summaryrefslogtreecommitdiff
path: root/hw/arm/iotkit.c
blob: f8276b5425c9f0d8733d9e9dcb072447f70b38cc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
/*
 * Arm IoT Kit
 *
 * Copyright (c) 2018 Linaro Limited
 * Written by Peter Maydell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/arm/iotkit.h"
#include "hw/arm/arm.h"

/* Clock frequency in HZ of the 32KHz "slow clock" */
#define S32KCLK (32 * 1000)

/* Create an alias region of @size bytes starting at @base
 * which mirrors the memory starting at @orig.
 */
static void make_alias(IoTKit *s, MemoryRegion *mr, const char *name,
                       hwaddr base, hwaddr size, hwaddr orig)
{
    memory_region_init_alias(mr, NULL, name, &s->container, orig, size);
    /* The alias is even lower priority than unimplemented_device regions */
    memory_region_add_subregion_overlap(&s->container, base, mr, -1500);
}

static void irq_status_forwarder(void *opaque, int n, int level)
{
    qemu_irq destirq = opaque;

    qemu_set_irq(destirq, level);
}

static void nsccfg_handler(void *opaque, int n, int level)
{
    IoTKit *s = IOTKIT(opaque);

    s->nsccfg = level;
}

static void iotkit_forward_ppc(IoTKit *s, const char *ppcname, int ppcnum)
{
    /* Each of the 4 AHB and 4 APB PPCs that might be present in a
     * system using the IoTKit has a collection of control lines which
     * are provided by the security controller and which we want to
     * expose as control lines on the IoTKit device itself, so the
     * code using the IoTKit can wire them up to the PPCs.
     */
    SplitIRQ *splitter = &s->ppc_irq_splitter[ppcnum];
    DeviceState *iotkitdev = DEVICE(s);
    DeviceState *dev_secctl = DEVICE(&s->secctl);
    DeviceState *dev_splitter = DEVICE(splitter);
    char *name;

    name = g_strdup_printf("%s_nonsec", ppcname);
    qdev_pass_gpios(dev_secctl, iotkitdev, name);
    g_free(name);
    name = g_strdup_printf("%s_ap", ppcname);
    qdev_pass_gpios(dev_secctl, iotkitdev, name);
    g_free(name);
    name = g_strdup_printf("%s_irq_enable", ppcname);
    qdev_pass_gpios(dev_secctl, iotkitdev, name);
    g_free(name);
    name = g_strdup_printf("%s_irq_clear", ppcname);
    qdev_pass_gpios(dev_secctl, iotkitdev, name);
    g_free(name);

    /* irq_status is a little more tricky, because we need to
     * split it so we can send it both to the security controller
     * and to our OR gate for the NVIC interrupt line.
     * Connect up the splitter's outputs, and create a GPIO input
     * which will pass the line state to the input splitter.
     */
    name = g_strdup_printf("%s_irq_status", ppcname);
    qdev_connect_gpio_out(dev_splitter, 0,
                          qdev_get_gpio_in_named(dev_secctl,
                                                 name, 0));
    qdev_connect_gpio_out(dev_splitter, 1,
                          qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), ppcnum));
    s->irq_status_in[ppcnum] = qdev_get_gpio_in(dev_splitter, 0);
    qdev_init_gpio_in_named_with_opaque(iotkitdev, irq_status_forwarder,
                                        s->irq_status_in[ppcnum], name, 1);
    g_free(name);
}

static void iotkit_forward_sec_resp_cfg(IoTKit *s)
{
    /* Forward the 3rd output from the splitter device as a
     * named GPIO output of the iotkit object.
     */
    DeviceState *dev = DEVICE(s);
    DeviceState *dev_splitter = DEVICE(&s->sec_resp_splitter);

    qdev_init_gpio_out_named(dev, &s->sec_resp_cfg, "sec_resp_cfg", 1);
    s->sec_resp_cfg_in = qemu_allocate_irq(irq_status_forwarder,
                                           s->sec_resp_cfg, 1);
    qdev_connect_gpio_out(dev_splitter, 2, s->sec_resp_cfg_in);
}

static void iotkit_init(Object *obj)
{
    IoTKit *s = IOTKIT(obj);
    int i;

    memory_region_init(&s->container, obj, "iotkit-container", UINT64_MAX);

    sysbus_init_child_obj(obj, "armv7m", &s->armv7m, sizeof(s->armv7m),
                          TYPE_ARMV7M);
    qdev_prop_set_string(DEVICE(&s->armv7m), "cpu-type",
                         ARM_CPU_TYPE_NAME("cortex-m33"));

    sysbus_init_child_obj(obj, "secctl", &s->secctl, sizeof(s->secctl),
                          TYPE_IOTKIT_SECCTL);
    sysbus_init_child_obj(obj, "apb-ppc0", &s->apb_ppc0, sizeof(s->apb_ppc0),
                          TYPE_TZ_PPC);
    sysbus_init_child_obj(obj, "apb-ppc1", &s->apb_ppc1, sizeof(s->apb_ppc1),
                          TYPE_TZ_PPC);
    sysbus_init_child_obj(obj, "mpc", &s->mpc, sizeof(s->mpc), TYPE_TZ_MPC);
    object_initialize_child(obj, "mpc-irq-orgate", &s->mpc_irq_orgate,
                            sizeof(s->mpc_irq_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);

    for (i = 0; i < ARRAY_SIZE(s->mpc_irq_splitter); i++) {
        char *name = g_strdup_printf("mpc-irq-splitter-%d", i);
        SplitIRQ *splitter = &s->mpc_irq_splitter[i];

        object_initialize_child(obj, name, splitter, sizeof(*splitter),
                                TYPE_SPLIT_IRQ, &error_abort, NULL);
        g_free(name);
    }
    sysbus_init_child_obj(obj, "timer0", &s->timer0, sizeof(s->timer0),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "timer1", &s->timer1, sizeof(s->timer1),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "s32ktimer", &s->s32ktimer, sizeof(s->s32ktimer),
                          TYPE_CMSDK_APB_TIMER);
    sysbus_init_child_obj(obj, "dualtimer", &s->dualtimer, sizeof(s->dualtimer),
                          TYPE_CMSDK_APB_DUALTIMER);
    sysbus_init_child_obj(obj, "s32kwatchdog", &s->s32kwatchdog,
                          sizeof(s->s32kwatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "nswatchdog", &s->nswatchdog,
                          sizeof(s->nswatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "swatchdog", &s->swatchdog,
                          sizeof(s->swatchdog), TYPE_CMSDK_APB_WATCHDOG);
    sysbus_init_child_obj(obj, "iotkit-sysctl", &s->sysctl,
                          sizeof(s->sysctl), TYPE_IOTKIT_SYSCTL);
    sysbus_init_child_obj(obj, "iotkit-sysinfo", &s->sysinfo,
                          sizeof(s->sysinfo), TYPE_IOTKIT_SYSINFO);
    object_initialize_child(obj, "nmi-orgate", &s->nmi_orgate,
                            sizeof(s->nmi_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);
    object_initialize_child(obj, "ppc-irq-orgate", &s->ppc_irq_orgate,
                            sizeof(s->ppc_irq_orgate), TYPE_OR_IRQ,
                            &error_abort, NULL);
    object_initialize_child(obj, "sec-resp-splitter", &s->sec_resp_splitter,
                            sizeof(s->sec_resp_splitter), TYPE_SPLIT_IRQ,
                            &error_abort, NULL);
    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
        char *name = g_strdup_printf("ppc-irq-splitter-%d", i);
        SplitIRQ *splitter = &s->ppc_irq_splitter[i];

        object_initialize_child(obj, name, splitter, sizeof(*splitter),
                                TYPE_SPLIT_IRQ, &error_abort, NULL);
        g_free(name);
    }
}

static void iotkit_exp_irq(void *opaque, int n, int level)
{
    IoTKit *s = IOTKIT(opaque);

    qemu_set_irq(s->exp_irqs[n], level);
}

static void iotkit_mpcexp_status(void *opaque, int n, int level)
{
    IoTKit *s = IOTKIT(opaque);
    qemu_set_irq(s->mpcexp_status_in[n], level);
}

static void iotkit_realize(DeviceState *dev, Error **errp)
{
    IoTKit *s = IOTKIT(dev);
    int i;
    MemoryRegion *mr;
    Error *err = NULL;
    SysBusDevice *sbd_apb_ppc0;
    SysBusDevice *sbd_secctl;
    DeviceState *dev_apb_ppc0;
    DeviceState *dev_apb_ppc1;
    DeviceState *dev_secctl;
    DeviceState *dev_splitter;

    if (!s->board_memory) {
        error_setg(errp, "memory property was not set");
        return;
    }

    if (!s->mainclk_frq) {
        error_setg(errp, "MAINCLK property was not set");
        return;
    }

    /* Handling of which devices should be available only to secure
     * code is usually done differently for M profile than for A profile.
     * Instead of putting some devices only into the secure address space,
     * devices exist in both address spaces but with hard-wired security
     * permissions that will cause the CPU to fault for non-secure accesses.
     *
     * The IoTKit has an IDAU (Implementation Defined Access Unit),
     * which specifies hard-wired security permissions for different
     * areas of the physical address space. For the IoTKit IDAU, the
     * top 4 bits of the physical address are the IDAU region ID, and
     * if bit 28 (ie the lowest bit of the ID) is 0 then this is an NS
     * region, otherwise it is an S region.
     *
     * The various devices and RAMs are generally all mapped twice,
     * once into a region that the IDAU defines as secure and once
     * into a non-secure region. They sit behind either a Memory
     * Protection Controller (for RAM) or a Peripheral Protection
     * Controller (for devices), which allow a more fine grained
     * configuration of whether non-secure accesses are permitted.
     *
     * (The other place that guest software can configure security
     * permissions is in the architected SAU (Security Attribution
     * Unit), which is entirely inside the CPU. The IDAU can upgrade
     * the security attributes for a region to more restrictive than
     * the SAU specifies, but cannot downgrade them.)
     *
     * 0x10000000..0x1fffffff  alias of 0x00000000..0x0fffffff
     * 0x20000000..0x2007ffff  32KB FPGA block RAM
     * 0x30000000..0x3fffffff  alias of 0x20000000..0x2fffffff
     * 0x40000000..0x4000ffff  base peripheral region 1
     * 0x40010000..0x4001ffff  CPU peripherals (none for IoTKit)
     * 0x40020000..0x4002ffff  system control element peripherals
     * 0x40080000..0x400fffff  base peripheral region 2
     * 0x50000000..0x5fffffff  alias of 0x40000000..0x4fffffff
     */

    memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);

    qdev_prop_set_uint32(DEVICE(&s->armv7m), "num-irq", s->exp_numirq + 32);
    /* In real hardware the initial Secure VTOR is set from the INITSVTOR0
     * register in the IoT Kit System Control Register block, and the
     * initial value of that is in turn specifiable by the FPGA that
     * instantiates the IoT Kit. In QEMU we don't implement this wrinkle,
     * and simply set the CPU's init-svtor to the IoT Kit default value.
     */
    qdev_prop_set_uint32(DEVICE(&s->armv7m), "init-svtor", 0x10000000);
    object_property_set_link(OBJECT(&s->armv7m), OBJECT(&s->container),
                             "memory", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_link(OBJECT(&s->armv7m), OBJECT(s), "idau", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->armv7m), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    /* Connect our EXP_IRQ GPIOs to the NVIC's lines 32 and up. */
    s->exp_irqs = g_new(qemu_irq, s->exp_numirq);
    for (i = 0; i < s->exp_numirq; i++) {
        s->exp_irqs[i] = qdev_get_gpio_in(DEVICE(&s->armv7m), i + 32);
    }
    qdev_init_gpio_in_named(dev, iotkit_exp_irq, "EXP_IRQ", s->exp_numirq);

    /* Set up the big aliases first */
    make_alias(s, &s->alias1, "alias 1", 0x10000000, 0x10000000, 0x00000000);
    make_alias(s, &s->alias2, "alias 2", 0x30000000, 0x10000000, 0x20000000);
    /* The 0x50000000..0x5fffffff region is not a pure alias: it has
     * a few extra devices that only appear there (generally the
     * control interfaces for the protection controllers).
     * We implement this by mapping those devices over the top of this
     * alias MR at a higher priority.
     */
    make_alias(s, &s->alias3, "alias 3", 0x50000000, 0x10000000, 0x40000000);


    /* Security controller */
    object_property_set_bool(OBJECT(&s->secctl), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sbd_secctl = SYS_BUS_DEVICE(&s->secctl);
    dev_secctl = DEVICE(&s->secctl);
    sysbus_mmio_map(sbd_secctl, 0, 0x50080000);
    sysbus_mmio_map(sbd_secctl, 1, 0x40080000);

    s->nsc_cfg_in = qemu_allocate_irq(nsccfg_handler, s, 1);
    qdev_connect_gpio_out_named(dev_secctl, "nsc_cfg", 0, s->nsc_cfg_in);

    /* The sec_resp_cfg output from the security controller must be split into
     * multiple lines, one for each of the PPCs within the IoTKit and one
     * that will be an output from the IoTKit to the system.
     */
    object_property_set_int(OBJECT(&s->sec_resp_splitter), 3,
                            "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->sec_resp_splitter), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    dev_splitter = DEVICE(&s->sec_resp_splitter);
    qdev_connect_gpio_out_named(dev_secctl, "sec_resp_cfg", 0,
                                qdev_get_gpio_in(dev_splitter, 0));

    /* This RAM lives behind the Memory Protection Controller */
    memory_region_init_ram(&s->sram0, NULL, "iotkit.sram0", 0x00008000, &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_link(OBJECT(&s->mpc), OBJECT(&s->sram0),
                             "downstream", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->mpc), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    /* Map the upstream end of the MPC into the right place... */
    memory_region_add_subregion(&s->container, 0x20000000,
                                sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
                                                       1));
    /* ...and its register interface */
    memory_region_add_subregion(&s->container, 0x50083000,
                                sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->mpc),
                                                       0));

    /* We must OR together lines from the MPC splitters to go to the NVIC */
    object_property_set_int(OBJECT(&s->mpc_irq_orgate),
                            IOTS_NUM_EXP_MPC + IOTS_NUM_MPC, "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->mpc_irq_orgate), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->mpc_irq_orgate), 0,
                          qdev_get_gpio_in(DEVICE(&s->armv7m), 9));

    /* Devices behind APB PPC0:
     *   0x40000000: timer0
     *   0x40001000: timer1
     *   0x40002000: dual timer
     * We must configure and realize each downstream device and connect
     * it to the appropriate PPC port; then we can realize the PPC and
     * map its upstream ends to the right place in the container.
     */
    qdev_prop_set_uint32(DEVICE(&s->timer0), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->timer0), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer0), 0,
                       qdev_get_gpio_in(DEVICE(&s->armv7m), 3));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer0), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[0]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    qdev_prop_set_uint32(DEVICE(&s->timer1), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->timer1), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->timer1), 0,
                       qdev_get_gpio_in(DEVICE(&s->armv7m), 4));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->timer1), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[1]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }


    qdev_prop_set_uint32(DEVICE(&s->dualtimer), "pclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->dualtimer), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->dualtimer), 0,
                       qdev_get_gpio_in(DEVICE(&s->armv7m), 5));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->dualtimer), 0);
    object_property_set_link(OBJECT(&s->apb_ppc0), OBJECT(mr), "port[2]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    object_property_set_bool(OBJECT(&s->apb_ppc0), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    sbd_apb_ppc0 = SYS_BUS_DEVICE(&s->apb_ppc0);
    dev_apb_ppc0 = DEVICE(&s->apb_ppc0);

    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 0);
    memory_region_add_subregion(&s->container, 0x40000000, mr);
    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 1);
    memory_region_add_subregion(&s->container, 0x40001000, mr);
    mr = sysbus_mmio_get_region(sbd_apb_ppc0, 2);
    memory_region_add_subregion(&s->container, 0x40002000, mr);
    for (i = 0; i < IOTS_APB_PPC0_NUM_PORTS; i++) {
        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_nonsec", i,
                                    qdev_get_gpio_in_named(dev_apb_ppc0,
                                                           "cfg_nonsec", i));
        qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_ap", i,
                                    qdev_get_gpio_in_named(dev_apb_ppc0,
                                                           "cfg_ap", i));
    }
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_enable", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc0,
                                                       "irq_enable", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc0_irq_clear", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc0,
                                                       "irq_clear", 0));
    qdev_connect_gpio_out(dev_splitter, 0,
                          qdev_get_gpio_in_named(dev_apb_ppc0,
                                                 "cfg_sec_resp", 0));

    /* All the PPC irq lines (from the 2 internal PPCs and the 8 external
     * ones) are sent individually to the security controller, and also
     * ORed together to give a single combined PPC interrupt to the NVIC.
     */
    object_property_set_int(OBJECT(&s->ppc_irq_orgate),
                            NUM_PPCS, "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->ppc_irq_orgate), true,
                             "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->ppc_irq_orgate), 0,
                          qdev_get_gpio_in(DEVICE(&s->armv7m), 10));

    /* 0x40010000 .. 0x4001ffff: private CPU region: unused in IoTKit */

    /* 0x40020000 .. 0x4002ffff : IoTKit system control peripheral region */
    /* Devices behind APB PPC1:
     *   0x4002f000: S32K timer
     */
    qdev_prop_set_uint32(DEVICE(&s->s32ktimer), "pclk-frq", S32KCLK);
    object_property_set_bool(OBJECT(&s->s32ktimer), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32ktimer), 0,
                       qdev_get_gpio_in(DEVICE(&s->armv7m), 2));
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->s32ktimer), 0);
    object_property_set_link(OBJECT(&s->apb_ppc1), OBJECT(mr), "port[0]", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }

    object_property_set_bool(OBJECT(&s->apb_ppc1), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->apb_ppc1), 0);
    memory_region_add_subregion(&s->container, 0x4002f000, mr);

    dev_apb_ppc1 = DEVICE(&s->apb_ppc1);
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_nonsec", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "cfg_nonsec", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_ap", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "cfg_ap", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_enable", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "irq_enable", 0));
    qdev_connect_gpio_out_named(dev_secctl, "apb_ppc1_irq_clear", 0,
                                qdev_get_gpio_in_named(dev_apb_ppc1,
                                                       "irq_clear", 0));
    qdev_connect_gpio_out(dev_splitter, 1,
                          qdev_get_gpio_in_named(dev_apb_ppc1,
                                                 "cfg_sec_resp", 0));

    object_property_set_bool(OBJECT(&s->sysinfo), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    /* System information registers */
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysinfo), 0, 0x40020000);
    /* System control registers */
    object_property_set_bool(OBJECT(&s->sysctl), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysctl), 0, 0x50021000);

    /* This OR gate wires together outputs from the secure watchdogs to NMI */
    object_property_set_int(OBJECT(&s->nmi_orgate), 2, "num-lines", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    object_property_set_bool(OBJECT(&s->nmi_orgate), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    qdev_connect_gpio_out(DEVICE(&s->nmi_orgate), 0,
                          qdev_get_gpio_in_named(DEVICE(&s->armv7m), "NMI", 0));

    qdev_prop_set_uint32(DEVICE(&s->s32kwatchdog), "wdogclk-frq", S32KCLK);
    object_property_set_bool(OBJECT(&s->s32kwatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->s32kwatchdog), 0,
                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 0));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->s32kwatchdog), 0, 0x5002e000);

    /* 0x40080000 .. 0x4008ffff : IoTKit second Base peripheral region */

    qdev_prop_set_uint32(DEVICE(&s->nswatchdog), "wdogclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->nswatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->nswatchdog), 0,
                       qdev_get_gpio_in(DEVICE(&s->armv7m), 1));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->nswatchdog), 0, 0x40081000);

    qdev_prop_set_uint32(DEVICE(&s->swatchdog), "wdogclk-frq", s->mainclk_frq);
    object_property_set_bool(OBJECT(&s->swatchdog), true, "realized", &err);
    if (err) {
        error_propagate(errp, err);
        return;
    }
    sysbus_connect_irq(SYS_BUS_DEVICE(&s->swatchdog), 0,
                       qdev_get_gpio_in(DEVICE(&s->nmi_orgate), 1));
    sysbus_mmio_map(SYS_BUS_DEVICE(&s->swatchdog), 0, 0x50081000);

    for (i = 0; i < ARRAY_SIZE(s->ppc_irq_splitter); i++) {
        Object *splitter = OBJECT(&s->ppc_irq_splitter[i]);

        object_property_set_int(splitter, 2, "num-lines", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(splitter, true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
    }

    for (i = 0; i < IOTS_NUM_AHB_EXP_PPC; i++) {
        char *ppcname = g_strdup_printf("ahb_ppcexp%d", i);

        iotkit_forward_ppc(s, ppcname, i);
        g_free(ppcname);
    }

    for (i = 0; i < IOTS_NUM_APB_EXP_PPC; i++) {
        char *ppcname = g_strdup_printf("apb_ppcexp%d", i);

        iotkit_forward_ppc(s, ppcname, i + IOTS_NUM_AHB_EXP_PPC);
        g_free(ppcname);
    }

    for (i = NUM_EXTERNAL_PPCS; i < NUM_PPCS; i++) {
        /* Wire up IRQ splitter for internal PPCs */
        DeviceState *devs = DEVICE(&s->ppc_irq_splitter[i]);
        char *gpioname = g_strdup_printf("apb_ppc%d_irq_status",
                                         i - NUM_EXTERNAL_PPCS);
        TZPPC *ppc = (i == NUM_EXTERNAL_PPCS) ? &s->apb_ppc0 : &s->apb_ppc1;

        qdev_connect_gpio_out(devs, 0,
                              qdev_get_gpio_in_named(dev_secctl, gpioname, 0));
        qdev_connect_gpio_out(devs, 1,
                              qdev_get_gpio_in(DEVICE(&s->ppc_irq_orgate), i));
        qdev_connect_gpio_out_named(DEVICE(ppc), "irq", 0,
                                    qdev_get_gpio_in(devs, 0));
        g_free(gpioname);
    }

    /* Wire up the splitters for the MPC IRQs */
    for (i = 0; i < IOTS_NUM_EXP_MPC + IOTS_NUM_MPC; i++) {
        SplitIRQ *splitter = &s->mpc_irq_splitter[i];
        DeviceState *dev_splitter = DEVICE(splitter);

        object_property_set_int(OBJECT(splitter), 2, "num-lines", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }
        object_property_set_bool(OBJECT(splitter), true, "realized", &err);
        if (err) {
            error_propagate(errp, err);
            return;
        }

        if (i < IOTS_NUM_EXP_MPC) {
            /* Splitter input is from GPIO input line */
            s->mpcexp_status_in[i] = qdev_get_gpio_in(dev_splitter, 0);
            qdev_connect_gpio_out(dev_splitter, 0,
                                  qdev_get_gpio_in_named(dev_secctl,
                                                         "mpcexp_status", i));
        } else {
            /* Splitter input is from our own MPC */
            qdev_connect_gpio_out_named(DEVICE(&s->mpc), "irq", 0,
                                        qdev_get_gpio_in(dev_splitter, 0));
            qdev_connect_gpio_out(dev_splitter, 0,
                                  qdev_get_gpio_in_named(dev_secctl,
                                                         "mpc_status", 0));
        }

        qdev_connect_gpio_out(dev_splitter, 1,
                              qdev_get_gpio_in(DEVICE(&s->mpc_irq_orgate), i));
    }
    /* Create GPIO inputs which will pass the line state for our
     * mpcexp_irq inputs to the correct splitter devices.
     */
    qdev_init_gpio_in_named(dev, iotkit_mpcexp_status, "mpcexp_status",
                            IOTS_NUM_EXP_MPC);

    iotkit_forward_sec_resp_cfg(s);

    system_clock_scale = NANOSECONDS_PER_SECOND / s->mainclk_frq;
}

static void iotkit_idau_check(IDAUInterface *ii, uint32_t address,
                              int *iregion, bool *exempt, bool *ns, bool *nsc)
{
    /* For IoTKit systems the IDAU responses are simple logical functions
     * of the address bits. The NSC attribute is guest-adjustable via the
     * NSCCFG register in the security controller.
     */
    IoTKit *s = IOTKIT(ii);
    int region = extract32(address, 28, 4);

    *ns = !(region & 1);
    *nsc = (region == 1 && (s->nsccfg & 1)) || (region == 3 && (s->nsccfg & 2));
    /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
    *exempt = (address & 0xeff00000) == 0xe0000000;
    *iregion = region;
}

static const VMStateDescription iotkit_vmstate = {
    .name = "iotkit",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(nsccfg, IoTKit),
        VMSTATE_END_OF_LIST()
    }
};

static Property iotkit_properties[] = {
    DEFINE_PROP_LINK("memory", IoTKit, board_memory, TYPE_MEMORY_REGION,
                     MemoryRegion *),
    DEFINE_PROP_UINT32("EXP_NUMIRQ", IoTKit, exp_numirq, 64),
    DEFINE_PROP_UINT32("MAINCLK", IoTKit, mainclk_frq, 0),
    DEFINE_PROP_END_OF_LIST()
};

static void iotkit_reset(DeviceState *dev)
{
    IoTKit *s = IOTKIT(dev);

    s->nsccfg = 0;
}

static void iotkit_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(klass);

    dc->realize = iotkit_realize;
    dc->vmsd = &iotkit_vmstate;
    dc->props = iotkit_properties;
    dc->reset = iotkit_reset;
    iic->check = iotkit_idau_check;
}

static const TypeInfo iotkit_info = {
    .name = TYPE_IOTKIT,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(IoTKit),
    .instance_init = iotkit_init,
    .class_init = iotkit_class_init,
    .interfaces = (InterfaceInfo[]) {
        { TYPE_IDAU_INTERFACE },
        { }
    }
};

static void iotkit_register_types(void)
{
    type_register_static(&iotkit_info);
}

type_init(iotkit_register_types);