/* * S/390 misc helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qemu/main-loop.h" #include "cpu.h" #include "internal.h" #include "exec/memory.h" #include "qemu/host-utils.h" #include "exec/helper-proto.h" #include "qemu/timer.h" #include "exec/address-spaces.h" #include "exec/exec-all.h" #include "exec/cpu_ldst.h" #if !defined(CONFIG_USER_ONLY) #include "sysemu/cpus.h" #include "sysemu/sysemu.h" #include "hw/s390x/ebcdic.h" #endif /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif /* Raise an exception dynamically from a helper function. */ void QEMU_NORETURN runtime_exception(CPUS390XState *env, int excp, uintptr_t retaddr) { CPUState *cs = CPU(s390_env_get_cpu(env)); cs->exception_index = EXCP_PGM; env->int_pgm_code = excp; env->int_pgm_ilen = ILEN_AUTO; /* Use the (ultimate) callers address to find the insn that trapped. */ cpu_restore_state(cs, retaddr); cpu_loop_exit(cs); } /* Raise an exception statically from a TB. */ void HELPER(exception)(CPUS390XState *env, uint32_t excp) { CPUState *cs = CPU(s390_env_get_cpu(env)); HELPER_LOG("%s: exception %d\n", __func__, excp); cs->exception_index = excp; cpu_loop_exit(cs); } #ifndef CONFIG_USER_ONLY /* SCLP service call */ uint32_t HELPER(servc)(CPUS390XState *env, uint64_t r1, uint64_t r2) { qemu_mutex_lock_iothread(); int r = sclp_service_call(env, r1, r2); if (r < 0) { program_interrupt(env, -r, 4); r = 0; } qemu_mutex_unlock_iothread(); return r; } void HELPER(diag)(CPUS390XState *env, uint32_t r1, uint32_t r3, uint32_t num) { uint64_t r; switch (num) { case 0x500: /* KVM hypercall */ qemu_mutex_lock_iothread(); r = s390_virtio_hypercall(env); qemu_mutex_unlock_iothread(); break; case 0x44: /* yield */ r = 0; break; case 0x308: /* ipl */ handle_diag_308(env, r1, r3); r = 0; break; case 0x288: /* time bomb (watchdog) */ r = handle_diag_288(env, r1, r3); break; default: r = -1; break; } if (r) { program_interrupt(env, PGM_SPECIFICATION, ILEN_AUTO); } } /* Set Prefix */ void HELPER(spx)(CPUS390XState *env, uint64_t a1) { CPUState *cs = CPU(s390_env_get_cpu(env)); uint32_t prefix = a1 & 0x7fffe000; env->psa = prefix; HELPER_LOG("prefix: %#x\n", prefix); tlb_flush_page(cs, 0); tlb_flush_page(cs, TARGET_PAGE_SIZE); } /* Store Clock */ uint64_t HELPER(stck)(CPUS390XState *env) { uint64_t time; time = env->tod_offset + time2tod(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - env->tod_basetime); return time; } /* Set Clock Comparator */ void HELPER(sckc)(CPUS390XState *env, uint64_t time) { if (time == -1ULL) { return; } env->ckc = time; /* difference between origins */ time -= env->tod_offset; /* nanoseconds */ time = tod2time(time); timer_mod(env->tod_timer, env->tod_basetime + time); } /* Store Clock Comparator */ uint64_t HELPER(stckc)(CPUS390XState *env) { return env->ckc; } /* Set CPU Timer */ void HELPER(spt)(CPUS390XState *env, uint64_t time) { if (time == -1ULL) { return; } /* nanoseconds */ time = tod2time(time); env->cputm = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + time; timer_mod(env->cpu_timer, env->cputm); } /* Store CPU Timer */ uint64_t HELPER(stpt)(CPUS390XState *env) { return time2tod(env->cputm - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); } /* Store System Information */ uint32_t HELPER(stsi)(CPUS390XState *env, uint64_t a0, uint64_t r0, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); int cc = 0; int sel1, sel2; if ((r0 & STSI_LEVEL_MASK) <= STSI_LEVEL_3 && ((r0 & STSI_R0_RESERVED_MASK) || (r1 & STSI_R1_RESERVED_MASK))) { /* valid function code, invalid reserved bits */ program_interrupt(env, PGM_SPECIFICATION, 4); } sel1 = r0 & STSI_R0_SEL1_MASK; sel2 = r1 & STSI_R1_SEL2_MASK; /* XXX: spec exception if sysib is not 4k-aligned */ switch (r0 & STSI_LEVEL_MASK) { case STSI_LEVEL_1: if ((sel1 == 1) && (sel2 == 1)) { /* Basic Machine Configuration */ struct sysib_111 sysib; char type[5] = {}; memset(&sysib, 0, sizeof(sysib)); ebcdic_put(sysib.manuf, "QEMU ", 16); /* same as machine type number in STORE CPU ID, but in EBCDIC */ snprintf(type, ARRAY_SIZE(type), "%X", cpu->model->def->type); ebcdic_put(sysib.type, type, 4); /* model number (not stored in STORE CPU ID for z/Architecure) */ ebcdic_put(sysib.model, "QEMU ", 16); ebcdic_put(sysib.sequence, "QEMU ", 16); ebcdic_put(sysib.plant, "QEMU", 4); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else if ((sel1 == 2) && (sel2 == 1)) { /* Basic Machine CPU */ struct sysib_121 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else if ((sel1 == 2) && (sel2 == 2)) { /* Basic Machine CPUs */ struct sysib_122 sysib; memset(&sysib, 0, sizeof(sysib)); stl_p(&sysib.capability, 0x443afc29); /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.active_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else { cc = 3; } break; case STSI_LEVEL_2: { if ((sel1 == 2) && (sel2 == 1)) { /* LPAR CPU */ struct sysib_221 sysib; memset(&sysib, 0, sizeof(sysib)); /* XXX make different for different CPUs? */ ebcdic_put(sysib.sequence, "QEMUQEMUQEMUQEMU", 16); ebcdic_put(sysib.plant, "QEMU", 4); stw_p(&sysib.cpu_addr, env->cpu_num); stw_p(&sysib.cpu_id, 0); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else if ((sel1 == 2) && (sel2 == 2)) { /* LPAR CPUs */ struct sysib_222 sysib; memset(&sysib, 0, sizeof(sysib)); stw_p(&sysib.lpar_num, 0); sysib.lcpuc = 0; /* XXX change when SMP comes */ stw_p(&sysib.total_cpus, 1); stw_p(&sysib.conf_cpus, 1); stw_p(&sysib.standby_cpus, 0); stw_p(&sysib.reserved_cpus, 0); ebcdic_put(sysib.name, "QEMU ", 8); stl_p(&sysib.caf, 1000); stw_p(&sysib.dedicated_cpus, 0); stw_p(&sysib.shared_cpus, 0); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else { cc = 3; } break; } case STSI_LEVEL_3: { if ((sel1 == 2) && (sel2 == 2)) { /* VM CPUs */ struct sysib_322 sysib; memset(&sysib, 0, sizeof(sysib)); sysib.count = 1; /* XXX change when SMP comes */ stw_p(&sysib.vm[0].total_cpus, 1); stw_p(&sysib.vm[0].conf_cpus, 1); stw_p(&sysib.vm[0].standby_cpus, 0); stw_p(&sysib.vm[0].reserved_cpus, 0); ebcdic_put(sysib.vm[0].name, "KVMguest", 8); stl_p(&sysib.vm[0].caf, 1000); ebcdic_put(sysib.vm[0].cpi, "KVM/Linux ", 16); cpu_physical_memory_write(a0, &sysib, sizeof(sysib)); } else { cc = 3; } break; } case STSI_LEVEL_CURRENT: env->regs[0] = STSI_LEVEL_3; break; default: cc = 3; break; } return cc; } uint32_t HELPER(sigp)(CPUS390XState *env, uint64_t order_code, uint32_t r1, uint64_t cpu_addr) { int cc = SIGP_CC_ORDER_CODE_ACCEPTED; HELPER_LOG("%s: %016" PRIx64 " %08x %016" PRIx64 "\n", __func__, order_code, r1, cpu_addr); /* Remember: Use "R1 or R1 + 1, whichever is the odd-numbered register" as parameter (input). Status (output) is always R1. */ switch (order_code & SIGP_ORDER_MASK) { case SIGP_SET_ARCH: /* switch arch */ break; case SIGP_SENSE: /* enumerate CPU status */ if (cpu_addr) { /* XXX implement when SMP comes */ return 3; } env->regs[r1] &= 0xffffffff00000000ULL; cc = 1; break; #if !defined(CONFIG_USER_ONLY) case SIGP_RESTART: qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); cpu_loop_exit(CPU(s390_env_get_cpu(env))); break; case SIGP_STOP: qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); cpu_loop_exit(CPU(s390_env_get_cpu(env))); break; #endif default: /* unknown sigp */ fprintf(stderr, "XXX unknown sigp: 0x%" PRIx64 "\n", order_code); cc = SIGP_CC_NOT_OPERATIONAL; } return cc; } #endif #ifndef CONFIG_USER_ONLY void HELPER(xsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_xsch(cpu, r1); qemu_mutex_unlock_iothread(); } void HELPER(csch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_csch(cpu, r1); qemu_mutex_unlock_iothread(); } void HELPER(hsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_hsch(cpu, r1); qemu_mutex_unlock_iothread(); } void HELPER(msch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_msch(cpu, r1, inst >> 16); qemu_mutex_unlock_iothread(); } void HELPER(rchp)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_rchp(cpu, r1); qemu_mutex_unlock_iothread(); } void HELPER(rsch)(CPUS390XState *env, uint64_t r1) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_rsch(cpu, r1); qemu_mutex_unlock_iothread(); } void HELPER(ssch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_ssch(cpu, r1, inst >> 16); qemu_mutex_unlock_iothread(); } void HELPER(stsch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_stsch(cpu, r1, inst >> 16); qemu_mutex_unlock_iothread(); } void HELPER(tsch)(CPUS390XState *env, uint64_t r1, uint64_t inst) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_tsch(cpu, r1, inst >> 16); qemu_mutex_unlock_iothread(); } void HELPER(chsc)(CPUS390XState *env, uint64_t inst) { S390CPU *cpu = s390_env_get_cpu(env); qemu_mutex_lock_iothread(); ioinst_handle_chsc(cpu, inst >> 16); qemu_mutex_unlock_iothread(); } #endif #ifndef CONFIG_USER_ONLY void HELPER(per_check_exception)(CPUS390XState *env) { CPUState *cs = CPU(s390_env_get_cpu(env)); if (env->per_perc_atmid) { env->int_pgm_code = PGM_PER; env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, env->per_address)); cs->exception_index = EXCP_PGM; cpu_loop_exit(cs); } } /* Check if an address is within the PER starting address and the PER ending address. The address range might loop. */ static inline bool get_per_in_range(CPUS390XState *env, uint64_t addr) { if (env->cregs[10] <= env->cregs[11]) { return env->cregs[10] <= addr && addr <= env->cregs[11]; } else { return env->cregs[10] <= addr || addr <= env->cregs[11]; } } void HELPER(per_branch)(CPUS390XState *env, uint64_t from, uint64_t to) { if ((env->cregs[9] & PER_CR9_EVENT_BRANCH)) { if (!(env->cregs[9] & PER_CR9_CONTROL_BRANCH_ADDRESS) || get_per_in_range(env, to)) { env->per_address = from; env->per_perc_atmid = PER_CODE_EVENT_BRANCH | get_per_atmid(env); } } } void HELPER(per_ifetch)(CPUS390XState *env, uint64_t addr) { if ((env->cregs[9] & PER_CR9_EVENT_IFETCH) && get_per_in_range(env, addr)) { env->per_address = addr; env->per_perc_atmid = PER_CODE_EVENT_IFETCH | get_per_atmid(env); /* If the instruction has to be nullified, trigger the exception immediately. */ if (env->cregs[9] & PER_CR9_EVENT_NULLIFICATION) { CPUState *cs = CPU(s390_env_get_cpu(env)); env->per_perc_atmid |= PER_CODE_EVENT_NULLIFICATION; env->int_pgm_code = PGM_PER; env->int_pgm_ilen = get_ilen(cpu_ldub_code(env, addr)); cs->exception_index = EXCP_PGM; cpu_loop_exit(cs); } } } #endif /* The maximum bit defined at the moment is 129. */ #define MAX_STFL_WORDS 3 /* Canonicalize the current cpu's features into the 64-bit words required by STFLE. Return the index-1 of the max word that is non-zero. */ static unsigned do_stfle(CPUS390XState *env, uint64_t words[MAX_STFL_WORDS]) { S390CPU *cpu = s390_env_get_cpu(env); const unsigned long *features = cpu->model->features; unsigned max_bit = 0; S390Feat feat; memset(words, 0, sizeof(uint64_t) * MAX_STFL_WORDS); if (test_bit(S390_FEAT_ZARCH, features)) { /* z/Architecture is always active if around */ words[0] = 1ull << (63 - 2); } for (feat = find_first_bit(features, S390_FEAT_MAX); feat < S390_FEAT_MAX; feat = find_next_bit(features, S390_FEAT_MAX, feat + 1)) { const S390FeatDef *def = s390_feat_def(feat); if (def->type == S390_FEAT_TYPE_STFL) { unsigned bit = def->bit; if (bit > max_bit) { max_bit = bit; } assert(bit / 64 < MAX_STFL_WORDS); words[bit / 64] |= 1ULL << (63 - bit % 64); } } return max_bit / 64; } void HELPER(stfl)(CPUS390XState *env) { uint64_t words[MAX_STFL_WORDS]; do_stfle(env, words); cpu_stl_data(env, 200, words[0] >> 32); } uint32_t HELPER(stfle)(CPUS390XState *env, uint64_t addr) { uint64_t words[MAX_STFL_WORDS]; unsigned count_m1 = env->regs[0] & 0xff; unsigned max_m1 = do_stfle(env, words); unsigned i; for (i = 0; i <= count_m1; ++i) { cpu_stq_data(env, addr + 8 * i, words[i]); } env->regs[0] = deposit64(env->regs[0], 0, 8, max_m1); return (count_m1 >= max_m1 ? 0 : 3); }