summaryrefslogtreecommitdiff
path: root/hw/i386/x86.c
blob: 93f7371a569384caed29190440798f81668cd76e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
/*
 * Copyright (c) 2003-2004 Fabrice Bellard
 * Copyright (c) 2019 Red Hat, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/option.h"
#include "qemu/cutils.h"
#include "qemu/units.h"
#include "qemu-common.h"
#include "qapi/error.h"
#include "qapi/qmp/qerror.h"
#include "qapi/qapi-visit-common.h"
#include "qapi/visitor.h"
#include "sysemu/qtest.h"
#include "sysemu/numa.h"
#include "sysemu/replay.h"
#include "sysemu/sysemu.h"
#include "trace.h"

#include "hw/i386/x86.h"
#include "target/i386/cpu.h"
#include "hw/i386/topology.h"
#include "hw/i386/fw_cfg.h"
#include "hw/intc/i8259.h"

#include "hw/acpi/cpu_hotplug.h"
#include "hw/irq.h"
#include "hw/nmi.h"
#include "hw/loader.h"
#include "multiboot.h"
#include "elf.h"
#include "standard-headers/asm-x86/bootparam.h"
#include "config-devices.h"
#include "kvm_i386.h"

#define BIOS_FILENAME "bios.bin"

/* Physical Address of PVH entry point read from kernel ELF NOTE */
static size_t pvh_start_addr;

inline void init_topo_info(X86CPUTopoInfo *topo_info,
                           const X86MachineState *x86ms)
{
    MachineState *ms = MACHINE(x86ms);

    topo_info->nodes_per_pkg = ms->numa_state->num_nodes / ms->smp.sockets;
    topo_info->dies_per_pkg = x86ms->smp_dies;
    topo_info->cores_per_die = ms->smp.cores;
    topo_info->threads_per_core = ms->smp.threads;
}

/*
 * Set up with the new EPYC topology handlers
 *
 * AMD uses different apic id encoding for EPYC based cpus. Override
 * the default topo handlers with EPYC encoding handlers.
 */
static void x86_set_epyc_topo_handlers(MachineState *machine)
{
    X86MachineState *x86ms = X86_MACHINE(machine);

    x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx_epyc;
    x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid_epyc;
    x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids_epyc;
    x86ms->apicid_pkg_offset = apicid_pkg_offset_epyc;
}

/*
 * Calculates initial APIC ID for a specific CPU index
 *
 * Currently we need to be able to calculate the APIC ID from the CPU index
 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
 * all CPUs up to max_cpus.
 */
uint32_t x86_cpu_apic_id_from_index(X86MachineState *x86ms,
                                    unsigned int cpu_index)
{
    X86MachineClass *x86mc = X86_MACHINE_GET_CLASS(x86ms);
    X86CPUTopoInfo topo_info;
    uint32_t correct_id;
    static bool warned;

    init_topo_info(&topo_info, x86ms);

    correct_id = x86ms->apicid_from_cpu_idx(&topo_info, cpu_index);
    if (x86mc->compat_apic_id_mode) {
        if (cpu_index != correct_id && !warned && !qtest_enabled()) {
            error_report("APIC IDs set in compatibility mode, "
                         "CPU topology won't match the configuration");
            warned = true;
        }
        return cpu_index;
    } else {
        return correct_id;
    }
}


void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp)
{
    Error *local_err = NULL;
    Object *cpu = object_new(MACHINE(x86ms)->cpu_type);

    object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
    if (local_err) {
        goto out;
    }
    qdev_realize(DEVICE(cpu), NULL, &local_err);

out:
    object_unref(cpu);
    error_propagate(errp, local_err);
}

void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version)
{
    int i;
    const CPUArchIdList *possible_cpus;
    MachineState *ms = MACHINE(x86ms);
    MachineClass *mc = MACHINE_GET_CLASS(x86ms);

    /* Check for apicid encoding */
    if (cpu_x86_use_epyc_apic_id_encoding(ms->cpu_type)) {
        x86_set_epyc_topo_handlers(ms);
    }

    x86_cpu_set_default_version(default_cpu_version);

    /*
     * Calculates the limit to CPU APIC ID values
     *
     * Limit for the APIC ID value, so that all
     * CPU APIC IDs are < x86ms->apic_id_limit.
     *
     * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create().
     */
    x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms,
                                                      ms->smp.max_cpus - 1) + 1;
    possible_cpus = mc->possible_cpu_arch_ids(ms);

    for (i = 0; i < ms->possible_cpus->len; i++) {
        ms->possible_cpus->cpus[i].arch_id =
            x86_cpu_apic_id_from_index(x86ms, i);
    }

    for (i = 0; i < ms->smp.cpus; i++) {
        x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal);
    }
}

CpuInstanceProperties
x86_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
{
    MachineClass *mc = MACHINE_GET_CLASS(ms);
    const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);

    assert(cpu_index < possible_cpus->len);
    return possible_cpus->cpus[cpu_index].props;
}

int64_t x86_get_default_cpu_node_id(const MachineState *ms, int idx)
{
   X86CPUTopoIDs topo_ids;
   X86MachineState *x86ms = X86_MACHINE(ms);
   X86CPUTopoInfo topo_info;

   init_topo_info(&topo_info, x86ms);

   assert(idx < ms->possible_cpus->len);
   x86_topo_ids_from_idx(&topo_info, idx, &topo_ids);
   return topo_ids.pkg_id % ms->numa_state->num_nodes;
}

const CPUArchIdList *x86_possible_cpu_arch_ids(MachineState *ms)
{
    X86MachineState *x86ms = X86_MACHINE(ms);
    unsigned int max_cpus = ms->smp.max_cpus;
    X86CPUTopoInfo topo_info;
    int i;

    if (ms->possible_cpus) {
        /*
         * make sure that max_cpus hasn't changed since the first use, i.e.
         * -smp hasn't been parsed after it
         */
        assert(ms->possible_cpus->len == max_cpus);
        return ms->possible_cpus;
    }

    ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
                                  sizeof(CPUArchId) * max_cpus);
    ms->possible_cpus->len = max_cpus;

    init_topo_info(&topo_info, x86ms);

    for (i = 0; i < ms->possible_cpus->len; i++) {
        X86CPUTopoIDs topo_ids;

        ms->possible_cpus->cpus[i].type = ms->cpu_type;
        ms->possible_cpus->cpus[i].vcpus_count = 1;
        x86_topo_ids_from_idx(&topo_info, i, &topo_ids);
        ms->possible_cpus->cpus[i].props.has_socket_id = true;
        ms->possible_cpus->cpus[i].props.socket_id = topo_ids.pkg_id;
        if (x86ms->smp_dies > 1) {
            ms->possible_cpus->cpus[i].props.has_die_id = true;
            ms->possible_cpus->cpus[i].props.die_id = topo_ids.die_id;
        }
        ms->possible_cpus->cpus[i].props.has_core_id = true;
        ms->possible_cpus->cpus[i].props.core_id = topo_ids.core_id;
        ms->possible_cpus->cpus[i].props.has_thread_id = true;
        ms->possible_cpus->cpus[i].props.thread_id = topo_ids.smt_id;
    }
    return ms->possible_cpus;
}

static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
{
    /* cpu index isn't used */
    CPUState *cs;

    CPU_FOREACH(cs) {
        X86CPU *cpu = X86_CPU(cs);

        if (!cpu->apic_state) {
            cpu_interrupt(cs, CPU_INTERRUPT_NMI);
        } else {
            apic_deliver_nmi(cpu->apic_state);
        }
    }
}

static long get_file_size(FILE *f)
{
    long where, size;

    /* XXX: on Unix systems, using fstat() probably makes more sense */

    where = ftell(f);
    fseek(f, 0, SEEK_END);
    size = ftell(f);
    fseek(f, where, SEEK_SET);

    return size;
}

/* TSC handling */
uint64_t cpu_get_tsc(CPUX86State *env)
{
    return cpu_get_ticks();
}

/* IRQ handling */
static void pic_irq_request(void *opaque, int irq, int level)
{
    CPUState *cs = first_cpu;
    X86CPU *cpu = X86_CPU(cs);

    trace_x86_pic_interrupt(irq, level);
    if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
        CPU_FOREACH(cs) {
            cpu = X86_CPU(cs);
            if (apic_accept_pic_intr(cpu->apic_state)) {
                apic_deliver_pic_intr(cpu->apic_state, level);
            }
        }
    } else {
        if (level) {
            cpu_interrupt(cs, CPU_INTERRUPT_HARD);
        } else {
            cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
        }
    }
}

qemu_irq x86_allocate_cpu_irq(void)
{
    return qemu_allocate_irq(pic_irq_request, NULL, 0);
}

int cpu_get_pic_interrupt(CPUX86State *env)
{
    X86CPU *cpu = env_archcpu(env);
    int intno;

    if (!kvm_irqchip_in_kernel()) {
        intno = apic_get_interrupt(cpu->apic_state);
        if (intno >= 0) {
            return intno;
        }
        /* read the irq from the PIC */
        if (!apic_accept_pic_intr(cpu->apic_state)) {
            return -1;
        }
    }

    intno = pic_read_irq(isa_pic);
    return intno;
}

DeviceState *cpu_get_current_apic(void)
{
    if (current_cpu) {
        X86CPU *cpu = X86_CPU(current_cpu);
        return cpu->apic_state;
    } else {
        return NULL;
    }
}

void gsi_handler(void *opaque, int n, int level)
{
    GSIState *s = opaque;

    trace_x86_gsi_interrupt(n, level);
    if (n < ISA_NUM_IRQS) {
        /* Under KVM, Kernel will forward to both PIC and IOAPIC */
        qemu_set_irq(s->i8259_irq[n], level);
    }
    qemu_set_irq(s->ioapic_irq[n], level);
}

void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
{
    DeviceState *dev;
    SysBusDevice *d;
    unsigned int i;

    assert(parent_name);
    if (kvm_ioapic_in_kernel()) {
        dev = qdev_new(TYPE_KVM_IOAPIC);
    } else {
        dev = qdev_new(TYPE_IOAPIC);
    }
    object_property_add_child(object_resolve_path(parent_name, NULL),
                              "ioapic", OBJECT(dev));
    d = SYS_BUS_DEVICE(dev);
    sysbus_realize_and_unref(d, &error_fatal);
    sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);

    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
    }
}

struct setup_data {
    uint64_t next;
    uint32_t type;
    uint32_t len;
    uint8_t data[];
} __attribute__((packed));


/*
 * The entry point into the kernel for PVH boot is different from
 * the native entry point.  The PVH entry is defined by the x86/HVM
 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
 *
 * This function is passed to load_elf() when it is called from
 * load_elfboot() which then additionally checks for an ELF Note of
 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
 * parse the PVH entry address from the ELF Note.
 *
 * Due to trickery in elf_opts.h, load_elf() is actually available as
 * load_elf32() or load_elf64() and this routine needs to be able
 * to deal with being called as 32 or 64 bit.
 *
 * The address of the PVH entry point is saved to the 'pvh_start_addr'
 * global variable.  (although the entry point is 32-bit, the kernel
 * binary can be either 32-bit or 64-bit).
 */
static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
{
    size_t *elf_note_data_addr;

    /* Check if ELF Note header passed in is valid */
    if (arg1 == NULL) {
        return 0;
    }

    if (is64) {
        struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
        uint64_t nhdr_size64 = sizeof(struct elf64_note);
        uint64_t phdr_align = *(uint64_t *)arg2;
        uint64_t nhdr_namesz = nhdr64->n_namesz;

        elf_note_data_addr =
            ((void *)nhdr64) + nhdr_size64 +
            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
    } else {
        struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
        uint32_t nhdr_size32 = sizeof(struct elf32_note);
        uint32_t phdr_align = *(uint32_t *)arg2;
        uint32_t nhdr_namesz = nhdr32->n_namesz;

        elf_note_data_addr =
            ((void *)nhdr32) + nhdr_size32 +
            QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
    }

    pvh_start_addr = *elf_note_data_addr;

    return pvh_start_addr;
}

static bool load_elfboot(const char *kernel_filename,
                         int kernel_file_size,
                         uint8_t *header,
                         size_t pvh_xen_start_addr,
                         FWCfgState *fw_cfg)
{
    uint32_t flags = 0;
    uint32_t mh_load_addr = 0;
    uint32_t elf_kernel_size = 0;
    uint64_t elf_entry;
    uint64_t elf_low, elf_high;
    int kernel_size;

    if (ldl_p(header) != 0x464c457f) {
        return false; /* no elfboot */
    }

    bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
    flags = elf_is64 ?
        ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;

    if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
        error_report("elfboot unsupported flags = %x", flags);
        exit(1);
    }

    uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
    kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
                           NULL, &elf_note_type, &elf_entry,
                           &elf_low, &elf_high, NULL, 0, I386_ELF_MACHINE,
                           0, 0);

    if (kernel_size < 0) {
        error_report("Error while loading elf kernel");
        exit(1);
    }
    mh_load_addr = elf_low;
    elf_kernel_size = elf_high - elf_low;

    if (pvh_start_addr == 0) {
        error_report("Error loading uncompressed kernel without PVH ELF Note");
        exit(1);
    }
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);

    return true;
}

void x86_load_linux(X86MachineState *x86ms,
                    FWCfgState *fw_cfg,
                    int acpi_data_size,
                    bool pvh_enabled,
                    bool linuxboot_dma_enabled)
{
    uint16_t protocol;
    int setup_size, kernel_size, cmdline_size;
    int dtb_size, setup_data_offset;
    uint32_t initrd_max;
    uint8_t header[8192], *setup, *kernel;
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
    FILE *f;
    char *vmode;
    MachineState *machine = MACHINE(x86ms);
    struct setup_data *setup_data;
    const char *kernel_filename = machine->kernel_filename;
    const char *initrd_filename = machine->initrd_filename;
    const char *dtb_filename = machine->dtb;
    const char *kernel_cmdline = machine->kernel_cmdline;

    /* Align to 16 bytes as a paranoia measure */
    cmdline_size = (strlen(kernel_cmdline) + 16) & ~15;

    /* load the kernel header */
    f = fopen(kernel_filename, "rb");
    if (!f) {
        fprintf(stderr, "qemu: could not open kernel file '%s': %s\n",
                kernel_filename, strerror(errno));
        exit(1);
    }

    kernel_size = get_file_size(f);
    if (!kernel_size ||
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
        MIN(ARRAY_SIZE(header), kernel_size)) {
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
                kernel_filename, strerror(errno));
        exit(1);
    }

    /* kernel protocol version */
    if (ldl_p(header + 0x202) == 0x53726448) {
        protocol = lduw_p(header + 0x206);
    } else {
        /*
         * This could be a multiboot kernel. If it is, let's stop treating it
         * like a Linux kernel.
         * Note: some multiboot images could be in the ELF format (the same of
         * PVH), so we try multiboot first since we check the multiboot magic
         * header before to load it.
         */
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
                           kernel_cmdline, kernel_size, header)) {
            return;
        }
        /*
         * Check if the file is an uncompressed kernel file (ELF) and load it,
         * saving the PVH entry point used by the x86/HVM direct boot ABI.
         * If load_elfboot() is successful, populate the fw_cfg info.
         */
        if (pvh_enabled &&
            load_elfboot(kernel_filename, kernel_size,
                         header, pvh_start_addr, fw_cfg)) {
            fclose(f);

            fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
                strlen(kernel_cmdline) + 1);
            fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);

            fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
            fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
                             header, sizeof(header));

            /* load initrd */
            if (initrd_filename) {
                GMappedFile *mapped_file;
                gsize initrd_size;
                gchar *initrd_data;
                GError *gerr = NULL;

                mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
                if (!mapped_file) {
                    fprintf(stderr, "qemu: error reading initrd %s: %s\n",
                            initrd_filename, gerr->message);
                    exit(1);
                }
                x86ms->initrd_mapped_file = mapped_file;

                initrd_data = g_mapped_file_get_contents(mapped_file);
                initrd_size = g_mapped_file_get_length(mapped_file);
                initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
                if (initrd_size >= initrd_max) {
                    fprintf(stderr, "qemu: initrd is too large, cannot support."
                            "(max: %"PRIu32", need %"PRId64")\n",
                            initrd_max, (uint64_t)initrd_size);
                    exit(1);
                }

                initrd_addr = (initrd_max - initrd_size) & ~4095;

                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
                fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
                fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
                                 initrd_size);
            }

            option_rom[nb_option_roms].bootindex = 0;
            option_rom[nb_option_roms].name = "pvh.bin";
            nb_option_roms++;

            return;
        }
        protocol = 0;
    }

    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
        /* Low kernel */
        real_addr    = 0x90000;
        cmdline_addr = 0x9a000 - cmdline_size;
        prot_addr    = 0x10000;
    } else if (protocol < 0x202) {
        /* High but ancient kernel */
        real_addr    = 0x90000;
        cmdline_addr = 0x9a000 - cmdline_size;
        prot_addr    = 0x100000;
    } else {
        /* High and recent kernel */
        real_addr    = 0x10000;
        cmdline_addr = 0x20000;
        prot_addr    = 0x100000;
    }

    /* highest address for loading the initrd */
    if (protocol >= 0x20c &&
        lduw_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
        /*
         * Linux has supported initrd up to 4 GB for a very long time (2007,
         * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
         * though it only sets initrd_max to 2 GB to "work around bootloader
         * bugs". Luckily, QEMU firmware(which does something like bootloader)
         * has supported this.
         *
         * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
         * be loaded into any address.
         *
         * In addition, initrd_max is uint32_t simply because QEMU doesn't
         * support the 64-bit boot protocol (specifically the ext_ramdisk_image
         * field).
         *
         * Therefore here just limit initrd_max to UINT32_MAX simply as well.
         */
        initrd_max = UINT32_MAX;
    } else if (protocol >= 0x203) {
        initrd_max = ldl_p(header + 0x22c);
    } else {
        initrd_max = 0x37ffffff;
    }

    if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) {
        initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1;
    }

    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1);
    fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);

    if (protocol >= 0x202) {
        stl_p(header + 0x228, cmdline_addr);
    } else {
        stw_p(header + 0x20, 0xA33F);
        stw_p(header + 0x22, cmdline_addr - real_addr);
    }

    /* handle vga= parameter */
    vmode = strstr(kernel_cmdline, "vga=");
    if (vmode) {
        unsigned int video_mode;
        const char *end;
        int ret;
        /* skip "vga=" */
        vmode += 4;
        if (!strncmp(vmode, "normal", 6)) {
            video_mode = 0xffff;
        } else if (!strncmp(vmode, "ext", 3)) {
            video_mode = 0xfffe;
        } else if (!strncmp(vmode, "ask", 3)) {
            video_mode = 0xfffd;
        } else {
            ret = qemu_strtoui(vmode, &end, 0, &video_mode);
            if (ret != 0 || (*end && *end != ' ')) {
                fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n");
                exit(1);
            }
        }
        stw_p(header + 0x1fa, video_mode);
    }

    /* loader type */
    /*
     * High nybble = B reserved for QEMU; low nybble is revision number.
     * If this code is substantially changed, you may want to consider
     * incrementing the revision.
     */
    if (protocol >= 0x200) {
        header[0x210] = 0xB0;
    }
    /* heap */
    if (protocol >= 0x201) {
        header[0x211] |= 0x80; /* CAN_USE_HEAP */
        stw_p(header + 0x224, cmdline_addr - real_addr - 0x200);
    }

    /* load initrd */
    if (initrd_filename) {
        GMappedFile *mapped_file;
        gsize initrd_size;
        gchar *initrd_data;
        GError *gerr = NULL;

        if (protocol < 0x200) {
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
            exit(1);
        }

        mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
        if (!mapped_file) {
            fprintf(stderr, "qemu: error reading initrd %s: %s\n",
                    initrd_filename, gerr->message);
            exit(1);
        }
        x86ms->initrd_mapped_file = mapped_file;

        initrd_data = g_mapped_file_get_contents(mapped_file);
        initrd_size = g_mapped_file_get_length(mapped_file);
        if (initrd_size >= initrd_max) {
            fprintf(stderr, "qemu: initrd is too large, cannot support."
                    "(max: %"PRIu32", need %"PRId64")\n",
                    initrd_max, (uint64_t)initrd_size);
            exit(1);
        }

        initrd_addr = (initrd_max - initrd_size) & ~4095;

        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);

        stl_p(header + 0x218, initrd_addr);
        stl_p(header + 0x21c, initrd_size);
    }

    /* load kernel and setup */
    setup_size = header[0x1f1];
    if (setup_size == 0) {
        setup_size = 4;
    }
    setup_size = (setup_size + 1) * 512;
    if (setup_size > kernel_size) {
        fprintf(stderr, "qemu: invalid kernel header\n");
        exit(1);
    }
    kernel_size -= setup_size;

    setup  = g_malloc(setup_size);
    kernel = g_malloc(kernel_size);
    fseek(f, 0, SEEK_SET);
    if (fread(setup, 1, setup_size, f) != setup_size) {
        fprintf(stderr, "fread() failed\n");
        exit(1);
    }
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
        fprintf(stderr, "fread() failed\n");
        exit(1);
    }
    fclose(f);

    /* append dtb to kernel */
    if (dtb_filename) {
        if (protocol < 0x209) {
            fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
            exit(1);
        }

        dtb_size = get_image_size(dtb_filename);
        if (dtb_size <= 0) {
            fprintf(stderr, "qemu: error reading dtb %s: %s\n",
                    dtb_filename, strerror(errno));
            exit(1);
        }

        setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
        kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
        kernel = g_realloc(kernel, kernel_size);

        stq_p(header + 0x250, prot_addr + setup_data_offset);

        setup_data = (struct setup_data *)(kernel + setup_data_offset);
        setup_data->next = 0;
        setup_data->type = cpu_to_le32(SETUP_DTB);
        setup_data->len = cpu_to_le32(dtb_size);

        load_image_size(dtb_filename, setup_data->data, dtb_size);
    }

    memcpy(setup, header, MIN(sizeof(header), setup_size));

    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);

    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);

    option_rom[nb_option_roms].bootindex = 0;
    option_rom[nb_option_roms].name = "linuxboot.bin";
    if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
        option_rom[nb_option_roms].name = "linuxboot_dma.bin";
    }
    nb_option_roms++;
}

void x86_bios_rom_init(MemoryRegion *rom_memory, bool isapc_ram_fw)
{
    char *filename;
    MemoryRegion *bios, *isa_bios;
    int bios_size, isa_bios_size;
    int ret;

    /* BIOS load */
    if (bios_name == NULL) {
        bios_name = BIOS_FILENAME;
    }
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
    if (filename) {
        bios_size = get_image_size(filename);
    } else {
        bios_size = -1;
    }
    if (bios_size <= 0 ||
        (bios_size % 65536) != 0) {
        goto bios_error;
    }
    bios = g_malloc(sizeof(*bios));
    memory_region_init_ram(bios, NULL, "pc.bios", bios_size, &error_fatal);
    if (!isapc_ram_fw) {
        memory_region_set_readonly(bios, true);
    }
    ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1);
    if (ret != 0) {
    bios_error:
        fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name);
        exit(1);
    }
    g_free(filename);

    /* map the last 128KB of the BIOS in ISA space */
    isa_bios_size = MIN(bios_size, 128 * KiB);
    isa_bios = g_malloc(sizeof(*isa_bios));
    memory_region_init_alias(isa_bios, NULL, "isa-bios", bios,
                             bios_size - isa_bios_size, isa_bios_size);
    memory_region_add_subregion_overlap(rom_memory,
                                        0x100000 - isa_bios_size,
                                        isa_bios,
                                        1);
    if (!isapc_ram_fw) {
        memory_region_set_readonly(isa_bios, true);
    }

    /* map all the bios at the top of memory */
    memory_region_add_subregion(rom_memory,
                                (uint32_t)(-bios_size),
                                bios);
}

bool x86_machine_is_smm_enabled(X86MachineState *x86ms)
{
    bool smm_available = false;

    if (x86ms->smm == ON_OFF_AUTO_OFF) {
        return false;
    }

    if (tcg_enabled() || qtest_enabled()) {
        smm_available = true;
    } else if (kvm_enabled()) {
        smm_available = kvm_has_smm();
    }

    if (smm_available) {
        return true;
    }

    if (x86ms->smm == ON_OFF_AUTO_ON) {
        error_report("System Management Mode not supported by this hypervisor.");
        exit(1);
    }
    return false;
}

static void x86_machine_get_smm(Object *obj, Visitor *v, const char *name,
                               void *opaque, Error **errp)
{
    X86MachineState *x86ms = X86_MACHINE(obj);
    OnOffAuto smm = x86ms->smm;

    visit_type_OnOffAuto(v, name, &smm, errp);
}

static void x86_machine_set_smm(Object *obj, Visitor *v, const char *name,
                               void *opaque, Error **errp)
{
    X86MachineState *x86ms = X86_MACHINE(obj);

    visit_type_OnOffAuto(v, name, &x86ms->smm, errp);
}

bool x86_machine_is_acpi_enabled(X86MachineState *x86ms)
{
    if (x86ms->acpi == ON_OFF_AUTO_OFF) {
        return false;
    }
    return true;
}

static void x86_machine_get_acpi(Object *obj, Visitor *v, const char *name,
                                 void *opaque, Error **errp)
{
    X86MachineState *x86ms = X86_MACHINE(obj);
    OnOffAuto acpi = x86ms->acpi;

    visit_type_OnOffAuto(v, name, &acpi, errp);
}

static void x86_machine_set_acpi(Object *obj, Visitor *v, const char *name,
                                 void *opaque, Error **errp)
{
    X86MachineState *x86ms = X86_MACHINE(obj);

    visit_type_OnOffAuto(v, name, &x86ms->acpi, errp);
}

static void x86_machine_initfn(Object *obj)
{
    X86MachineState *x86ms = X86_MACHINE(obj);

    x86ms->smm = ON_OFF_AUTO_AUTO;
    x86ms->acpi = ON_OFF_AUTO_AUTO;
    x86ms->smp_dies = 1;

    x86ms->apicid_from_cpu_idx = x86_apicid_from_cpu_idx;
    x86ms->topo_ids_from_apicid = x86_topo_ids_from_apicid;
    x86ms->apicid_from_topo_ids = x86_apicid_from_topo_ids;
    x86ms->apicid_pkg_offset = apicid_pkg_offset;
}

static void x86_machine_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);
    X86MachineClass *x86mc = X86_MACHINE_CLASS(oc);
    NMIClass *nc = NMI_CLASS(oc);

    mc->cpu_index_to_instance_props = x86_cpu_index_to_props;
    mc->get_default_cpu_node_id = x86_get_default_cpu_node_id;
    mc->possible_cpu_arch_ids = x86_possible_cpu_arch_ids;
    x86mc->compat_apic_id_mode = false;
    x86mc->save_tsc_khz = true;
    nc->nmi_monitor_handler = x86_nmi;

    object_class_property_add(oc, X86_MACHINE_SMM, "OnOffAuto",
        x86_machine_get_smm, x86_machine_set_smm,
        NULL, NULL);
    object_class_property_set_description(oc, X86_MACHINE_SMM,
        "Enable SMM");

    object_class_property_add(oc, X86_MACHINE_ACPI, "OnOffAuto",
        x86_machine_get_acpi, x86_machine_set_acpi,
        NULL, NULL);
    object_class_property_set_description(oc, X86_MACHINE_ACPI,
        "Enable ACPI");
}

static const TypeInfo x86_machine_info = {
    .name = TYPE_X86_MACHINE,
    .parent = TYPE_MACHINE,
    .abstract = true,
    .instance_size = sizeof(X86MachineState),
    .instance_init = x86_machine_initfn,
    .class_size = sizeof(X86MachineClass),
    .class_init = x86_machine_class_init,
    .interfaces = (InterfaceInfo[]) {
         { TYPE_NMI },
         { }
    },
};

static void x86_machine_register_types(void)
{
    type_register_static(&x86_machine_info);
}

type_init(x86_machine_register_types)