1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
|
/*
* Common CPU TLB handling
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/memory.h"
#include "exec/address-spaces.h"
#include "exec/cputlb.h"
#include "exec/memory-internal.h"
//#define DEBUG_TLB
//#define DEBUG_TLB_CHECK
/* statistics */
int tlb_flush_count;
static const CPUTLBEntry s_cputlb_empty_entry = {
.addr_read = -1,
.addr_write = -1,
.addr_code = -1,
.addend = -1,
};
/* NOTE:
* If flush_global is true (the usual case), flush all tlb entries.
* If flush_global is false, flush (at least) all tlb entries not
* marked global.
*
* Since QEMU doesn't currently implement a global/not-global flag
* for tlb entries, at the moment tlb_flush() will also flush all
* tlb entries in the flush_global == false case. This is OK because
* CPU architectures generally permit an implementation to drop
* entries from the TLB at any time, so flushing more entries than
* required is only an efficiency issue, not a correctness issue.
*/
void tlb_flush(CPUArchState *env, int flush_global)
{
CPUState *cpu = ENV_GET_CPU(env);
int i;
#if defined(DEBUG_TLB)
printf("tlb_flush:\n");
#endif
/* must reset current TB so that interrupts cannot modify the
links while we are modifying them */
cpu->current_tb = NULL;
for (i = 0; i < CPU_TLB_SIZE; i++) {
int mmu_idx;
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
}
}
memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
env->tlb_flush_addr = -1;
env->tlb_flush_mask = 0;
tlb_flush_count++;
}
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
if (addr == (tlb_entry->addr_read &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
addr == (tlb_entry->addr_write &
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
addr == (tlb_entry->addr_code &
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
*tlb_entry = s_cputlb_empty_entry;
}
}
void tlb_flush_page(CPUArchState *env, target_ulong addr)
{
CPUState *cpu = ENV_GET_CPU(env);
int i;
int mmu_idx;
#if defined(DEBUG_TLB)
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
/* Check if we need to flush due to large pages. */
if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
#if defined(DEBUG_TLB)
printf("tlb_flush_page: forced full flush ("
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
env->tlb_flush_addr, env->tlb_flush_mask);
#endif
tlb_flush(env, 1);
return;
}
/* must reset current TB so that interrupts cannot modify the
links while we are modifying them */
cpu->current_tb = NULL;
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
}
tb_flush_jmp_cache(env, addr);
}
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
cpu_physical_memory_reset_dirty(ram_addr,
ram_addr + TARGET_PAGE_SIZE,
CODE_DIRTY_FLAG);
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested for self modifying code */
void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
target_ulong vaddr)
{
cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
}
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
{
return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
}
void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
uintptr_t length)
{
uintptr_t addr;
if (tlb_is_dirty_ram(tlb_entry)) {
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
tlb_entry->addr_write |= TLB_NOTDIRTY;
}
}
}
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
{
ram_addr_t ram_addr;
void *p;
if (tlb_is_dirty_ram(tlb_entry)) {
p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
+ tlb_entry->addend);
ram_addr = qemu_ram_addr_from_host_nofail(p);
if (!cpu_physical_memory_is_dirty(ram_addr)) {
tlb_entry->addr_write |= TLB_NOTDIRTY;
}
}
}
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
{
CPUArchState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
int mmu_idx;
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
unsigned int i;
for (i = 0; i < CPU_TLB_SIZE; i++) {
tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
start1, length);
}
}
}
}
static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
{
if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
tlb_entry->addr_write = vaddr;
}
}
/* update the TLB corresponding to virtual page vaddr
so that it is no longer dirty */
void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
{
int i;
int mmu_idx;
vaddr &= TARGET_PAGE_MASK;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
}
}
/* Our TLB does not support large pages, so remember the area covered by
large pages and trigger a full TLB flush if these are invalidated. */
static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
target_ulong size)
{
target_ulong mask = ~(size - 1);
if (env->tlb_flush_addr == (target_ulong)-1) {
env->tlb_flush_addr = vaddr & mask;
env->tlb_flush_mask = mask;
return;
}
/* Extend the existing region to include the new page.
This is a compromise between unnecessary flushes and the cost
of maintaining a full variable size TLB. */
mask &= env->tlb_flush_mask;
while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
mask <<= 1;
}
env->tlb_flush_addr &= mask;
env->tlb_flush_mask = mask;
}
/* Add a new TLB entry. At most one entry for a given virtual address
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
supplied size is only used by tlb_flush_page. */
void tlb_set_page(CPUArchState *env, target_ulong vaddr,
hwaddr paddr, int prot,
int mmu_idx, target_ulong size)
{
MemoryRegionSection *section;
unsigned int index;
target_ulong address;
target_ulong code_address;
uintptr_t addend;
CPUTLBEntry *te;
hwaddr iotlb, xlat, sz;
assert(size >= TARGET_PAGE_SIZE);
if (size != TARGET_PAGE_SIZE) {
tlb_add_large_page(env, vaddr, size);
}
sz = size;
section = address_space_translate_for_iotlb(&address_space_memory, paddr,
&xlat, &sz);
assert(sz >= TARGET_PAGE_SIZE);
#if defined(DEBUG_TLB)
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
" prot=%x idx=%d\n",
vaddr, paddr, prot, mmu_idx);
#endif
address = vaddr;
if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
/* IO memory case */
address |= TLB_MMIO;
addend = 0;
} else {
/* TLB_MMIO for rom/romd handled below */
addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
}
code_address = address;
iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
prot, &address);
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
env->iotlb[mmu_idx][index] = iotlb - vaddr;
te = &env->tlb_table[mmu_idx][index];
te->addend = addend - vaddr;
if (prot & PAGE_READ) {
te->addr_read = address;
} else {
te->addr_read = -1;
}
if (prot & PAGE_EXEC) {
te->addr_code = code_address;
} else {
te->addr_code = -1;
}
if (prot & PAGE_WRITE) {
if ((memory_region_is_ram(section->mr) && section->readonly)
|| memory_region_is_romd(section->mr)) {
/* Write access calls the I/O callback. */
te->addr_write = address | TLB_MMIO;
} else if (memory_region_is_ram(section->mr)
&& !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
te->addr_write = address | TLB_NOTDIRTY;
} else {
te->addr_write = address;
}
} else {
te->addr_write = -1;
}
}
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
* is actually a ram_addr_t (in system mode; the user mode emulation
* version of this function returns a guest virtual address).
*/
tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{
int mmu_idx, page_index, pd;
void *p;
MemoryRegion *mr;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
(addr & TARGET_PAGE_MASK))) {
cpu_ldub_code(env1, addr);
}
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
mr = iotlb_to_region(pd);
if (memory_region_is_unassigned(mr)) {
CPUState *cpu = ENV_GET_CPU(env1);
CPUClass *cc = CPU_GET_CLASS(cpu);
if (cc->do_unassigned_access) {
cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
} else {
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
TARGET_FMT_lx "\n", addr);
}
}
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
return qemu_ram_addr_from_host_nofail(p);
}
#define MMUSUFFIX _cmmu
#undef GETPC
#define GETPC() ((uintptr_t)0)
#define SOFTMMU_CODE_ACCESS
#define SHIFT 0
#include "exec/softmmu_template.h"
#define SHIFT 1
#include "exec/softmmu_template.h"
#define SHIFT 2
#include "exec/softmmu_template.h"
#define SHIFT 3
#include "exec/softmmu_template.h"
#undef env
|