1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
|
Vhost-user Protocol
===================
Copyright (c) 2014 Virtual Open Systems Sarl.
This work is licensed under the terms of the GNU GPL, version 2 or later.
See the COPYING file in the top-level directory.
===================
This protocol is aiming to complement the ioctl interface used to control the
vhost implementation in the Linux kernel. It implements the control plane needed
to establish virtqueue sharing with a user space process on the same host. It
uses communication over a Unix domain socket to share file descriptors in the
ancillary data of the message.
The protocol defines 2 sides of the communication, master and slave. Master is
the application that shares its virtqueues, in our case QEMU. Slave is the
consumer of the virtqueues.
In the current implementation QEMU is the Master, and the Slave is intended to
be a software Ethernet switch running in user space, such as Snabbswitch.
Master and slave can be either a client (i.e. connecting) or server (listening)
in the socket communication.
Message Specification
---------------------
Note that all numbers are in the machine native byte order. A vhost-user message
consists of 3 header fields and a payload:
------------------------------------
| request | flags | size | payload |
------------------------------------
* Request: 32-bit type of the request
* Flags: 32-bit bit field:
- Lower 2 bits are the version (currently 0x01)
- Bit 2 is the reply flag - needs to be sent on each reply from the slave
- Bit 3 is the need_reply flag - see VHOST_USER_PROTOCOL_F_REPLY_ACK for
details.
* Size - 32-bit size of the payload
Depending on the request type, payload can be:
* A single 64-bit integer
-------
| u64 |
-------
u64: a 64-bit unsigned integer
* A vring state description
---------------
| index | num |
---------------
Index: a 32-bit index
Num: a 32-bit number
* A vring address description
--------------------------------------------------------------
| index | flags | size | descriptor | used | available | log |
--------------------------------------------------------------
Index: a 32-bit vring index
Flags: a 32-bit vring flags
Descriptor: a 64-bit ring address of the vring descriptor table
Used: a 64-bit ring address of the vring used ring
Available: a 64-bit ring address of the vring available ring
Log: a 64-bit guest address for logging
Note that a ring address is an IOVA if VIRTIO_F_IOMMU_PLATFORM has been
negotiated. Otherwise it is a user address.
* Memory regions description
---------------------------------------------------
| num regions | padding | region0 | ... | region7 |
---------------------------------------------------
Num regions: a 32-bit number of regions
Padding: 32-bit
A region is:
-----------------------------------------------------
| guest address | size | user address | mmap offset |
-----------------------------------------------------
Guest address: a 64-bit guest address of the region
Size: a 64-bit size
User address: a 64-bit user address
mmap offset: 64-bit offset where region starts in the mapped memory
* Log description
---------------------------
| log size | log offset |
---------------------------
log size: size of area used for logging
log offset: offset from start of supplied file descriptor
where logging starts (i.e. where guest address 0 would be logged)
* An IOTLB message
---------------------------------------------------------
| iova | size | user address | permissions flags | type |
---------------------------------------------------------
IOVA: a 64-bit I/O virtual address programmed by the guest
Size: a 64-bit size
User address: a 64-bit user address
Permissions: a 8-bit value:
- 0: No access
- 1: Read access
- 2: Write access
- 3: Read/Write access
Type: a 8-bit IOTLB message type:
- 1: IOTLB miss
- 2: IOTLB update
- 3: IOTLB invalidate
- 4: IOTLB access fail
* Virtio device config space
-----------------------------------
| offset | size | flags | payload |
-----------------------------------
Offset: a 32-bit offset of virtio device's configuration space
Size: a 32-bit configuration space access size in bytes
Flags: a 32-bit value:
- 0: Vhost master messages used for writeable fields
- 1: Vhost master messages used for live migration
Payload: Size bytes array holding the contents of the virtio
device's configuration space
In QEMU the vhost-user message is implemented with the following struct:
typedef struct VhostUserMsg {
VhostUserRequest request;
uint32_t flags;
uint32_t size;
union {
uint64_t u64;
struct vhost_vring_state state;
struct vhost_vring_addr addr;
VhostUserMemory memory;
VhostUserLog log;
struct vhost_iotlb_msg iotlb;
VhostUserConfig config;
};
} QEMU_PACKED VhostUserMsg;
Communication
-------------
The protocol for vhost-user is based on the existing implementation of vhost
for the Linux Kernel. Most messages that can be sent via the Unix domain socket
implementing vhost-user have an equivalent ioctl to the kernel implementation.
The communication consists of master sending message requests and slave sending
message replies. Most of the requests don't require replies. Here is a list of
the ones that do:
* VHOST_USER_GET_FEATURES
* VHOST_USER_GET_PROTOCOL_FEATURES
* VHOST_USER_GET_VRING_BASE
* VHOST_USER_SET_LOG_BASE (if VHOST_USER_PROTOCOL_F_LOG_SHMFD)
[ Also see the section on REPLY_ACK protocol extension. ]
There are several messages that the master sends with file descriptors passed
in the ancillary data:
* VHOST_USER_SET_MEM_TABLE
* VHOST_USER_SET_LOG_BASE (if VHOST_USER_PROTOCOL_F_LOG_SHMFD)
* VHOST_USER_SET_LOG_FD
* VHOST_USER_SET_VRING_KICK
* VHOST_USER_SET_VRING_CALL
* VHOST_USER_SET_VRING_ERR
* VHOST_USER_SET_SLAVE_REQ_FD
If Master is unable to send the full message or receives a wrong reply it will
close the connection. An optional reconnection mechanism can be implemented.
Any protocol extensions are gated by protocol feature bits,
which allows full backwards compatibility on both master
and slave.
As older slaves don't support negotiating protocol features,
a feature bit was dedicated for this purpose:
#define VHOST_USER_F_PROTOCOL_FEATURES 30
Starting and stopping rings
----------------------
Client must only process each ring when it is started.
Client must only pass data between the ring and the
backend, when the ring is enabled.
If ring is started but disabled, client must process the
ring without talking to the backend.
For example, for a networking device, in the disabled state
client must not supply any new RX packets, but must process
and discard any TX packets.
If VHOST_USER_F_PROTOCOL_FEATURES has not been negotiated, the ring is initialized
in an enabled state.
If VHOST_USER_F_PROTOCOL_FEATURES has been negotiated, the ring is initialized
in a disabled state. Client must not pass data to/from the backend until ring is enabled by
VHOST_USER_SET_VRING_ENABLE with parameter 1, or after it has been disabled by
VHOST_USER_SET_VRING_ENABLE with parameter 0.
Each ring is initialized in a stopped state, client must not process it until
ring is started, or after it has been stopped.
Client must start ring upon receiving a kick (that is, detecting that file
descriptor is readable) on the descriptor specified by
VHOST_USER_SET_VRING_KICK, and stop ring upon receiving
VHOST_USER_GET_VRING_BASE.
While processing the rings (whether they are enabled or not), client must
support changing some configuration aspects on the fly.
Multiple queue support
----------------------
Multiple queue is treated as a protocol extension, hence the slave has to
implement protocol features first. The multiple queues feature is supported
only when the protocol feature VHOST_USER_PROTOCOL_F_MQ (bit 0) is set.
The max number of queue pairs the slave supports can be queried with message
VHOST_USER_GET_QUEUE_NUM. Master should stop when the number of
requested queues is bigger than that.
As all queues share one connection, the master uses a unique index for each
queue in the sent message to identify a specified queue. One queue pair
is enabled initially. More queues are enabled dynamically, by sending
message VHOST_USER_SET_VRING_ENABLE.
Migration
---------
During live migration, the master may need to track the modifications
the slave makes to the memory mapped regions. The client should mark
the dirty pages in a log. Once it complies to this logging, it may
declare the VHOST_F_LOG_ALL vhost feature.
To start/stop logging of data/used ring writes, server may send messages
VHOST_USER_SET_FEATURES with VHOST_F_LOG_ALL and VHOST_USER_SET_VRING_ADDR with
VHOST_VRING_F_LOG in ring's flags set to 1/0, respectively.
All the modifications to memory pointed by vring "descriptor" should
be marked. Modifications to "used" vring should be marked if
VHOST_VRING_F_LOG is part of ring's flags.
Dirty pages are of size:
#define VHOST_LOG_PAGE 0x1000
The log memory fd is provided in the ancillary data of
VHOST_USER_SET_LOG_BASE message when the slave has
VHOST_USER_PROTOCOL_F_LOG_SHMFD protocol feature.
The size of the log is supplied as part of VhostUserMsg
which should be large enough to cover all known guest
addresses. Log starts at the supplied offset in the
supplied file descriptor.
The log covers from address 0 to the maximum of guest
regions. In pseudo-code, to mark page at "addr" as dirty:
page = addr / VHOST_LOG_PAGE
log[page / 8] |= 1 << page % 8
Where addr is the guest physical address.
Use atomic operations, as the log may be concurrently manipulated.
Note that when logging modifications to the used ring (when VHOST_VRING_F_LOG
is set for this ring), log_guest_addr should be used to calculate the log
offset: the write to first byte of the used ring is logged at this offset from
log start. Also note that this value might be outside the legal guest physical
address range (i.e. does not have to be covered by the VhostUserMemory table),
but the bit offset of the last byte of the ring must fall within
the size supplied by VhostUserLog.
VHOST_USER_SET_LOG_FD is an optional message with an eventfd in
ancillary data, it may be used to inform the master that the log has
been modified.
Once the source has finished migration, rings will be stopped by
the source. No further update must be done before rings are
restarted.
Memory access
-------------
The master sends a list of vhost memory regions to the slave using the
VHOST_USER_SET_MEM_TABLE message. Each region has two base addresses: a guest
address and a user address.
Messages contain guest addresses and/or user addresses to reference locations
within the shared memory. The mapping of these addresses works as follows.
User addresses map to the vhost memory region containing that user address.
When the VIRTIO_F_IOMMU_PLATFORM feature has not been negotiated:
* Guest addresses map to the vhost memory region containing that guest
address.
When the VIRTIO_F_IOMMU_PLATFORM feature has been negotiated:
* Guest addresses are also called I/O virtual addresses (IOVAs). They are
translated to user addresses via the IOTLB.
* The vhost memory region guest address is not used.
IOMMU support
-------------
When the VIRTIO_F_IOMMU_PLATFORM feature has been negotiated, the master
sends IOTLB entries update & invalidation by sending VHOST_USER_IOTLB_MSG
requests to the slave with a struct vhost_iotlb_msg as payload. For update
events, the iotlb payload has to be filled with the update message type (2),
the I/O virtual address, the size, the user virtual address, and the
permissions flags. Addresses and size must be within vhost memory regions set
via the VHOST_USER_SET_MEM_TABLE request. For invalidation events, the iotlb
payload has to be filled with the invalidation message type (3), the I/O virtual
address and the size. On success, the slave is expected to reply with a zero
payload, non-zero otherwise.
The slave relies on the slave communcation channel (see "Slave communication"
section below) to send IOTLB miss and access failure events, by sending
VHOST_USER_SLAVE_IOTLB_MSG requests to the master with a struct vhost_iotlb_msg
as payload. For miss events, the iotlb payload has to be filled with the miss
message type (1), the I/O virtual address and the permissions flags. For access
failure event, the iotlb payload has to be filled with the access failure
message type (4), the I/O virtual address and the permissions flags.
For synchronization purpose, the slave may rely on the reply-ack feature,
so the master may send a reply when operation is completed if the reply-ack
feature is negotiated and slaves requests a reply. For miss events, completed
operation means either master sent an update message containing the IOTLB entry
containing requested address and permission, or master sent nothing if the IOTLB
miss message is invalid (invalid IOVA or permission).
The master isn't expected to take the initiative to send IOTLB update messages,
as the slave sends IOTLB miss messages for the guest virtual memory areas it
needs to access.
Slave communication
-------------------
An optional communication channel is provided if the slave declares
VHOST_USER_PROTOCOL_F_SLAVE_REQ protocol feature, to allow the slave to make
requests to the master.
The fd is provided via VHOST_USER_SET_SLAVE_REQ_FD ancillary data.
A slave may then send VHOST_USER_SLAVE_* messages to the master
using this fd communication channel.
Protocol features
-----------------
#define VHOST_USER_PROTOCOL_F_MQ 0
#define VHOST_USER_PROTOCOL_F_LOG_SHMFD 1
#define VHOST_USER_PROTOCOL_F_RARP 2
#define VHOST_USER_PROTOCOL_F_REPLY_ACK 3
#define VHOST_USER_PROTOCOL_F_MTU 4
#define VHOST_USER_PROTOCOL_F_SLAVE_REQ 5
#define VHOST_USER_PROTOCOL_F_CROSS_ENDIAN 6
Master message types
--------------------
* VHOST_USER_GET_FEATURES
Id: 1
Equivalent ioctl: VHOST_GET_FEATURES
Master payload: N/A
Slave payload: u64
Get from the underlying vhost implementation the features bitmask.
Feature bit VHOST_USER_F_PROTOCOL_FEATURES signals slave support for
VHOST_USER_GET_PROTOCOL_FEATURES and VHOST_USER_SET_PROTOCOL_FEATURES.
* VHOST_USER_SET_FEATURES
Id: 2
Ioctl: VHOST_SET_FEATURES
Master payload: u64
Enable features in the underlying vhost implementation using a bitmask.
Feature bit VHOST_USER_F_PROTOCOL_FEATURES signals slave support for
VHOST_USER_GET_PROTOCOL_FEATURES and VHOST_USER_SET_PROTOCOL_FEATURES.
* VHOST_USER_GET_PROTOCOL_FEATURES
Id: 15
Equivalent ioctl: VHOST_GET_FEATURES
Master payload: N/A
Slave payload: u64
Get the protocol feature bitmask from the underlying vhost implementation.
Only legal if feature bit VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES.
Note: slave that reported VHOST_USER_F_PROTOCOL_FEATURES must support
this message even before VHOST_USER_SET_FEATURES was called.
* VHOST_USER_SET_PROTOCOL_FEATURES
Id: 16
Ioctl: VHOST_SET_FEATURES
Master payload: u64
Enable protocol features in the underlying vhost implementation.
Only legal if feature bit VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES.
Note: slave that reported VHOST_USER_F_PROTOCOL_FEATURES must support
this message even before VHOST_USER_SET_FEATURES was called.
* VHOST_USER_SET_OWNER
Id: 3
Equivalent ioctl: VHOST_SET_OWNER
Master payload: N/A
Issued when a new connection is established. It sets the current Master
as an owner of the session. This can be used on the Slave as a
"session start" flag.
* VHOST_USER_RESET_OWNER
Id: 4
Master payload: N/A
This is no longer used. Used to be sent to request disabling
all rings, but some clients interpreted it to also discard
connection state (this interpretation would lead to bugs).
It is recommended that clients either ignore this message,
or use it to disable all rings.
* VHOST_USER_SET_MEM_TABLE
Id: 5
Equivalent ioctl: VHOST_SET_MEM_TABLE
Master payload: memory regions description
Sets the memory map regions on the slave so it can translate the vring
addresses. In the ancillary data there is an array of file descriptors
for each memory mapped region. The size and ordering of the fds matches
the number and ordering of memory regions.
* VHOST_USER_SET_LOG_BASE
Id: 6
Equivalent ioctl: VHOST_SET_LOG_BASE
Master payload: u64
Slave payload: N/A
Sets logging shared memory space.
When slave has VHOST_USER_PROTOCOL_F_LOG_SHMFD protocol
feature, the log memory fd is provided in the ancillary data of
VHOST_USER_SET_LOG_BASE message, the size and offset of shared
memory area provided in the message.
* VHOST_USER_SET_LOG_FD
Id: 7
Equivalent ioctl: VHOST_SET_LOG_FD
Master payload: N/A
Sets the logging file descriptor, which is passed as ancillary data.
* VHOST_USER_SET_VRING_NUM
Id: 8
Equivalent ioctl: VHOST_SET_VRING_NUM
Master payload: vring state description
Set the size of the queue.
* VHOST_USER_SET_VRING_ADDR
Id: 9
Equivalent ioctl: VHOST_SET_VRING_ADDR
Master payload: vring address description
Slave payload: N/A
Sets the addresses of the different aspects of the vring.
* VHOST_USER_SET_VRING_BASE
Id: 10
Equivalent ioctl: VHOST_SET_VRING_BASE
Master payload: vring state description
Sets the base offset in the available vring.
* VHOST_USER_GET_VRING_BASE
Id: 11
Equivalent ioctl: VHOST_USER_GET_VRING_BASE
Master payload: vring state description
Slave payload: vring state description
Get the available vring base offset.
* VHOST_USER_SET_VRING_KICK
Id: 12
Equivalent ioctl: VHOST_SET_VRING_KICK
Master payload: u64
Set the event file descriptor for adding buffers to the vring. It
is passed in the ancillary data.
Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data. This signals that polling should be used
instead of waiting for a kick.
* VHOST_USER_SET_VRING_CALL
Id: 13
Equivalent ioctl: VHOST_SET_VRING_CALL
Master payload: u64
Set the event file descriptor to signal when buffers are used. It
is passed in the ancillary data.
Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data. This signals that polling will be used
instead of waiting for the call.
* VHOST_USER_SET_VRING_ERR
Id: 14
Equivalent ioctl: VHOST_SET_VRING_ERR
Master payload: u64
Set the event file descriptor to signal when error occurs. It
is passed in the ancillary data.
Bits (0-7) of the payload contain the vring index. Bit 8 is the
invalid FD flag. This flag is set when there is no file descriptor
in the ancillary data.
* VHOST_USER_GET_QUEUE_NUM
Id: 17
Equivalent ioctl: N/A
Master payload: N/A
Slave payload: u64
Query how many queues the backend supports. This request should be
sent only when VHOST_USER_PROTOCOL_F_MQ is set in queried protocol
features by VHOST_USER_GET_PROTOCOL_FEATURES.
* VHOST_USER_SET_VRING_ENABLE
Id: 18
Equivalent ioctl: N/A
Master payload: vring state description
Signal slave to enable or disable corresponding vring.
This request should be sent only when VHOST_USER_F_PROTOCOL_FEATURES
has been negotiated.
* VHOST_USER_SEND_RARP
Id: 19
Equivalent ioctl: N/A
Master payload: u64
Ask vhost user backend to broadcast a fake RARP to notify the migration
is terminated for guest that does not support GUEST_ANNOUNCE.
Only legal if feature bit VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES and protocol feature bit VHOST_USER_PROTOCOL_F_RARP
is present in VHOST_USER_GET_PROTOCOL_FEATURES.
The first 6 bytes of the payload contain the mac address of the guest to
allow the vhost user backend to construct and broadcast the fake RARP.
* VHOST_USER_NET_SET_MTU
Id: 20
Equivalent ioctl: N/A
Master payload: u64
Set host MTU value exposed to the guest.
This request should be sent only when VIRTIO_NET_F_MTU feature has been
successfully negotiated, VHOST_USER_F_PROTOCOL_FEATURES is present in
VHOST_USER_GET_FEATURES and protocol feature bit
VHOST_USER_PROTOCOL_F_NET_MTU is present in
VHOST_USER_GET_PROTOCOL_FEATURES.
If VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated, slave must respond
with zero in case the specified MTU is valid, or non-zero otherwise.
* VHOST_USER_SET_SLAVE_REQ_FD
Id: 21
Equivalent ioctl: N/A
Master payload: N/A
Set the socket file descriptor for slave initiated requests. It is passed
in the ancillary data.
This request should be sent only when VHOST_USER_F_PROTOCOL_FEATURES
has been negotiated, and protocol feature bit VHOST_USER_PROTOCOL_F_SLAVE_REQ
bit is present in VHOST_USER_GET_PROTOCOL_FEATURES.
If VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated, slave must respond
with zero for success, non-zero otherwise.
* VHOST_USER_IOTLB_MSG
Id: 22
Equivalent ioctl: N/A (equivalent to VHOST_IOTLB_MSG message type)
Master payload: struct vhost_iotlb_msg
Slave payload: u64
Send IOTLB messages with struct vhost_iotlb_msg as payload.
Master sends such requests to update and invalidate entries in the device
IOTLB. The slave has to acknowledge the request with sending zero as u64
payload for success, non-zero otherwise.
This request should be send only when VIRTIO_F_IOMMU_PLATFORM feature
has been successfully negotiated.
* VHOST_USER_SET_VRING_ENDIAN
Id: 23
Equivalent ioctl: VHOST_SET_VRING_ENDIAN
Master payload: vring state description
Set the endianess of a VQ for legacy devices. Little-endian is indicated
with state.num set to 0 and big-endian is indicated with state.num set
to 1. Other values are invalid.
This request should be sent only when VHOST_USER_PROTOCOL_F_CROSS_ENDIAN
has been negotiated.
Backends that negotiated this feature should handle both endianesses
and expect this message once (per VQ) during device configuration
(ie. before the master starts the VQ).
* VHOST_USER_GET_CONFIG
Id: 24
Equivalent ioctl: N/A
Master payload: virtio device config space
Slave payload: virtio device config space
Submitted by the vhost-user master to fetch the contents of the virtio
device configuration space, vhost-user slave's payload size MUST match
master's request, vhost-user slave uses zero length of payload to
indicate an error to vhost-user master. The vhost-user master may
cache the contents to avoid repeated VHOST_USER_GET_CONFIG calls.
* VHOST_USER_SET_CONFIG
Id: 25
Equivalent ioctl: N/A
Master payload: virtio device config space
Slave payload: N/A
Submitted by the vhost-user master when the Guest changes the virtio
device configuration space and also can be used for live migration
on the destination host. The vhost-user slave must check the flags
field, and slaves MUST NOT accept SET_CONFIG for read-only
configuration space fields unless the live migration bit is set.
Slave message types
-------------------
* VHOST_USER_SLAVE_IOTLB_MSG
Id: 1
Equivalent ioctl: N/A (equivalent to VHOST_IOTLB_MSG message type)
Slave payload: struct vhost_iotlb_msg
Master payload: N/A
Send IOTLB messages with struct vhost_iotlb_msg as payload.
Slave sends such requests to notify of an IOTLB miss, or an IOTLB
access failure. If VHOST_USER_PROTOCOL_F_REPLY_ACK is negotiated,
and slave set the VHOST_USER_NEED_REPLY flag, master must respond with
zero when operation is successfully completed, or non-zero otherwise.
This request should be send only when VIRTIO_F_IOMMU_PLATFORM feature
has been successfully negotiated.
* VHOST_USER_SLAVE_CONFIG_CHANGE_MSG
Id: 2
Equivalent ioctl: N/A
Slave payload: N/A
Master payload: N/A
Vhost-user slave sends such messages to notify that the virtio device's
configuration space has changed, for those host devices which can support
such feature, host driver can send VHOST_USER_GET_CONFIG message to slave
to get the latest content. If VHOST_USER_PROTOCOL_F_REPLY_ACK is
negotiated, and slave set the VHOST_USER_NEED_REPLY flag, master must
respond with zero when operation is successfully completed, or non-zero
otherwise.
VHOST_USER_PROTOCOL_F_REPLY_ACK:
-------------------------------
The original vhost-user specification only demands replies for certain
commands. This differs from the vhost protocol implementation where commands
are sent over an ioctl() call and block until the client has completed.
With this protocol extension negotiated, the sender (QEMU) can set the
"need_reply" [Bit 3] flag to any command. This indicates that
the client MUST respond with a Payload VhostUserMsg indicating success or
failure. The payload should be set to zero on success or non-zero on failure,
unless the message already has an explicit reply body.
The response payload gives QEMU a deterministic indication of the result
of the command. Today, QEMU is expected to terminate the main vhost-user
loop upon receiving such errors. In future, qemu could be taught to be more
resilient for selective requests.
For the message types that already solicit a reply from the client, the
presence of VHOST_USER_PROTOCOL_F_REPLY_ACK or need_reply bit being set brings
no behavioural change. (See the 'Communication' section for details.)
|