC_DIST_SET_PENDING(irq + i, mask);
}
}
}
} else if (offset < 0x200) {
/* Interrupt Clear Enable. */
irq = (offset - 0x180) * 8;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
DPRINTF("Disabled IRQ %d\n", irq + i);
trace_gic_disable_irq(irq + i);
}
GIC_DIST_CLEAR_ENABLED(irq + i, cm);
}
}
} else if (offset < 0x280) {
/* Interrupt Set Pending. */
irq = (offset - 0x200) * 8;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (value & (1 << i)) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
}
}
} else if (offset < 0x300) {
/* Interrupt Clear Pending. */
irq = (offset - 0x280) * 8;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS) {
value = 0;
}
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
/* ??? This currently clears the pending bit for all CPUs, even
for per-CPU interrupts. It's unclear whether this is the
corect behavior. */
if (value & (1 << i)) {
GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
}
}
} else if (offset < 0x380) {
/* Interrupt Set Active. */
if (s->revision != 2) {
goto bad_reg;
}
irq = (offset - 0x300) * 8;
if (irq >= s->num_irq) {
goto bad_reg;
}
/* This register is banked per-cpu for PPIs */
int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (value & (1 << i)) {
GIC_DIST_SET_ACTIVE(irq + i, cm);
}
}
} else if (offset < 0x400) {
/* Interrupt Clear Active. */
if (s->revision != 2) {
goto bad_reg;
}
irq = (offset - 0x380) * 8;
if (irq >= s->num_irq) {
goto bad_reg;
}
/* This register is banked per-cpu for PPIs */
int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
for (i = 0; i < 8; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (value & (1 << i)) {
GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
}
}
} else if (offset < 0x800) {
/* Interrupt Priority. */
irq = (offset - 0x400);
if (irq >= s->num_irq)
goto bad_reg;
gic_dist_set_priority(s, cpu, irq, value, attrs);
} else if (offset < 0xc00) {
/* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
* annoying exception of the 11MPCore's GIC.
*/
if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
irq = (offset - 0x800);
if (irq >= s->num_irq) {
goto bad_reg;
}
if (irq < 29 && s->revision == REV_11MPCORE) {
value = 0;
} else if (irq < GIC_INTERNAL) {
value = ALL_CPU_MASK;
}
s->irq_target[irq] = value & ALL_CPU_MASK;
}
} else if (offset < 0xf00) {
/* Interrupt Configuration. */
irq = (offset - 0xc00) * 4;
if (irq >= s->num_irq)
goto bad_reg;
if (irq < GIC_NR_SGIS)
value |= 0xaa;
for (i = 0; i < 4; i++) {
if (s->security_extn && !attrs.secure &&
!GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
continue; /* Ignore Non-secure access of Group0 IRQ */
}
if (s->revision == REV_11MPCORE) {
if (value & (1 << (i * 2))) {
GIC_DIST_SET_MODEL(irq + i);
} else {
GIC_DIST_CLEAR_MODEL(irq + i);
}
}
if (value & (2 << (i * 2))) {
GIC_DIST_SET_EDGE_TRIGGER(irq + i);
} else {
GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
}
}
} else if (offset < 0xf10) {
/* 0xf00 is only handled for 32-bit writes. */
goto bad_reg;
} else if (offset < 0xf20) {
/* GICD_CPENDSGIRn */
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
irq = (offset - 0xf10);
if (!s->security_extn || attrs.secure ||
GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
s->sgi_pending[irq][cpu] &= ~value;
if (s->sgi_pending[irq][cpu] == 0) {
GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
}
}
} else if (offset < 0xf30) {
/* GICD_SPENDSGIRn */
if (s->revision == REV_11MPCORE) {
goto bad_reg;
}
irq = (offset - 0xf20);
if (!s->security_extn || attrs.secure ||
GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
GIC_DIST_SET_PENDING(irq, 1 << cpu);
s->sgi_pending[irq][cpu] |= value;
}
} else {
goto bad_reg;
}
gic_update(s);
return;
bad_reg:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_dist_writeb: Bad offset %x\n", (int)offset);
}
static void gic_dist_writew(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
gic_dist_writeb(opaque, offset, value & 0xff, attrs);
gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
}
static void gic_dist_writel(void *opaque, hwaddr offset,
uint32_t value, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
if (offset == 0xf00) {
int cpu;
int irq;
int mask;
int target_cpu;
cpu = gic_get_current_cpu(s);
irq = value & 0x3ff;
switch ((value >> 24) & 3) {
case 0:
mask = (value >> 16) & ALL_CPU_MASK;
break;
case 1:
mask = ALL_CPU_MASK ^ (1 << cpu);
break;
case 2:
mask = 1 << cpu;
break;
default:
DPRINTF("Bad Soft Int target filter\n");
mask = ALL_CPU_MASK;
break;
}
GIC_DIST_SET_PENDING(irq, mask);
target_cpu = ctz32(mask);
while (target_cpu < GIC_NCPU) {
s->sgi_pending[irq][target_cpu] |= (1 << cpu);
mask &= ~(1 << target_cpu);
target_cpu = ctz32(mask);
}
gic_update(s);
return;
}
gic_dist_writew(opaque, offset, value & 0xffff, attrs);
gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
}
static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size, MemTxAttrs attrs)
{
trace_gic_dist_write(offset, size, data);
switch (size) {
case 1:
gic_dist_writeb(opaque, offset, data, attrs);
return MEMTX_OK;
case 2:
gic_dist_writew(opaque, offset, data, attrs);
return MEMTX_OK;
case 4:
gic_dist_writel(opaque, offset, data, attrs);
return MEMTX_OK;
default:
return MEMTX_ERROR;
}
}
static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
{
/* Return the Nonsecure view of GICC_APR<regno>. This is the
* second half of GICC_NSAPR.
*/
switch (GIC_MIN_BPR) {
case 0:
if (regno < 2) {
return s->nsapr[regno + 2][cpu];
}
break;
case 1:
if (regno == 0) {
return s->nsapr[regno + 1][cpu];
}
break;
case 2:
if (regno == 0) {
return extract32(s->nsapr[0][cpu], 16, 16);
}
break;
case 3:
if (regno == 0) {
return extract32(s->nsapr[0][cpu], 8, 8);
}
break;
default:
g_assert_not_reached();
}
return 0;
}
static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
uint32_t value)
{
/* Write the Nonsecure view of GICC_APR<regno>. */
switch (GIC_MIN_BPR) {
case 0:
if (regno < 2) {
s->nsapr[regno + 2][cpu] = value;
}
break;
case 1:
if (regno == 0) {
s->nsapr[regno + 1][cpu] = value;
}
break;
case 2:
if (regno == 0) {
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
}
break;
case 3:
if (regno == 0) {
s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
}
break;
default:
g_assert_not_reached();
}
}
static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
uint64_t *data, MemTxAttrs attrs)
{
switch (offset) {
case 0x00: /* Control */
*data = gic_get_cpu_control(s, cpu, attrs);
break;
case 0x04: /* Priority mask */
*data = gic_get_priority_mask(s, cpu, attrs);
break;
case 0x08: /* Binary Point */
if (gic_cpu_ns_access(s, cpu, attrs)) {
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
/* NS view of BPR when CBPR is 1 */
*data = MIN(s->bpr[cpu] + 1, 7);
} else {
/* BPR is banked. Non-secure copy stored in ABPR. */
*data = s->abpr[cpu];
}
} else {
*data = s->bpr[cpu];
}
break;
case 0x0c: /* Acknowledge */
*data = gic_acknowledge_irq(s, cpu, attrs);
break;
case 0x14: /* Running Priority */
*data = gic_get_running_priority(s, cpu, attrs);
break;
case 0x18: /* Highest Pending Interrupt */
*data = gic_get_current_pending_irq(s, cpu, attrs);
break;
case 0x1c: /* Aliased Binary Point */
/* GIC v2, no security: ABPR
* GIC v1, no security: not implemented (RAZ/WI)
* With security extensions, secure access: ABPR (alias of NS BPR)
* With security extensions, nonsecure access: RAZ/WI
*/
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
*data = 0;
} else {
*data = s->abpr[cpu];
}
break;
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
{
int regno = (offset - 0xd0) / 4;
int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
if (regno >= nr_aprs || s->revision != 2) {
*data = 0;
} else if (gic_is_vcpu(cpu)) {
*data = s->h_apr[gic_get_vcpu_real_id(cpu)];
} else if (gic_cpu_ns_access(s, cpu, attrs)) {
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
*data = gic_apr_ns_view(s, regno, cpu);
} else {
*data = s->apr[regno][cpu];
}
break;
}
case 0xe0: case 0xe4: case 0xe8: case 0xec:
{
int regno = (offset - 0xe0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
*data = 0;
} else {
*data = s->nsapr[regno][cpu];
}
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_cpu_read: Bad offset %x\n", (int)offset);
*data = 0;
break;
}
trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
gic_get_vcpu_real_id(cpu), offset, *data);
return MEMTX_OK;
}
static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
uint32_t value, MemTxAttrs attrs)
{
trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
gic_get_vcpu_real_id(cpu), offset, value);
switch (offset) {
case 0x00: /* Control */
gic_set_cpu_control(s, cpu, value, attrs);
break;
case 0x04: /* Priority mask */
gic_set_priority_mask(s, cpu, value, attrs);
break;
case 0x08: /* Binary Point */
if (gic_cpu_ns_access(s, cpu, attrs)) {
if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
/* WI when CBPR is 1 */
return MEMTX_OK;
} else {
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
}
} else {
int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
s->bpr[cpu] = MAX(value & 0x7, min_bpr);
}
break;
case 0x10: /* End Of Interrupt */
gic_complete_irq(s, cpu, value & 0x3ff, attrs);
return MEMTX_OK;
case 0x1c: /* Aliased Binary Point */
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
/* unimplemented, or NS access: RAZ/WI */
return MEMTX_OK;
} else {
s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
}
break;
case 0xd0: case 0xd4: case 0xd8: case 0xdc:
{
int regno = (offset - 0xd0) / 4;
int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
if (regno >= nr_aprs || s->revision != 2) {
return MEMTX_OK;
}
if (gic_is_vcpu(cpu)) {
s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
} else if (gic_cpu_ns_access(s, cpu, attrs)) {
/* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
gic_apr_write_ns_view(s, regno, cpu, value);
} else {
s->apr[regno][cpu] = value;
}
break;
}
case 0xe0: case 0xe4: case 0xe8: case 0xec:
{
int regno = (offset - 0xe0) / 4;
if (regno >= GIC_NR_APRS || s->revision != 2) {
return MEMTX_OK;
}
if (gic_is_vcpu(cpu)) {
return MEMTX_OK;
}
if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
return MEMTX_OK;
}
s->nsapr[regno][cpu] = value;
break;
}
case 0x1000:
/* GICC_DIR */
gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_cpu_write: Bad offset %x\n", (int)offset);
return MEMTX_OK;
}
if (gic_is_vcpu(cpu)) {
gic_update_virt(s);
} else {
gic_update(s);
}
return MEMTX_OK;
}
/* Wrappers to read/write the GIC CPU interface for the current CPU */
static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
}
static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
}
/* Wrappers to read/write the GIC CPU interface for a specific CPU.
* These just decode the opaque pointer into GICState* + cpu id.
*/
static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_cpu_read(s, id, addr, data, attrs);
}
static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_cpu_write(s, id, addr, value, attrs);
}
static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
}
static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
}
static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
{
int lr_idx;
uint32_t ret = 0;
for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
ret = deposit32(ret, lr_idx - lr_start, 1,
gic_lr_entry_is_eoi(*entry));
}
return ret;
}
static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
{
int lr_idx;
uint32_t ret = 0;
for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
ret = deposit32(ret, lr_idx - lr_start, 1,
gic_lr_entry_is_free(*entry));
}
return ret;
}
static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
{
int vcpu = gic_get_current_vcpu(s);
uint32_t ctlr;
uint32_t abpr;
uint32_t bpr;
uint32_t prio_mask;
ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
gic_set_cpu_control(s, vcpu, ctlr, attrs);
s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
gic_set_priority_mask(s, vcpu, prio_mask, attrs);
}
static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
uint64_t *data, MemTxAttrs attrs)
{
GICState *s = ARM_GIC(opaque);
int vcpu = cpu + GIC_NCPU;
switch (addr) {
case A_GICH_HCR: /* Hypervisor Control */
*data = s->h_hcr[cpu];
break;
case A_GICH_VTR: /* VGIC Type */
*data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
*data = FIELD_DP32(*data, GICH_VTR, PREbits,
GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
*data = FIELD_DP32(*data, GICH_VTR, PRIbits,
(7 - GIC_VIRT_MIN_BPR) - 1);
break;
case A_GICH_VMCR: /* Virtual Machine Control */
*data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
extract32(s->cpu_ctlr[vcpu], 0, 10));
*data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
*data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
*data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
extract32(s->priority_mask[vcpu], 3, 5));
break;
case A_GICH_MISR: /* Maintenance Interrupt Status */
*data = s->h_misr[cpu];
break;
case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
case A_GICH_EISR1:
*data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
break;
case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
case A_GICH_ELRSR1:
*data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
break;
case A_GICH_APR: /* Active Priorities */
*data = s->h_apr[cpu];
break;
case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
{
int lr_idx = (addr - A_GICH_LR0) / 4;
if (lr_idx > s->num_lrs) {
*data = 0;
} else {
*data = s->h_lr[lr_idx][cpu];
}
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
return MEMTX_OK;
}
trace_gic_hyp_read(addr, *data);
return MEMTX_OK;
}
static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
uint64_t value, MemTxAttrs attrs)
{
GICState *s = ARM_GIC(opaque);
int vcpu = cpu + GIC_NCPU;
trace_gic_hyp_write(addr, value);
switch (addr) {
case A_GICH_HCR: /* Hypervisor Control */
s->h_hcr[cpu] = value & GICH_HCR_MASK;
break;
case A_GICH_VMCR: /* Virtual Machine Control */
gic_vmcr_write(s, value, attrs);
break;
case A_GICH_APR: /* Active Priorities */
s->h_apr[cpu] = value;
s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
break;
case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
{
int lr_idx = (addr - A_GICH_LR0) / 4;
if (lr_idx > s->num_lrs) {
return MEMTX_OK;
}
s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
break;
}
default:
qemu_log_mask(LOG_GUEST_ERROR,
"gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
return MEMTX_OK;
}
gic_update_virt(s);
return MEMTX_OK;
}
static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
}
static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState *s = (GICState *)opaque;
return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
}
static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
unsigned size, MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_hyp_read(s, id, addr, data, attrs);
}
static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size,
MemTxAttrs attrs)
{
GICState **backref = (GICState **)opaque;
GICState *s = *backref;
int id = (backref - s->backref);
return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
}
static const MemoryRegionOps gic_ops[2] = {
{
.read_with_attrs = gic_dist_read,
.write_with_attrs = gic_dist_write,
.endianness = DEVICE_NATIVE_ENDIAN,
},
{
.read_with_attrs = gic_thiscpu_read,
.write_with_attrs = gic_thiscpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
}
};
static const MemoryRegionOps gic_cpu_ops = {
.read_with_attrs = gic_do_cpu_read,
.write_with_attrs = gic_do_cpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static const MemoryRegionOps gic_virt_ops[2] = {
{
.read_with_attrs = gic_thiscpu_hyp_read,
.write_with_attrs = gic_thiscpu_hyp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
},
{
.read_with_attrs = gic_thisvcpu_read,
.write_with_attrs = gic_thisvcpu_write,
.endianness = DEVICE_NATIVE_ENDIAN,
}
};
static const MemoryRegionOps gic_viface_ops = {
.read_with_attrs = gic_do_hyp_read,
.write_with_attrs = gic_do_hyp_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void arm_gic_realize(DeviceState *dev, Error **errp)
{
/* Device instance realize function for the GIC sysbus device */
int i;
GICState *s = ARM_GIC(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
Error *local_err = NULL;
agc->parent_realize(dev, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
error_setg(errp, "KVM with user space irqchip only works when the "
"host kernel supports KVM_CAP_ARM_USER_IRQ");
return;
}
/* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
* enabled, virtualization extensions related interfaces (main virtual
* interface (s->vifaceiomem[0]) and virtual CPU interface).
*/
gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
/* Extra core-specific regions for the CPU interfaces. This is
* necessary for "franken-GIC" implementations, for example on
* Exynos 4.
* NB that the memory region size of 0x100 applies for the 11MPCore
* and also cores following the GIC v1 spec (ie A9).
* GIC v2 defines a larger memory region (0x1000) so this will need
* to be extended when we implement A15.
*/
for (i = 0; i < s->num_cpu; i++) {
s->backref[i] = s;
memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
&s->backref[i], "gic_cpu", 0x100);
sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
}
/* Extra core-specific regions for virtual interfaces. This is required by
* the GICv2 specification.
*/
if (s->virt_extn) {
for (i = 0; i < s->num_cpu; i++) {
memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
&gic_viface_ops, &s->backref[i],
"gic_viface", 0x200);
sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
}
}
}
static void arm_gic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
ARMGICClass *agc = ARM_GIC_CLASS(klass);
device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
}
static const TypeInfo arm_gic_info = {
.name = TYPE_ARM_GIC,
.parent = TYPE_ARM_GIC_COMMON,
.instance_size = sizeof(GICState),
.class_init = arm_gic_class_init,
.class_size = sizeof(ARMGICClass),
};
static void arm_gic_register_types(void)
{
type_register_static(&arm_gic_info);
}
type_init(arm_gic_register_types)
|