1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/*
* Microbit stub for Nordic Semiconductor nRF51 SoC Two-Wire Interface
* http://infocenter.nordicsemi.com/pdf/nRF51_RM_v3.0.1.pdf
*
* This is a microbit-specific stub for the TWI controller on the nRF51 SoC.
* We don't emulate I2C devices but the firmware probes the
* accelerometer/magnetometer on startup and panics if they are not found.
* Therefore we stub out the probing.
*
* In the future this file could evolve into a full nRF51 TWI controller
* device.
*
* Copyright 2018 Steffen Görtz <contrib@steffen-goertz.de>
* Copyright 2019 Red Hat, Inc.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/i2c/microbit_i2c.h"
#include "migration/vmstate.h"
static const uint32_t twi_read_sequence[] = {0x5A, 0x5A, 0x40};
static uint64_t microbit_i2c_read(void *opaque, hwaddr addr, unsigned int size)
{
MicrobitI2CState *s = opaque;
uint64_t data = 0x00;
switch (addr) {
case NRF51_TWI_EVENT_STOPPED:
data = 0x01;
break;
case NRF51_TWI_EVENT_RXDREADY:
data = 0x01;
break;
case NRF51_TWI_EVENT_TXDSENT:
data = 0x01;
break;
case NRF51_TWI_REG_RXD:
data = twi_read_sequence[s->read_idx];
if (s->read_idx < G_N_ELEMENTS(twi_read_sequence)) {
s->read_idx++;
}
break;
default:
data = s->regs[addr / sizeof(s->regs[0])];
break;
}
qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " [%u] = %" PRIx32 "\n",
__func__, addr, size, (uint32_t)data);
return data;
}
static void microbit_i2c_write(void *opaque, hwaddr addr, uint64_t data,
unsigned int size)
{
MicrobitI2CState *s = opaque;
qemu_log_mask(LOG_UNIMP, "%s: 0x%" HWADDR_PRIx " <- 0x%" PRIx64 " [%u]\n",
__func__, addr, data, size);
s->regs[addr / sizeof(s->regs[0])] = data;
}
static const MemoryRegionOps microbit_i2c_ops = {
.read = microbit_i2c_read,
.write = microbit_i2c_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.impl.min_access_size = 4,
.impl.max_access_size = 4,
};
static const VMStateDescription microbit_i2c_vmstate = {
.name = TYPE_MICROBIT_I2C,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, MicrobitI2CState, MICROBIT_I2C_NREGS),
VMSTATE_UINT32(read_idx, MicrobitI2CState),
},
};
static void microbit_i2c_reset(DeviceState *dev)
{
MicrobitI2CState *s = MICROBIT_I2C(dev);
memset(s->regs, 0, sizeof(s->regs));
s->read_idx = 0;
}
static void microbit_i2c_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
MicrobitI2CState *s = MICROBIT_I2C(dev);
memory_region_init_io(&s->iomem, OBJECT(s), µbit_i2c_ops, s,
"microbit.twi", NRF51_TWI_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
}
static void microbit_i2c_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = µbit_i2c_vmstate;
dc->reset = microbit_i2c_reset;
dc->realize = microbit_i2c_realize;
dc->desc = "Microbit I2C controller";
}
static const TypeInfo microbit_i2c_info = {
.name = TYPE_MICROBIT_I2C,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(MicrobitI2CState),
.class_init = microbit_i2c_class_init,
};
static void microbit_i2c_register_types(void)
{
type_register_static(µbit_i2c_info);
}
type_init(microbit_i2c_register_types)
|