summaryrefslogtreecommitdiff
path: root/hw/block/nvme.c
blob: 9faad29fadfe31ac7c9bcdb6c3f219257d5a8c9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
/*
 * QEMU NVM Express Controller
 *
 * Copyright (c) 2012, Intel Corporation
 *
 * Written by Keith Busch <keith.busch@intel.com>
 *
 * This code is licensed under the GNU GPL v2 or later.
 */

/**
 * Reference Specs: http://www.nvmexpress.org, 1.1, 1.0e
 *
 *  http://www.nvmexpress.org/resources/
 */

/**
 * Usage: add options:
 *      -drive file=<file>,if=none,id=<drive_id>
 *      -device nvme,drive=<drive_id>,serial=<serial>,id=<id[optional]>
 */

#include "qemu/osdep.h"
#include <hw/block/block.h>
#include <hw/hw.h>
#include <hw/pci/msix.h>
#include <hw/pci/pci.h>
#include "sysemu/sysemu.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/block-backend.h"

#include "nvme.h"

static void nvme_process_sq(void *opaque);

static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
{
    return sqid < n->num_queues && n->sq[sqid] != NULL ? 0 : -1;
}

static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
{
    return cqid < n->num_queues && n->cq[cqid] != NULL ? 0 : -1;
}

static void nvme_inc_cq_tail(NvmeCQueue *cq)
{
    cq->tail++;
    if (cq->tail >= cq->size) {
        cq->tail = 0;
        cq->phase = !cq->phase;
    }
}

static void nvme_inc_sq_head(NvmeSQueue *sq)
{
    sq->head = (sq->head + 1) % sq->size;
}

static uint8_t nvme_cq_full(NvmeCQueue *cq)
{
    return (cq->tail + 1) % cq->size == cq->head;
}

static uint8_t nvme_sq_empty(NvmeSQueue *sq)
{
    return sq->head == sq->tail;
}

static void nvme_isr_notify(NvmeCtrl *n, NvmeCQueue *cq)
{
    if (cq->irq_enabled) {
        if (msix_enabled(&(n->parent_obj))) {
            msix_notify(&(n->parent_obj), cq->vector);
        } else {
            pci_irq_pulse(&n->parent_obj);
        }
    }
}

static uint16_t nvme_map_prp(QEMUSGList *qsg, uint64_t prp1, uint64_t prp2,
    uint32_t len, NvmeCtrl *n)
{
    hwaddr trans_len = n->page_size - (prp1 % n->page_size);
    trans_len = MIN(len, trans_len);
    int num_prps = (len >> n->page_bits) + 1;

    if (!prp1) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }

    pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
    qemu_sglist_add(qsg, prp1, trans_len);
    len -= trans_len;
    if (len) {
        if (!prp2) {
            goto unmap;
        }
        if (len > n->page_size) {
            uint64_t prp_list[n->max_prp_ents];
            uint32_t nents, prp_trans;
            int i = 0;

            nents = (len + n->page_size - 1) >> n->page_bits;
            prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
            pci_dma_read(&n->parent_obj, prp2, (void *)prp_list, prp_trans);
            while (len != 0) {
                uint64_t prp_ent = le64_to_cpu(prp_list[i]);

                if (i == n->max_prp_ents - 1 && len > n->page_size) {
                    if (!prp_ent || prp_ent & (n->page_size - 1)) {
                        goto unmap;
                    }

                    i = 0;
                    nents = (len + n->page_size - 1) >> n->page_bits;
                    prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
                    pci_dma_read(&n->parent_obj, prp_ent, (void *)prp_list,
                        prp_trans);
                    prp_ent = le64_to_cpu(prp_list[i]);
                }

                if (!prp_ent || prp_ent & (n->page_size - 1)) {
                    goto unmap;
                }

                trans_len = MIN(len, n->page_size);
                qemu_sglist_add(qsg, prp_ent, trans_len);
                len -= trans_len;
                i++;
            }
        } else {
            if (prp2 & (n->page_size - 1)) {
                goto unmap;
            }
            qemu_sglist_add(qsg, prp2, len);
        }
    }
    return NVME_SUCCESS;

 unmap:
    qemu_sglist_destroy(qsg);
    return NVME_INVALID_FIELD | NVME_DNR;
}

static uint16_t nvme_dma_read_prp(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
    uint64_t prp1, uint64_t prp2)
{
    QEMUSGList qsg;

    if (nvme_map_prp(&qsg, prp1, prp2, len, n)) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    if (dma_buf_read(ptr, len, &qsg)) {
        qemu_sglist_destroy(&qsg);
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    qemu_sglist_destroy(&qsg);
    return NVME_SUCCESS;
}

static void nvme_post_cqes(void *opaque)
{
    NvmeCQueue *cq = opaque;
    NvmeCtrl *n = cq->ctrl;
    NvmeRequest *req, *next;

    QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
        NvmeSQueue *sq;
        hwaddr addr;

        if (nvme_cq_full(cq)) {
            break;
        }

        QTAILQ_REMOVE(&cq->req_list, req, entry);
        sq = req->sq;
        req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
        req->cqe.sq_id = cpu_to_le16(sq->sqid);
        req->cqe.sq_head = cpu_to_le16(sq->head);
        addr = cq->dma_addr + cq->tail * n->cqe_size;
        nvme_inc_cq_tail(cq);
        pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
            sizeof(req->cqe));
        QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
    }
    nvme_isr_notify(n, cq);
}

static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
{
    assert(cq->cqid == req->sq->cqid);
    QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
    QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
    timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
}

static void nvme_rw_cb(void *opaque, int ret)
{
    NvmeRequest *req = opaque;
    NvmeSQueue *sq = req->sq;
    NvmeCtrl *n = sq->ctrl;
    NvmeCQueue *cq = n->cq[sq->cqid];

    if (!ret) {
        block_acct_done(blk_get_stats(n->conf.blk), &req->acct);
        req->status = NVME_SUCCESS;
    } else {
        block_acct_failed(blk_get_stats(n->conf.blk), &req->acct);
        req->status = NVME_INTERNAL_DEV_ERROR;
    }
    if (req->has_sg) {
        qemu_sglist_destroy(&req->qsg);
    }
    nvme_enqueue_req_completion(cq, req);
}

static uint16_t nvme_flush(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
    NvmeRequest *req)
{
    req->has_sg = false;
    block_acct_start(blk_get_stats(n->conf.blk), &req->acct, 0,
         BLOCK_ACCT_FLUSH);
    req->aiocb = blk_aio_flush(n->conf.blk, nvme_rw_cb, req);

    return NVME_NO_COMPLETE;
}

static uint16_t nvme_rw(NvmeCtrl *n, NvmeNamespace *ns, NvmeCmd *cmd,
    NvmeRequest *req)
{
    NvmeRwCmd *rw = (NvmeRwCmd *)cmd;
    uint32_t nlb  = le32_to_cpu(rw->nlb) + 1;
    uint64_t slba = le64_to_cpu(rw->slba);
    uint64_t prp1 = le64_to_cpu(rw->prp1);
    uint64_t prp2 = le64_to_cpu(rw->prp2);

    uint8_t lba_index  = NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas);
    uint8_t data_shift = ns->id_ns.lbaf[lba_index].ds;
    uint64_t data_size = (uint64_t)nlb << data_shift;
    uint64_t data_offset = slba << data_shift;
    int is_write = rw->opcode == NVME_CMD_WRITE ? 1 : 0;
    enum BlockAcctType acct = is_write ? BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;

    if ((slba + nlb) > ns->id_ns.nsze) {
        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
        return NVME_LBA_RANGE | NVME_DNR;
    }

    if (nvme_map_prp(&req->qsg, prp1, prp2, data_size, n)) {
        block_acct_invalid(blk_get_stats(n->conf.blk), acct);
        return NVME_INVALID_FIELD | NVME_DNR;
    }

    assert((nlb << data_shift) == req->qsg.size);

    req->has_sg = true;
    dma_acct_start(n->conf.blk, &req->acct, &req->qsg, acct);
    req->aiocb = is_write ?
        dma_blk_write(n->conf.blk, &req->qsg, data_offset, nvme_rw_cb, req) :
        dma_blk_read(n->conf.blk, &req->qsg, data_offset, nvme_rw_cb, req);

    return NVME_NO_COMPLETE;
}

static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
    NvmeNamespace *ns;
    uint32_t nsid = le32_to_cpu(cmd->nsid);

    if (nsid == 0 || nsid > n->num_namespaces) {
        return NVME_INVALID_NSID | NVME_DNR;
    }

    ns = &n->namespaces[nsid - 1];
    switch (cmd->opcode) {
    case NVME_CMD_FLUSH:
        return nvme_flush(n, ns, cmd, req);
    case NVME_CMD_WRITE:
    case NVME_CMD_READ:
        return nvme_rw(n, ns, cmd, req);
    default:
        return NVME_INVALID_OPCODE | NVME_DNR;
    }
}

static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
{
    n->sq[sq->sqid] = NULL;
    timer_del(sq->timer);
    timer_free(sq->timer);
    g_free(sq->io_req);
    if (sq->sqid) {
        g_free(sq);
    }
}

static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeCmd *cmd)
{
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
    NvmeRequest *req, *next;
    NvmeSQueue *sq;
    NvmeCQueue *cq;
    uint16_t qid = le16_to_cpu(c->qid);

    if (!qid || nvme_check_sqid(n, qid)) {
        return NVME_INVALID_QID | NVME_DNR;
    }

    sq = n->sq[qid];
    while (!QTAILQ_EMPTY(&sq->out_req_list)) {
        req = QTAILQ_FIRST(&sq->out_req_list);
        assert(req->aiocb);
        blk_aio_cancel(req->aiocb);
    }
    if (!nvme_check_cqid(n, sq->cqid)) {
        cq = n->cq[sq->cqid];
        QTAILQ_REMOVE(&cq->sq_list, sq, entry);

        nvme_post_cqes(cq);
        QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
            if (req->sq == sq) {
                QTAILQ_REMOVE(&cq->req_list, req, entry);
                QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
            }
        }
    }

    nvme_free_sq(sq, n);
    return NVME_SUCCESS;
}

static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
    uint16_t sqid, uint16_t cqid, uint16_t size)
{
    int i;
    NvmeCQueue *cq;

    sq->ctrl = n;
    sq->dma_addr = dma_addr;
    sq->sqid = sqid;
    sq->size = size;
    sq->cqid = cqid;
    sq->head = sq->tail = 0;
    sq->io_req = g_new(NvmeRequest, sq->size);

    QTAILQ_INIT(&sq->req_list);
    QTAILQ_INIT(&sq->out_req_list);
    for (i = 0; i < sq->size; i++) {
        sq->io_req[i].sq = sq;
        QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
    }
    sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);

    assert(n->cq[cqid]);
    cq = n->cq[cqid];
    QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
    n->sq[sqid] = sq;
}

static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeCmd *cmd)
{
    NvmeSQueue *sq;
    NvmeCreateSq *c = (NvmeCreateSq *)cmd;

    uint16_t cqid = le16_to_cpu(c->cqid);
    uint16_t sqid = le16_to_cpu(c->sqid);
    uint16_t qsize = le16_to_cpu(c->qsize);
    uint16_t qflags = le16_to_cpu(c->sq_flags);
    uint64_t prp1 = le64_to_cpu(c->prp1);

    if (!cqid || nvme_check_cqid(n, cqid)) {
        return NVME_INVALID_CQID | NVME_DNR;
    }
    if (!sqid || (sqid && !nvme_check_sqid(n, sqid))) {
        return NVME_INVALID_QID | NVME_DNR;
    }
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
    }
    if (!prp1 || prp1 & (n->page_size - 1)) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    if (!(NVME_SQ_FLAGS_PC(qflags))) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    sq = g_malloc0(sizeof(*sq));
    nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
    return NVME_SUCCESS;
}

static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
{
    n->cq[cq->cqid] = NULL;
    timer_del(cq->timer);
    timer_free(cq->timer);
    msix_vector_unuse(&n->parent_obj, cq->vector);
    if (cq->cqid) {
        g_free(cq);
    }
}

static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeCmd *cmd)
{
    NvmeDeleteQ *c = (NvmeDeleteQ *)cmd;
    NvmeCQueue *cq;
    uint16_t qid = le16_to_cpu(c->qid);

    if (!qid || nvme_check_cqid(n, qid)) {
        return NVME_INVALID_CQID | NVME_DNR;
    }

    cq = n->cq[qid];
    if (!QTAILQ_EMPTY(&cq->sq_list)) {
        return NVME_INVALID_QUEUE_DEL;
    }
    nvme_free_cq(cq, n);
    return NVME_SUCCESS;
}

static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
    uint16_t cqid, uint16_t vector, uint16_t size, uint16_t irq_enabled)
{
    cq->ctrl = n;
    cq->cqid = cqid;
    cq->size = size;
    cq->dma_addr = dma_addr;
    cq->phase = 1;
    cq->irq_enabled = irq_enabled;
    cq->vector = vector;
    cq->head = cq->tail = 0;
    QTAILQ_INIT(&cq->req_list);
    QTAILQ_INIT(&cq->sq_list);
    msix_vector_use(&n->parent_obj, cq->vector);
    n->cq[cqid] = cq;
    cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
}

static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeCmd *cmd)
{
    NvmeCQueue *cq;
    NvmeCreateCq *c = (NvmeCreateCq *)cmd;
    uint16_t cqid = le16_to_cpu(c->cqid);
    uint16_t vector = le16_to_cpu(c->irq_vector);
    uint16_t qsize = le16_to_cpu(c->qsize);
    uint16_t qflags = le16_to_cpu(c->cq_flags);
    uint64_t prp1 = le64_to_cpu(c->prp1);

    if (!cqid || (cqid && !nvme_check_cqid(n, cqid))) {
        return NVME_INVALID_CQID | NVME_DNR;
    }
    if (!qsize || qsize > NVME_CAP_MQES(n->bar.cap)) {
        return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
    }
    if (!prp1) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    if (vector > n->num_queues) {
        return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
    }
    if (!(NVME_CQ_FLAGS_PC(qflags))) {
        return NVME_INVALID_FIELD | NVME_DNR;
    }

    cq = g_malloc0(sizeof(*cq));
    nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
        NVME_CQ_FLAGS_IEN(qflags));
    return NVME_SUCCESS;
}

static uint16_t nvme_identify(NvmeCtrl *n, NvmeCmd *cmd)
{
    NvmeNamespace *ns;
    NvmeIdentify *c = (NvmeIdentify *)cmd;
    uint32_t cns  = le32_to_cpu(c->cns);
    uint32_t nsid = le32_to_cpu(c->nsid);
    uint64_t prp1 = le64_to_cpu(c->prp1);
    uint64_t prp2 = le64_to_cpu(c->prp2);

    if (cns) {
        return nvme_dma_read_prp(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
            prp1, prp2);
    }
    if (nsid == 0 || nsid > n->num_namespaces) {
        return NVME_INVALID_NSID | NVME_DNR;
    }

    ns = &n->namespaces[nsid - 1];
    return nvme_dma_read_prp(n, (uint8_t *)&ns->id_ns, sizeof(ns->id_ns),
        prp1, prp2);
}

static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
    uint32_t result;

    switch (dw10) {
    case NVME_VOLATILE_WRITE_CACHE:
        result = blk_enable_write_cache(n->conf.blk);
        break;
    case NVME_NUMBER_OF_QUEUES:
        result = cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
        break;
    default:
        return NVME_INVALID_FIELD | NVME_DNR;
    }

    req->cqe.result = result;
    return NVME_SUCCESS;
}

static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
    uint32_t dw10 = le32_to_cpu(cmd->cdw10);
    uint32_t dw11 = le32_to_cpu(cmd->cdw11);

    switch (dw10) {
    case NVME_VOLATILE_WRITE_CACHE:
        blk_set_enable_write_cache(n->conf.blk, dw11 & 1);
        break;
    case NVME_NUMBER_OF_QUEUES:
        req->cqe.result =
            cpu_to_le32((n->num_queues - 1) | ((n->num_queues - 1) << 16));
        break;
    default:
        return NVME_INVALID_FIELD | NVME_DNR;
    }
    return NVME_SUCCESS;
}

static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeCmd *cmd, NvmeRequest *req)
{
    switch (cmd->opcode) {
    case NVME_ADM_CMD_DELETE_SQ:
        return nvme_del_sq(n, cmd);
    case NVME_ADM_CMD_CREATE_SQ:
        return nvme_create_sq(n, cmd);
    case NVME_ADM_CMD_DELETE_CQ:
        return nvme_del_cq(n, cmd);
    case NVME_ADM_CMD_CREATE_CQ:
        return nvme_create_cq(n, cmd);
    case NVME_ADM_CMD_IDENTIFY:
        return nvme_identify(n, cmd);
    case NVME_ADM_CMD_SET_FEATURES:
        return nvme_set_feature(n, cmd, req);
    case NVME_ADM_CMD_GET_FEATURES:
        return nvme_get_feature(n, cmd, req);
    default:
        return NVME_INVALID_OPCODE | NVME_DNR;
    }
}

static void nvme_process_sq(void *opaque)
{
    NvmeSQueue *sq = opaque;
    NvmeCtrl *n = sq->ctrl;
    NvmeCQueue *cq = n->cq[sq->cqid];

    uint16_t status;
    hwaddr addr;
    NvmeCmd cmd;
    NvmeRequest *req;

    while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
        addr = sq->dma_addr + sq->head * n->sqe_size;
        pci_dma_read(&n->parent_obj, addr, (void *)&cmd, sizeof(cmd));
        nvme_inc_sq_head(sq);

        req = QTAILQ_FIRST(&sq->req_list);
        QTAILQ_REMOVE(&sq->req_list, req, entry);
        QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
        memset(&req->cqe, 0, sizeof(req->cqe));
        req->cqe.cid = cmd.cid;

        status = sq->sqid ? nvme_io_cmd(n, &cmd, req) :
            nvme_admin_cmd(n, &cmd, req);
        if (status != NVME_NO_COMPLETE) {
            req->status = status;
            nvme_enqueue_req_completion(cq, req);
        }
    }
}

static void nvme_clear_ctrl(NvmeCtrl *n)
{
    int i;

    for (i = 0; i < n->num_queues; i++) {
        if (n->sq[i] != NULL) {
            nvme_free_sq(n->sq[i], n);
        }
    }
    for (i = 0; i < n->num_queues; i++) {
        if (n->cq[i] != NULL) {
            nvme_free_cq(n->cq[i], n);
        }
    }

    blk_flush(n->conf.blk);
    n->bar.cc = 0;
}

static int nvme_start_ctrl(NvmeCtrl *n)
{
    uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
    uint32_t page_size = 1 << page_bits;

    if (n->cq[0] || n->sq[0] || !n->bar.asq || !n->bar.acq ||
            n->bar.asq & (page_size - 1) || n->bar.acq & (page_size - 1) ||
            NVME_CC_MPS(n->bar.cc) < NVME_CAP_MPSMIN(n->bar.cap) ||
            NVME_CC_MPS(n->bar.cc) > NVME_CAP_MPSMAX(n->bar.cap) ||
            NVME_CC_IOCQES(n->bar.cc) < NVME_CTRL_CQES_MIN(n->id_ctrl.cqes) ||
            NVME_CC_IOCQES(n->bar.cc) > NVME_CTRL_CQES_MAX(n->id_ctrl.cqes) ||
            NVME_CC_IOSQES(n->bar.cc) < NVME_CTRL_SQES_MIN(n->id_ctrl.sqes) ||
            NVME_CC_IOSQES(n->bar.cc) > NVME_CTRL_SQES_MAX(n->id_ctrl.sqes) ||
            !NVME_AQA_ASQS(n->bar.aqa) || !NVME_AQA_ACQS(n->bar.aqa)) {
        return -1;
    }

    n->page_bits = page_bits;
    n->page_size = page_size;
    n->max_prp_ents = n->page_size / sizeof(uint64_t);
    n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
    n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
    nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
        NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
    nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
        NVME_AQA_ASQS(n->bar.aqa) + 1);

    return 0;
}

static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
    unsigned size)
{
    switch (offset) {
    case 0xc:
        n->bar.intms |= data & 0xffffffff;
        n->bar.intmc = n->bar.intms;
        break;
    case 0x10:
        n->bar.intms &= ~(data & 0xffffffff);
        n->bar.intmc = n->bar.intms;
        break;
    case 0x14:
        /* Windows first sends data, then sends enable bit */
        if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
            !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
        {
            n->bar.cc = data;
        }

        if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
            n->bar.cc = data;
            if (nvme_start_ctrl(n)) {
                n->bar.csts = NVME_CSTS_FAILED;
            } else {
                n->bar.csts = NVME_CSTS_READY;
            }
        } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
            nvme_clear_ctrl(n);
            n->bar.csts &= ~NVME_CSTS_READY;
        }
        if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
                nvme_clear_ctrl(n);
                n->bar.cc = data;
                n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
        } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
                n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
                n->bar.cc = data;
        }
        break;
    case 0x24:
        n->bar.aqa = data & 0xffffffff;
        break;
    case 0x28:
        n->bar.asq = data;
        break;
    case 0x2c:
        n->bar.asq |= data << 32;
        break;
    case 0x30:
        n->bar.acq = data;
        break;
    case 0x34:
        n->bar.acq |= data << 32;
        break;
    default:
        break;
    }
}

static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
    NvmeCtrl *n = (NvmeCtrl *)opaque;
    uint8_t *ptr = (uint8_t *)&n->bar;
    uint64_t val = 0;

    if (addr < sizeof(n->bar)) {
        memcpy(&val, ptr + addr, size);
    }
    return val;
}

static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
{
    uint32_t qid;

    if (addr & ((1 << 2) - 1)) {
        return;
    }

    if (((addr - 0x1000) >> 2) & 1) {
        uint16_t new_head = val & 0xffff;
        int start_sqs;
        NvmeCQueue *cq;

        qid = (addr - (0x1000 + (1 << 2))) >> 3;
        if (nvme_check_cqid(n, qid)) {
            return;
        }

        cq = n->cq[qid];
        if (new_head >= cq->size) {
            return;
        }

        start_sqs = nvme_cq_full(cq) ? 1 : 0;
        cq->head = new_head;
        if (start_sqs) {
            NvmeSQueue *sq;
            QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
                timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
            }
            timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
        }

        if (cq->tail != cq->head) {
            nvme_isr_notify(n, cq);
        }
    } else {
        uint16_t new_tail = val & 0xffff;
        NvmeSQueue *sq;

        qid = (addr - 0x1000) >> 3;
        if (nvme_check_sqid(n, qid)) {
            return;
        }

        sq = n->sq[qid];
        if (new_tail >= sq->size) {
            return;
        }

        sq->tail = new_tail;
        timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
    }
}

static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
    unsigned size)
{
    NvmeCtrl *n = (NvmeCtrl *)opaque;
    if (addr < sizeof(n->bar)) {
        nvme_write_bar(n, addr, data, size);
    } else if (addr >= 0x1000) {
        nvme_process_db(n, addr, data);
    }
}

static const MemoryRegionOps nvme_mmio_ops = {
    .read = nvme_mmio_read,
    .write = nvme_mmio_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .impl = {
        .min_access_size = 2,
        .max_access_size = 8,
    },
};

static int nvme_init(PCIDevice *pci_dev)
{
    NvmeCtrl *n = NVME(pci_dev);
    NvmeIdCtrl *id = &n->id_ctrl;

    int i;
    int64_t bs_size;
    uint8_t *pci_conf;

    if (!n->conf.blk) {
        return -1;
    }

    bs_size = blk_getlength(n->conf.blk);
    if (bs_size < 0) {
        return -1;
    }

    blkconf_serial(&n->conf, &n->serial);
    if (!n->serial) {
        return -1;
    }
    blkconf_blocksizes(&n->conf);

    pci_conf = pci_dev->config;
    pci_conf[PCI_INTERRUPT_PIN] = 1;
    pci_config_set_prog_interface(pci_dev->config, 0x2);
    pci_config_set_class(pci_dev->config, PCI_CLASS_STORAGE_EXPRESS);
    pcie_endpoint_cap_init(&n->parent_obj, 0x80);

    n->num_namespaces = 1;
    n->num_queues = 64;
    n->reg_size = pow2ceil(0x1004 + 2 * (n->num_queues + 1) * 4);
    n->ns_size = bs_size / (uint64_t)n->num_namespaces;

    n->namespaces = g_new0(NvmeNamespace, n->num_namespaces);
    n->sq = g_new0(NvmeSQueue *, n->num_queues);
    n->cq = g_new0(NvmeCQueue *, n->num_queues);

    memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n,
                          "nvme", n->reg_size);
    pci_register_bar(&n->parent_obj, 0,
        PCI_BASE_ADDRESS_SPACE_MEMORY | PCI_BASE_ADDRESS_MEM_TYPE_64,
        &n->iomem);
    msix_init_exclusive_bar(&n->parent_obj, n->num_queues, 4);

    id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
    id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
    strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
    strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
    strpadcpy((char *)id->sn, sizeof(id->sn), n->serial, ' ');
    id->rab = 6;
    id->ieee[0] = 0x00;
    id->ieee[1] = 0x02;
    id->ieee[2] = 0xb3;
    id->oacs = cpu_to_le16(0);
    id->frmw = 7 << 1;
    id->lpa = 1 << 0;
    id->sqes = (0x6 << 4) | 0x6;
    id->cqes = (0x4 << 4) | 0x4;
    id->nn = cpu_to_le32(n->num_namespaces);
    id->psd[0].mp = cpu_to_le16(0x9c4);
    id->psd[0].enlat = cpu_to_le32(0x10);
    id->psd[0].exlat = cpu_to_le32(0x4);
    if (blk_enable_write_cache(n->conf.blk)) {
        id->vwc = 1;
    }

    n->bar.cap = 0;
    NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
    NVME_CAP_SET_CQR(n->bar.cap, 1);
    NVME_CAP_SET_AMS(n->bar.cap, 1);
    NVME_CAP_SET_TO(n->bar.cap, 0xf);
    NVME_CAP_SET_CSS(n->bar.cap, 1);
    NVME_CAP_SET_MPSMAX(n->bar.cap, 4);

    n->bar.vs = 0x00010100;
    n->bar.intmc = n->bar.intms = 0;

    for (i = 0; i < n->num_namespaces; i++) {
        NvmeNamespace *ns = &n->namespaces[i];
        NvmeIdNs *id_ns = &ns->id_ns;
        id_ns->nsfeat = 0;
        id_ns->nlbaf = 0;
        id_ns->flbas = 0;
        id_ns->mc = 0;
        id_ns->dpc = 0;
        id_ns->dps = 0;
        id_ns->lbaf[0].ds = BDRV_SECTOR_BITS;
        id_ns->ncap  = id_ns->nuse = id_ns->nsze =
            cpu_to_le64(n->ns_size >>
                id_ns->lbaf[NVME_ID_NS_FLBAS_INDEX(ns->id_ns.flbas)].ds);
    }
    return 0;
}

static void nvme_exit(PCIDevice *pci_dev)
{
    NvmeCtrl *n = NVME(pci_dev);

    nvme_clear_ctrl(n);
    g_free(n->namespaces);
    g_free(n->cq);
    g_free(n->sq);
    msix_uninit_exclusive_bar(pci_dev);
}

static Property nvme_props[] = {
    DEFINE_BLOCK_PROPERTIES(NvmeCtrl, conf),
    DEFINE_PROP_STRING("serial", NvmeCtrl, serial),
    DEFINE_PROP_END_OF_LIST(),
};

static const VMStateDescription nvme_vmstate = {
    .name = "nvme",
    .unmigratable = 1,
};

static void nvme_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);
    PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);

    pc->init = nvme_init;
    pc->exit = nvme_exit;
    pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
    pc->vendor_id = PCI_VENDOR_ID_INTEL;
    pc->device_id = 0x5845;
    pc->revision = 1;
    pc->is_express = 1;

    set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
    dc->desc = "Non-Volatile Memory Express";
    dc->props = nvme_props;
    dc->vmsd = &nvme_vmstate;
}

static void nvme_instance_init(Object *obj)
{
    NvmeCtrl *s = NVME(obj);

    device_add_bootindex_property(obj, &s->conf.bootindex,
                                  "bootindex", "/namespace@1,0",
                                  DEVICE(obj), &error_abort);
}

static const TypeInfo nvme_info = {
    .name          = "nvme",
    .parent        = TYPE_PCI_DEVICE,
    .instance_size = sizeof(NvmeCtrl),
    .class_init    = nvme_class_init,
    .instance_init = nvme_instance_init,
};

static void nvme_register_types(void)
{
    type_register_static(&nvme_info);
}

type_init(nvme_register_types)