summaryrefslogtreecommitdiff
path: root/hw/etraxfs_dma.c
blob: 15c8ad3dc51e0552ce8ab32c2fc3a44909b43ef4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
/*
 * QEMU ETRAX DMA Controller.
 *
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
 */
#include <stdio.h>
#include <sys/time.h>
#include "hw.h"
#include "qemu-common.h"
#include "sysemu.h"

#include "etraxfs_dma.h"

#define D(x)

#define RW_DATA           (0x0 / 4)
#define RW_SAVED_DATA     (0x58 / 4)
#define RW_SAVED_DATA_BUF (0x5c / 4)
#define RW_GROUP          (0x60 / 4)
#define RW_GROUP_DOWN     (0x7c / 4)
#define RW_CMD            (0x80 / 4)
#define RW_CFG            (0x84 / 4)
#define RW_STAT           (0x88 / 4)
#define RW_INTR_MASK      (0x8c / 4)
#define RW_ACK_INTR       (0x90 / 4)
#define R_INTR            (0x94 / 4)
#define R_MASKED_INTR     (0x98 / 4)
#define RW_STREAM_CMD     (0x9c / 4)

#define DMA_REG_MAX       (0x100 / 4)

/* descriptors */

// ------------------------------------------------------------ dma_descr_group
typedef struct dma_descr_group {
  uint32_t                      next;
  unsigned                      eol        : 1;
  unsigned                      tol        : 1;
  unsigned                      bol        : 1;
  unsigned                                 : 1;
  unsigned                      intr       : 1;
  unsigned                                 : 2;
  unsigned                      en         : 1;
  unsigned                                 : 7;
  unsigned                      dis        : 1;
  unsigned                      md         : 16;
  struct dma_descr_group       *up;
  union {
    struct dma_descr_context   *context;
    struct dma_descr_group     *group;
  }                             down;
} dma_descr_group;

// ---------------------------------------------------------- dma_descr_context
typedef struct dma_descr_context {
  uint32_t                      next;
  unsigned                      eol        : 1;
  unsigned                                 : 3;
  unsigned                      intr       : 1;
  unsigned                                 : 1;
  unsigned                      store_mode : 1;
  unsigned                      en         : 1;
  unsigned                                 : 7;
  unsigned                      dis        : 1;
  unsigned                      md0        : 16;
  unsigned                      md1;
  unsigned                      md2;
  unsigned                      md3;
  unsigned                      md4;
  uint32_t                      saved_data;
  uint32_t                      saved_data_buf;
} dma_descr_context;

// ------------------------------------------------------------- dma_descr_data
typedef struct dma_descr_data {
  uint32_t                      next;
  uint32_t                      buf;
  unsigned                      eol        : 1;
  unsigned                                 : 2;
  unsigned                      out_eop    : 1;
  unsigned                      intr       : 1;
  unsigned                      wait       : 1;
  unsigned                                 : 2;
  unsigned                                 : 3;
  unsigned                      in_eop     : 1;
  unsigned                                 : 4;
  unsigned                      md         : 16;
  uint32_t                      after;
} dma_descr_data;

/* Constants */
enum {
  regk_dma_ack_pkt                         = 0x00000100,
  regk_dma_anytime                         = 0x00000001,
  regk_dma_array                           = 0x00000008,
  regk_dma_burst                           = 0x00000020,
  regk_dma_client                          = 0x00000002,
  regk_dma_copy_next                       = 0x00000010,
  regk_dma_copy_up                         = 0x00000020,
  regk_dma_data_at_eol                     = 0x00000001,
  regk_dma_dis_c                           = 0x00000010,
  regk_dma_dis_g                           = 0x00000020,
  regk_dma_idle                            = 0x00000001,
  regk_dma_intern                          = 0x00000004,
  regk_dma_load_c                          = 0x00000200,
  regk_dma_load_c_n                        = 0x00000280,
  regk_dma_load_c_next                     = 0x00000240,
  regk_dma_load_d                          = 0x00000140,
  regk_dma_load_g                          = 0x00000300,
  regk_dma_load_g_down                     = 0x000003c0,
  regk_dma_load_g_next                     = 0x00000340,
  regk_dma_load_g_up                       = 0x00000380,
  regk_dma_next_en                         = 0x00000010,
  regk_dma_next_pkt                        = 0x00000010,
  regk_dma_no                              = 0x00000000,
  regk_dma_only_at_wait                    = 0x00000000,
  regk_dma_restore                         = 0x00000020,
  regk_dma_rst                             = 0x00000001,
  regk_dma_running                         = 0x00000004,
  regk_dma_rw_cfg_default                  = 0x00000000,
  regk_dma_rw_cmd_default                  = 0x00000000,
  regk_dma_rw_intr_mask_default            = 0x00000000,
  regk_dma_rw_stat_default                 = 0x00000101,
  regk_dma_rw_stream_cmd_default           = 0x00000000,
  regk_dma_save_down                       = 0x00000020,
  regk_dma_save_up                         = 0x00000020,
  regk_dma_set_reg                         = 0x00000050,
  regk_dma_set_w_size1                     = 0x00000190,
  regk_dma_set_w_size2                     = 0x000001a0,
  regk_dma_set_w_size4                     = 0x000001c0,
  regk_dma_stopped                         = 0x00000002,
  regk_dma_store_c                         = 0x00000002,
  regk_dma_store_descr                     = 0x00000000,
  regk_dma_store_g                         = 0x00000004,
  regk_dma_store_md                        = 0x00000001,
  regk_dma_sw                              = 0x00000008,
  regk_dma_update_down                     = 0x00000020,
  regk_dma_yes                             = 0x00000001
};

enum dma_ch_state
{
	RST = 1,
	STOPPED = 2,
	RUNNING = 4
};

struct fs_dma_channel
{
	qemu_irq irq;
	struct etraxfs_dma_client *client;

	/* Internal status.  */
	int stream_cmd_src;
	enum dma_ch_state state;

	unsigned int input : 1;
	unsigned int eol : 1;

	struct dma_descr_group current_g;
	struct dma_descr_context current_c;
	struct dma_descr_data current_d;

	/* Controll registers.  */
	uint32_t regs[DMA_REG_MAX];
};

struct fs_dma_ctrl
{
	int map;
	int nr_channels;
	struct fs_dma_channel *channels;

        QEMUBH *bh;
};

static void DMA_run(void *opaque);
static int channel_out_run(struct fs_dma_ctrl *ctrl, int c);

static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
{
	return ctrl->channels[c].regs[reg];
}

static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
{
	return channel_reg(ctrl, c, RW_CFG) & 2;
}

static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
{
	return (channel_reg(ctrl, c, RW_CFG) & 1)
		&& ctrl->channels[c].client;
}

static inline int fs_channel(target_phys_addr_t addr)
{
	/* Every channel has a 0x2000 ctrl register map.  */
	return addr >> 13;
}

#ifdef USE_THIS_DEAD_CODE
static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);

	/* Load and decode. FIXME: handle endianness.  */
	cpu_physical_memory_read (addr, 
				  (void *) &ctrl->channels[c].current_g, 
				  sizeof ctrl->channels[c].current_g);
}

static void dump_c(int ch, struct dma_descr_context *c)
{
	printf("%s ch=%d\n", __func__, ch);
	printf("next=%x\n", c->next);
	printf("saved_data=%x\n", c->saved_data);
	printf("saved_data_buf=%x\n", c->saved_data_buf);
	printf("eol=%x\n", (uint32_t) c->eol);
}

static void dump_d(int ch, struct dma_descr_data *d)
{
	printf("%s ch=%d\n", __func__, ch);
	printf("next=%x\n", d->next);
	printf("buf=%x\n", d->buf);
	printf("after=%x\n", d->after);
	printf("intr=%x\n", (uint32_t) d->intr);
	printf("out_eop=%x\n", (uint32_t) d->out_eop);
	printf("in_eop=%x\n", (uint32_t) d->in_eop);
	printf("eol=%x\n", (uint32_t) d->eol);
}
#endif

static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);

	/* Load and decode. FIXME: handle endianness.  */
	cpu_physical_memory_read (addr, 
				  (void *) &ctrl->channels[c].current_c, 
				  sizeof ctrl->channels[c].current_c);

	D(dump_c(c, &ctrl->channels[c].current_c));
	/* I guess this should update the current pos.  */
	ctrl->channels[c].regs[RW_SAVED_DATA] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data;
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_c.saved_data_buf;
}

static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);

	/* Load and decode. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	cpu_physical_memory_read (addr,
				  (void *) &ctrl->channels[c].current_d, 
				  sizeof ctrl->channels[c].current_d);

	D(dump_d(c, &ctrl->channels[c].current_d));
	ctrl->channels[c].regs[RW_DATA] = addr;
}

static void channel_store_c(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);

	/* Encode and store. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	D(dump_d(c, &ctrl->channels[c].current_d));
	cpu_physical_memory_write (addr,
				  (void *) &ctrl->channels[c].current_c,
				  sizeof ctrl->channels[c].current_c);
}

static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
{
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);

	/* Encode and store. FIXME: handle endianness.  */
	D(printf("%s ch=%d addr=" TARGET_FMT_plx "\n", __func__, c, addr));
	cpu_physical_memory_write (addr,
				  (void *) &ctrl->channels[c].current_d, 
				  sizeof ctrl->channels[c].current_d);
}

static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
{
	/* FIXME:  */
}

static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
{
	if (ctrl->channels[c].client)
	{
		ctrl->channels[c].eol = 0;
		ctrl->channels[c].state = RUNNING;
		if (!ctrl->channels[c].input)
			channel_out_run(ctrl, c);
	} else
		printf("WARNING: starting DMA ch %d with no client\n", c);

        qemu_bh_schedule_idle(ctrl->bh);
}

static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
{
	if (!channel_en(ctrl, c) 
	    || channel_stopped(ctrl, c)
	    || ctrl->channels[c].state != RUNNING
	    /* Only reload the current data descriptor if it has eol set.  */
	    || !ctrl->channels[c].current_d.eol) {
		D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
			 c, ctrl->channels[c].state,
			 channel_stopped(ctrl, c),
			 channel_en(ctrl,c),
			 ctrl->channels[c].eol));
		D(dump_d(c, &ctrl->channels[c].current_d));
		return;
	}

	/* Reload the current descriptor.  */
	channel_load_d(ctrl, c);

	/* If the current descriptor cleared the eol flag and we had already
	   reached eol state, do the continue.  */
	if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
		D(printf("continue %d ok %x\n", c,
			 ctrl->channels[c].current_d.next));
		ctrl->channels[c].regs[RW_SAVED_DATA] =
			(uint32_t)(unsigned long)ctrl->channels[c].current_d.next;
		channel_load_d(ctrl, c);
		ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
			(uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;

		channel_start(ctrl, c);
	}
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
		(uint32_t)(unsigned long)ctrl->channels[c].current_d.buf;
}

static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
{
	unsigned int cmd = v & ((1 << 10) - 1);

	D(printf("%s ch=%d cmd=%x\n",
		 __func__, c, cmd));
	if (cmd & regk_dma_load_d) {
		channel_load_d(ctrl, c);
		if (cmd & regk_dma_burst)
			channel_start(ctrl, c);
	}

	if (cmd & regk_dma_load_c) {
		channel_load_c(ctrl, c);
	}
}

static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
{
	D(printf("%s %d\n", __func__, c));
        ctrl->channels[c].regs[R_INTR] &=
		~(ctrl->channels[c].regs[RW_ACK_INTR]);

        ctrl->channels[c].regs[R_MASKED_INTR] =
		ctrl->channels[c].regs[R_INTR]
		& ctrl->channels[c].regs[RW_INTR_MASK];

	D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
		 c,
		 ctrl->channels[c].regs[R_MASKED_INTR]));

        qemu_set_irq(ctrl->channels[c].irq,
		     !!ctrl->channels[c].regs[R_MASKED_INTR]);
}

static int channel_out_run(struct fs_dma_ctrl *ctrl, int c)
{
	uint32_t len;
	uint32_t saved_data_buf;
	unsigned char buf[2 * 1024];

	if (ctrl->channels[c].eol)
		return 0;

	do {
		D(printf("ch=%d buf=%x after=%x\n",
			 c,
			 (uint32_t)ctrl->channels[c].current_d.buf,
			 (uint32_t)ctrl->channels[c].current_d.after));

		channel_load_d(ctrl, c);
		saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
		len = (uint32_t)(unsigned long)
			ctrl->channels[c].current_d.after;
		len -= saved_data_buf;

		if (len > sizeof buf)
			len = sizeof buf;
		cpu_physical_memory_read (saved_data_buf, buf, len);

		D(printf("channel %d pushes %x %u bytes\n", c, 
			 saved_data_buf, len));

		if (ctrl->channels[c].client->client.push)
			ctrl->channels[c].client->client.push(
				ctrl->channels[c].client->client.opaque,
				buf, len);
		else
			printf("WARNING: DMA ch%d dataloss,"
			       " no attached client.\n", c);

		saved_data_buf += len;

		if (saved_data_buf == (uint32_t)(unsigned long)
				ctrl->channels[c].current_d.after) {
			/* Done. Step to next.  */
			if (ctrl->channels[c].current_d.out_eop) {
				/* TODO: signal eop to the client.  */
				D(printf("signal eop\n"));
			}
			if (ctrl->channels[c].current_d.intr) {
				/* TODO: signal eop to the client.  */
				/* data intr.  */
				D(printf("signal intr %d eol=%d\n",
					len, ctrl->channels[c].current_d.eol));
				ctrl->channels[c].regs[R_INTR] |= (1 << 2);
				channel_update_irq(ctrl, c);
			}
			channel_store_d(ctrl, c);
			if (ctrl->channels[c].current_d.eol) {
				D(printf("channel %d EOL\n", c));
				ctrl->channels[c].eol = 1;

				/* Mark the context as disabled.  */
				ctrl->channels[c].current_c.dis = 1;
				channel_store_c(ctrl, c);

				channel_stop(ctrl, c);
			} else {
				ctrl->channels[c].regs[RW_SAVED_DATA] =
					(uint32_t)(unsigned long)ctrl->
						channels[c].current_d.next;
				/* Load new descriptor.  */
				channel_load_d(ctrl, c);
				saved_data_buf = (uint32_t)(unsigned long)
					ctrl->channels[c].current_d.buf;
			}

			ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
							saved_data_buf;
			D(dump_d(c, &ctrl->channels[c].current_d));
		}
		ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
	} while (!ctrl->channels[c].eol);
	return 1;
}

static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
			      unsigned char *buf, int buflen, int eop)
{
	uint32_t len;
	uint32_t saved_data_buf;

	if (ctrl->channels[c].eol == 1)
		return 0;

	channel_load_d(ctrl, c);
	saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
	len = (uint32_t)(unsigned long)ctrl->channels[c].current_d.after;
	len -= saved_data_buf;
	
	if (len > buflen)
		len = buflen;

	cpu_physical_memory_write (saved_data_buf, buf, len);
	saved_data_buf += len;

	if (saved_data_buf ==
	    (uint32_t)(unsigned long)ctrl->channels[c].current_d.after
	    || eop) {
		uint32_t r_intr = ctrl->channels[c].regs[R_INTR];

		D(printf("in dscr end len=%d\n", 
			 ctrl->channels[c].current_d.after
			 - ctrl->channels[c].current_d.buf));
		ctrl->channels[c].current_d.after = saved_data_buf;

		/* Done. Step to next.  */
		if (ctrl->channels[c].current_d.intr) {
			/* TODO: signal eop to the client.  */
			/* data intr.  */
			ctrl->channels[c].regs[R_INTR] |= 3;
		}
		if (eop) {
			ctrl->channels[c].current_d.in_eop = 1;
			ctrl->channels[c].regs[R_INTR] |= 8;
		}
		if (r_intr != ctrl->channels[c].regs[R_INTR])
			channel_update_irq(ctrl, c);

		channel_store_d(ctrl, c);
		D(dump_d(c, &ctrl->channels[c].current_d));

		if (ctrl->channels[c].current_d.eol) {
			D(printf("channel %d EOL\n", c));
			ctrl->channels[c].eol = 1;

			/* Mark the context as disabled.  */
			ctrl->channels[c].current_c.dis = 1;
			channel_store_c(ctrl, c);

			channel_stop(ctrl, c);
		} else {
			ctrl->channels[c].regs[RW_SAVED_DATA] =
				(uint32_t)(unsigned long)ctrl->
					channels[c].current_d.next;
			/* Load new descriptor.  */
			channel_load_d(ctrl, c);
			saved_data_buf = (uint32_t)(unsigned long)
				ctrl->channels[c].current_d.buf;
		}
	}

	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
	return len;
}

static inline int channel_in_run(struct fs_dma_ctrl *ctrl, int c)
{
	if (ctrl->channels[c].client->client.pull) {
		ctrl->channels[c].client->client.pull(
			ctrl->channels[c].client->client.opaque);
		return 1;
	} else
		return 0;
}

static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
{
        hw_error("Unsupported short raccess. reg=" TARGET_FMT_plx "\n", addr);
        return 0;
}

static uint32_t
dma_readl (void *opaque, target_phys_addr_t addr)
{
        struct fs_dma_ctrl *ctrl = opaque;
	int c;
	uint32_t r = 0;

	/* Make addr relative to this channel and bounded to nr regs.  */
	c = fs_channel(addr);
	addr &= 0xff;
	addr >>= 2;
	switch (addr)
	{
		case RW_STAT:
			r = ctrl->channels[c].state & 7;
			r |= ctrl->channels[c].eol << 5;
			r |= ctrl->channels[c].stream_cmd_src << 8;
			break;

		default:
			r = ctrl->channels[c].regs[addr];
			D(printf ("%s c=%d addr=" TARGET_FMT_plx "\n",
				  __func__, c, addr));
			break;
	}
	return r;
}

static void
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
{
        hw_error("Unsupported short waccess. reg=" TARGET_FMT_plx "\n", addr);
}

static void
dma_update_state(struct fs_dma_ctrl *ctrl, int c)
{
	if ((ctrl->channels[c].regs[RW_CFG] & 1) != 3) {
		if (ctrl->channels[c].regs[RW_CFG] & 2)
			ctrl->channels[c].state = STOPPED;
		if (!(ctrl->channels[c].regs[RW_CFG] & 1))
			ctrl->channels[c].state = RST;
	}
}

static void
dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
        struct fs_dma_ctrl *ctrl = opaque;
	int c;

        /* Make addr relative to this channel and bounded to nr regs.  */
	c = fs_channel(addr);
        addr &= 0xff;
        addr >>= 2;
        switch (addr)
	{
		case RW_DATA:
			ctrl->channels[c].regs[addr] = value;
			break;

		case RW_CFG:
			ctrl->channels[c].regs[addr] = value;
			dma_update_state(ctrl, c);
			break;
		case RW_CMD:
			/* continue.  */
			if (value & ~1)
				printf("Invalid store to ch=%d RW_CMD %x\n",
				       c, value);
			ctrl->channels[c].regs[addr] = value;
			channel_continue(ctrl, c);
			break;

		case RW_SAVED_DATA:
		case RW_SAVED_DATA_BUF:
		case RW_GROUP:
		case RW_GROUP_DOWN:
			ctrl->channels[c].regs[addr] = value;
			break;

		case RW_ACK_INTR:
		case RW_INTR_MASK:
			ctrl->channels[c].regs[addr] = value;
			channel_update_irq(ctrl, c);
			if (addr == RW_ACK_INTR)
				ctrl->channels[c].regs[RW_ACK_INTR] = 0;
			break;

		case RW_STREAM_CMD:
			if (value & ~1023)
				printf("Invalid store to ch=%d "
				       "RW_STREAMCMD %x\n",
				       c, value);
			ctrl->channels[c].regs[addr] = value;
			D(printf("stream_cmd ch=%d\n", c));
			channel_stream_cmd(ctrl, c, value);
			break;

	        default:
			D(printf ("%s c=%d " TARGET_FMT_plx "\n",
				__func__, c, addr));
			break;
        }
}

static CPUReadMemoryFunc * const dma_read[] = {
	&dma_rinvalid,
	&dma_rinvalid,
	&dma_readl,
};

static CPUWriteMemoryFunc * const dma_write[] = {
	&dma_winvalid,
	&dma_winvalid,
	&dma_writel,
};

static int etraxfs_dmac_run(void *opaque)
{
	struct fs_dma_ctrl *ctrl = opaque;
	int i;
	int p = 0;

	for (i = 0; 
	     i < ctrl->nr_channels;
	     i++)
	{
		if (ctrl->channels[i].state == RUNNING)
		{
			if (ctrl->channels[i].input) {
				p += channel_in_run(ctrl, i);
			} else {
				p += channel_out_run(ctrl, i);
			}
		}
	}
	return p;
}

int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
		       void *buf, int len, int eop)
{
	return channel_in_process(client->ctrl, client->channel, 
				  buf, len, eop);
}

/* Connect an IRQ line with a channel.  */
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
{
	struct fs_dma_ctrl *ctrl = opaque;
	ctrl->channels[c].irq = *line;
	ctrl->channels[c].input = input;
}

void etraxfs_dmac_connect_client(void *opaque, int c, 
				 struct etraxfs_dma_client *cl)
{
	struct fs_dma_ctrl *ctrl = opaque;
	cl->ctrl = ctrl;
	cl->channel = c;
	ctrl->channels[c].client = cl;
}


static void DMA_run(void *opaque)
{
    struct fs_dma_ctrl *etraxfs_dmac = opaque;
    int p = 1;

    if (vm_running)
        p = etraxfs_dmac_run(etraxfs_dmac);

    if (p)
        qemu_bh_schedule_idle(etraxfs_dmac->bh);
}

void *etraxfs_dmac_init(target_phys_addr_t base, int nr_channels)
{
	struct fs_dma_ctrl *ctrl = NULL;

	ctrl = qemu_mallocz(sizeof *ctrl);

        ctrl->bh = qemu_bh_new(DMA_run, ctrl);

	ctrl->nr_channels = nr_channels;
	ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);

	ctrl->map = cpu_register_io_memory(dma_read, dma_write, ctrl);
	cpu_register_physical_memory(base, nr_channels * 0x2000, ctrl->map);
	return ctrl;
}