/* * QTest testcase for the MC146818 real-time clock * * Copyright IBM, Corp. 2012 * * Authors: * Anthony Liguori * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include "libqtest-single.h" #include "qemu/timer.h" #include "hw/rtc/mc146818rtc.h" #include "hw/rtc/mc146818rtc_regs.h" #define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768) static uint8_t base = 0x70; static int bcd2dec(int value) { return (((value >> 4) & 0x0F) * 10) + (value & 0x0F); } static uint8_t cmos_read(uint8_t reg) { outb(base + 0, reg); return inb(base + 1); } static void cmos_write(uint8_t reg, uint8_t val) { outb(base + 0, reg); outb(base + 1, val); } static int tm_cmp(struct tm *lhs, struct tm *rhs) { time_t a, b; struct tm d1, d2; memcpy(&d1, lhs, sizeof(d1)); memcpy(&d2, rhs, sizeof(d2)); a = mktime(&d1); b = mktime(&d2); if (a < b) { return -1; } else if (a > b) { return 1; } return 0; } #if 0 static void print_tm(struct tm *tm) { printf("%04d-%02d-%02d %02d:%02d:%02d\n", tm->tm_year + 1900, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, tm->tm_gmtoff); } #endif static void cmos_get_date_time(struct tm *date) { int base_year = 2000, hour_offset; int sec, min, hour, mday, mon, year; time_t ts; struct tm dummy; sec = cmos_read(RTC_SECONDS); min = cmos_read(RTC_MINUTES); hour = cmos_read(RTC_HOURS); mday = cmos_read(RTC_DAY_OF_MONTH); mon = cmos_read(RTC_MONTH); year = cmos_read(RTC_YEAR); if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) { sec = bcd2dec(sec); min = bcd2dec(min); hour = bcd2dec(hour); mday = bcd2dec(mday); mon = bcd2dec(mon); year = bcd2dec(year); hour_offset = 80; } else { hour_offset = 0x80; } if ((cmos_read(0x0B) & REG_B_24H) == 0) { if (hour >= hour_offset) { hour -= hour_offset; hour += 12; } } ts = time(NULL); localtime_r(&ts, &dummy); date->tm_isdst = dummy.tm_isdst; date->tm_sec = sec; date->tm_min = min; date->tm_hour = hour; date->tm_mday = mday; date->tm_mon = mon - 1; date->tm_year = base_year + year - 1900; #ifndef __sun__ date->tm_gmtoff = 0; #endif ts = mktime(date); } static void check_time(int wiggle) { struct tm start, date[4], end; struct tm *datep; time_t ts; /* * This check assumes a few things. First, we cannot guarantee that we get * a consistent reading from the wall clock because we may hit an edge of * the clock while reading. To work around this, we read four clock readings * such that at least two of them should match. We need to assume that one * reading is corrupt so we need four readings to ensure that we have at * least two consecutive identical readings * * It's also possible that we'll cross an edge reading the host clock so * simply check to make sure that the clock reading is within the period of * when we expect it to be. */ ts = time(NULL); gmtime_r(&ts, &start); cmos_get_date_time(&date[0]); cmos_get_date_time(&date[1]); cmos_get_date_time(&date[2]); cmos_get_date_time(&date[3]); ts = time(NULL); gmtime_r(&ts, &end); if (tm_cmp(&date[0], &date[1]) == 0) { datep = &date[0]; } else if (tm_cmp(&date[1], &date[2]) == 0) { datep = &date[1]; } else if (tm_cmp(&date[2], &date[3]) == 0) { datep = &date[2]; } else { g_assert_not_reached(); } if (!(tm_cmp(&start, datep) <= 0 && tm_cmp(datep, &end) <= 0)) { long t, s; start.tm_isdst = datep->tm_isdst; t = (long)mktime(datep); s = (long)mktime(&start); if (t < s) { g_test_message("RTC is %ld second(s) behind wall-clock", (s - t)); } else { g_test_message("RTC is %ld second(s) ahead of wall-clock", (t - s)); } g_assert_cmpint(ABS(t - s), <=, wiggle); } } static int wiggle = 2; static void set_year_20xx(void) { /* Set BCD mode */ cmos_write(RTC_REG_B, REG_B_24H); cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_YEAR, 0x11); cmos_write(RTC_CENTURY, 0x20); cmos_write(RTC_MONTH, 0x02); cmos_write(RTC_DAY_OF_MONTH, 0x02); cmos_write(RTC_HOURS, 0x02); cmos_write(RTC_MINUTES, 0x04); cmos_write(RTC_SECONDS, 0x58); cmos_write(RTC_REG_A, 0x26); g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); if (sizeof(time_t) == 4) { return; } /* Set a date in 2080 to ensure there is no year-2038 overflow. */ cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_YEAR, 0x80); cmos_write(RTC_REG_A, 0x26); g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_YEAR, 0x11); cmos_write(RTC_REG_A, 0x26); g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11); g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20); } static void set_year_1980(void) { /* Set BCD mode */ cmos_write(RTC_REG_B, REG_B_24H); cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_YEAR, 0x80); cmos_write(RTC_CENTURY, 0x19); cmos_write(RTC_MONTH, 0x02); cmos_write(RTC_DAY_OF_MONTH, 0x02); cmos_write(RTC_HOURS, 0x02); cmos_write(RTC_MINUTES, 0x04); cmos_write(RTC_SECONDS, 0x58); cmos_write(RTC_REG_A, 0x26); g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04); g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58); g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02); g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80); g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19); } static void bcd_check_time(void) { /* Set BCD mode */ cmos_write(RTC_REG_B, REG_B_24H); check_time(wiggle); } static void dec_check_time(void) { /* Set DEC mode */ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); check_time(wiggle); } static void alarm_time(void) { struct tm now; time_t ts; int i; ts = time(NULL); gmtime_r(&ts, &now); /* set DEC mode */ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM); g_assert(!get_irq(RTC_ISA_IRQ)); cmos_read(RTC_REG_C); now.tm_sec = (now.tm_sec + 2) % 60; cmos_write(RTC_SECONDS_ALARM, now.tm_sec); cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE); cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE); cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE); for (i = 0; i < 2 + wiggle; i++) { if (get_irq(RTC_ISA_IRQ)) { break; } clock_step(NANOSECONDS_PER_SECOND); } g_assert(get_irq(RTC_ISA_IRQ)); g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); g_assert(cmos_read(RTC_REG_C) == 0); } static void set_time_regs(int h, int m, int s) { cmos_write(RTC_HOURS, h); cmos_write(RTC_MINUTES, m); cmos_write(RTC_SECONDS, s); } static void set_time(int mode, int h, int m, int s) { cmos_write(RTC_REG_B, mode); cmos_write(RTC_REG_A, 0x76); set_time_regs(h, m, s); cmos_write(RTC_REG_A, 0x26); } static void set_datetime_bcd(int h, int min, int s, int d, int m, int y) { cmos_write(RTC_HOURS, h); cmos_write(RTC_MINUTES, min); cmos_write(RTC_SECONDS, s); cmos_write(RTC_YEAR, y & 0xFF); cmos_write(RTC_CENTURY, y >> 8); cmos_write(RTC_MONTH, m); cmos_write(RTC_DAY_OF_MONTH, d); } static void set_datetime_dec(int h, int min, int s, int d, int m, int y) { cmos_write(RTC_HOURS, h); cmos_write(RTC_MINUTES, min); cmos_write(RTC_SECONDS, s); cmos_write(RTC_YEAR, y % 100); cmos_write(RTC_CENTURY, y / 100); cmos_write(RTC_MONTH, m); cmos_write(RTC_DAY_OF_MONTH, d); } static void set_datetime(int mode, int h, int min, int s, int d, int m, int y) { cmos_write(RTC_REG_B, mode); cmos_write(RTC_REG_A, 0x76); if (mode & REG_B_DM) { set_datetime_dec(h, min, s, d, m, y); } else { set_datetime_bcd(h, min, s, d, m, y); } cmos_write(RTC_REG_A, 0x26); } #define assert_time(h, m, s) \ do { \ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ } while(0) #define assert_datetime_bcd(h, min, s, d, m, y) \ do { \ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \ g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \ g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \ } while(0) static void basic_12h_bcd(void) { /* set BCD 12 hour mode */ set_time(0, 0x81, 0x59, 0x00); clock_step(1000000000LL); assert_time(0x81, 0x59, 0x01); clock_step(59000000000LL); assert_time(0x82, 0x00, 0x00); /* test BCD wraparound */ set_time(0, 0x09, 0x59, 0x59); clock_step(60000000000LL); assert_time(0x10, 0x00, 0x59); /* 12 AM -> 1 AM */ set_time(0, 0x12, 0x59, 0x59); clock_step(1000000000LL); assert_time(0x01, 0x00, 0x00); /* 12 PM -> 1 PM */ set_time(0, 0x92, 0x59, 0x59); clock_step(1000000000LL); assert_time(0x81, 0x00, 0x00); /* 11 AM -> 12 PM */ set_time(0, 0x11, 0x59, 0x59); clock_step(1000000000LL); assert_time(0x92, 0x00, 0x00); /* TODO: test day wraparound */ /* 11 PM -> 12 AM */ set_time(0, 0x91, 0x59, 0x59); clock_step(1000000000LL); assert_time(0x12, 0x00, 0x00); /* TODO: test day wraparound */ } static void basic_12h_dec(void) { /* set decimal 12 hour mode */ set_time(REG_B_DM, 0x81, 59, 0); clock_step(1000000000LL); assert_time(0x81, 59, 1); clock_step(59000000000LL); assert_time(0x82, 0, 0); /* 12 PM -> 1 PM */ set_time(REG_B_DM, 0x8c, 59, 59); clock_step(1000000000LL); assert_time(0x81, 0, 0); /* 12 AM -> 1 AM */ set_time(REG_B_DM, 0x0c, 59, 59); clock_step(1000000000LL); assert_time(0x01, 0, 0); /* 11 AM -> 12 PM */ set_time(REG_B_DM, 0x0b, 59, 59); clock_step(1000000000LL); assert_time(0x8c, 0, 0); /* 11 PM -> 12 AM */ set_time(REG_B_DM, 0x8b, 59, 59); clock_step(1000000000LL); assert_time(0x0c, 0, 0); /* TODO: test day wraparound */ } static void basic_24h_bcd(void) { /* set BCD 24 hour mode */ set_time(REG_B_24H, 0x09, 0x59, 0x00); clock_step(1000000000LL); assert_time(0x09, 0x59, 0x01); clock_step(59000000000LL); assert_time(0x10, 0x00, 0x00); /* test BCD wraparound */ set_time(REG_B_24H, 0x09, 0x59, 0x00); clock_step(60000000000LL); assert_time(0x10, 0x00, 0x00); /* TODO: test day wraparound */ set_time(REG_B_24H, 0x23, 0x59, 0x00); clock_step(60000000000LL); assert_time(0x00, 0x00, 0x00); } static void basic_24h_dec(void) { /* set decimal 24 hour mode */ set_time(REG_B_24H | REG_B_DM, 9, 59, 0); clock_step(1000000000LL); assert_time(9, 59, 1); clock_step(59000000000LL); assert_time(10, 0, 0); /* test BCD wraparound */ set_time(REG_B_24H | REG_B_DM, 9, 59, 0); clock_step(60000000000LL); assert_time(10, 0, 0); /* TODO: test day wraparound */ set_time(REG_B_24H | REG_B_DM, 23, 59, 0); clock_step(60000000000LL); assert_time(0, 0, 0); } static void am_pm_alarm(void) { cmos_write(RTC_MINUTES_ALARM, 0xC0); cmos_write(RTC_SECONDS_ALARM, 0xC0); /* set BCD 12 hour mode */ cmos_write(RTC_REG_B, 0); /* Set time and alarm hour. */ cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_HOURS_ALARM, 0x82); cmos_write(RTC_HOURS, 0x81); cmos_write(RTC_MINUTES, 0x59); cmos_write(RTC_SECONDS, 0x00); cmos_read(RTC_REG_C); cmos_write(RTC_REG_A, 0x26); /* Check that alarm triggers when AM/PM is set. */ clock_step(60000000000LL); g_assert(cmos_read(RTC_HOURS) == 0x82); g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); /* * Each of the following two tests takes over 60 seconds due to the time * needed to report the PIT interrupts. Unfortunately, our PIT device * model keeps counting even when GATE=0, so we cannot simply disable * it in main(). */ if (g_test_quick()) { return; } /* set DEC 12 hour mode */ cmos_write(RTC_REG_B, REG_B_DM); /* Set time and alarm hour. */ cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_HOURS_ALARM, 0x82); cmos_write(RTC_HOURS, 3); cmos_write(RTC_MINUTES, 0); cmos_write(RTC_SECONDS, 0); cmos_read(RTC_REG_C); cmos_write(RTC_REG_A, 0x26); /* Check that alarm triggers. */ clock_step(3600 * 11 * 1000000000LL); g_assert(cmos_read(RTC_HOURS) == 0x82); g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0); /* Same as above, with inverted HOURS and HOURS_ALARM. */ cmos_write(RTC_REG_A, 0x76); cmos_write(RTC_HOURS_ALARM, 2); cmos_write(RTC_HOURS, 3); cmos_write(RTC_MINUTES, 0); cmos_write(RTC_SECONDS, 0); cmos_read(RTC_REG_C); cmos_write(RTC_REG_A, 0x26); /* Check that alarm does not trigger if hours differ only by AM/PM. */ clock_step(3600 * 11 * 1000000000LL); g_assert(cmos_read(RTC_HOURS) == 0x82); g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0); } /* success if no crash or abort */ static void fuzz_registers(void) { unsigned int i; for (i = 0; i < 1000; i++) { uint8_t reg, val; reg = (uint8_t)g_test_rand_int_range(0, 16); val = (uint8_t)g_test_rand_int_range(0, 256); cmos_write(reg, val); cmos_read(reg); } } static void register_b_set_flag(void) { if (cmos_read(RTC_REG_A) & REG_A_UIP) { clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5); } g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/ cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET); set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* Since SET flag is still enabled, time does not advance. */ clock_step(1000000000LL); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* Disable SET flag in Register B */ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* Since SET flag is disabled, the clock now advances. */ clock_step(1000000000LL); assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); } static void divider_reset(void) { /* Enable binary-coded decimal (BCD) mode in Register B*/ cmos_write(RTC_REG_B, REG_B_24H); /* Enter divider reset */ cmos_write(RTC_REG_A, 0x76); set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* Since divider reset flag is still enabled, these are equality checks. */ clock_step(1000000000LL); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* The first update ends 500 ms after divider reset */ cmos_write(RTC_REG_A, 0x26); clock_step(500000000LL - UIP_HOLD_LENGTH - 1); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); clock_step(1); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); clock_step(UIP_HOLD_LENGTH); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); } static void uip_stuck(void) { set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011); /* The first update ends 500 ms after divider reset */ (void)cmos_read(RTC_REG_C); clock_step(500000000LL); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011); /* UF is now set. */ cmos_write(RTC_HOURS_ALARM, 0x02); cmos_write(RTC_MINUTES_ALARM, 0xC0); cmos_write(RTC_SECONDS_ALARM, 0xC0); /* Because the alarm will fire soon, reading register A will latch UIP. */ clock_step(1000000000LL - UIP_HOLD_LENGTH / 2); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0); /* Move the alarm far away. This must not cause UIP to remain stuck! */ cmos_write(RTC_HOURS_ALARM, 0x03); clock_step(UIP_HOLD_LENGTH); g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0); } #define RTC_PERIOD_CODE1 13 /* 8 Hz */ #define RTC_PERIOD_CODE2 15 /* 2 Hz */ #define RTC_PERIOD_TEST_NR 50 static uint64_t wait_periodic_interrupt(uint64_t real_time) { while (!get_irq(RTC_ISA_IRQ)) { real_time = clock_step_next(); } g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0); return real_time; } static void periodic_timer(void) { int i; uint64_t period_clocks, period_time, start_time, real_time; /* disable all interrupts. */ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~(REG_B_PIE | REG_B_AIE | REG_B_UIE)); cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); /* enable periodic interrupt after properly configure the period. */ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE); start_time = real_time = clock_step_next(); for (i = 0; i < RTC_PERIOD_TEST_NR; i++) { cmos_write(RTC_REG_A, RTC_PERIOD_CODE1); real_time = wait_periodic_interrupt(real_time); cmos_write(RTC_REG_A, RTC_PERIOD_CODE2); real_time = wait_periodic_interrupt(real_time); } period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) + periodic_period_to_clock(RTC_PERIOD_CODE2); period_clocks *= RTC_PERIOD_TEST_NR; period_time = periodic_clock_to_ns(period_clocks); real_time -= start_time; g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=, NANOSECONDS_PER_SECOND * 0.5); } int main(int argc, char **argv) { QTestState *s = NULL; int ret; g_test_init(&argc, &argv, NULL); s = qtest_start("-rtc clock=vm"); qtest_irq_intercept_in(s, "ioapic"); qtest_add_func("/rtc/check-time/bcd", bcd_check_time); qtest_add_func("/rtc/check-time/dec", dec_check_time); qtest_add_func("/rtc/alarm/interrupt", alarm_time); qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm); qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec); qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd); qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec); qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd); qtest_add_func("/rtc/set-year/20xx", set_year_20xx); qtest_add_func("/rtc/set-year/1980", set_year_1980); qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag); qtest_add_func("/rtc/update/divider-reset", divider_reset); qtest_add_func("/rtc/update/uip-stuck", uip_stuck); qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers); qtest_add_func("/rtc/periodic/interrupt", periodic_timer); ret = g_test_run(); if (s) { qtest_quit(s); } return ret; }