/* * S/390 condition code helper routines * * Copyright (c) 2009 Ulrich Hecht * Copyright (c) 2009 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "internal.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "qemu/host-utils.h" /* #define DEBUG_HELPER */ #ifdef DEBUG_HELPER #define HELPER_LOG(x...) qemu_log(x) #else #define HELPER_LOG(x...) #endif static uint32_t cc_calc_ltgt_32(int32_t src, int32_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static uint32_t cc_calc_ltgt0_32(int32_t dst) { return cc_calc_ltgt_32(dst, 0); } static uint32_t cc_calc_ltgt_64(int64_t src, int64_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static uint32_t cc_calc_ltgt0_64(int64_t dst) { return cc_calc_ltgt_64(dst, 0); } static uint32_t cc_calc_ltugtu_32(uint32_t src, uint32_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static uint32_t cc_calc_ltugtu_64(uint64_t src, uint64_t dst) { if (src == dst) { return 0; } else if (src < dst) { return 1; } else { return 2; } } static uint32_t cc_calc_tm_32(uint32_t val, uint32_t mask) { uint32_t r = val & mask; if (r == 0) { return 0; } else if (r == mask) { return 3; } else { return 1; } } static uint32_t cc_calc_tm_64(uint64_t val, uint64_t mask) { uint64_t r = val & mask; if (r == 0) { return 0; } else if (r == mask) { return 3; } else { int top = clz64(mask); if ((int64_t)(val << top) < 0) { return 2; } else { return 1; } } } static uint32_t cc_calc_nz(uint64_t dst) { return !!dst; } static uint32_t cc_calc_add_64(int64_t a1, int64_t a2, int64_t ar) { if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static uint32_t cc_calc_addu_64(uint64_t a1, uint64_t a2, uint64_t ar) { return (ar != 0) + 2 * (ar < a1); } static uint32_t cc_calc_addc_64(uint64_t a1, uint64_t a2, uint64_t ar) { /* Recover a2 + carry_in. */ uint64_t a2c = ar - a1; /* Check for a2+carry_in overflow, then a1+a2c overflow. */ int carry_out = (a2c < a2) || (ar < a1); return (ar != 0) + 2 * carry_out; } static uint32_t cc_calc_sub_64(int64_t a1, int64_t a2, int64_t ar) { if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static uint32_t cc_calc_subu_64(uint64_t a1, uint64_t a2, uint64_t ar) { if (ar == 0) { return 2; } else { if (a2 > a1) { return 1; } else { return 3; } } } static uint32_t cc_calc_subb_64(uint64_t a1, uint64_t a2, uint64_t ar) { int borrow_out; if (ar != a1 - a2) { /* difference means borrow-in */ borrow_out = (a2 >= a1); } else { borrow_out = (a2 > a1); } return (ar != 0) + 2 * !borrow_out; } static uint32_t cc_calc_abs_64(int64_t dst) { if ((uint64_t)dst == 0x8000000000000000ULL) { return 3; } else if (dst) { return 2; } else { return 0; } } static uint32_t cc_calc_nabs_64(int64_t dst) { return !!dst; } static uint32_t cc_calc_comp_64(int64_t dst) { if ((uint64_t)dst == 0x8000000000000000ULL) { return 3; } else if (dst < 0) { return 1; } else if (dst > 0) { return 2; } else { return 0; } } static uint32_t cc_calc_add_32(int32_t a1, int32_t a2, int32_t ar) { if ((a1 > 0 && a2 > 0 && ar < 0) || (a1 < 0 && a2 < 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static uint32_t cc_calc_addu_32(uint32_t a1, uint32_t a2, uint32_t ar) { return (ar != 0) + 2 * (ar < a1); } static uint32_t cc_calc_addc_32(uint32_t a1, uint32_t a2, uint32_t ar) { /* Recover a2 + carry_in. */ uint32_t a2c = ar - a1; /* Check for a2+carry_in overflow, then a1+a2c overflow. */ int carry_out = (a2c < a2) || (ar < a1); return (ar != 0) + 2 * carry_out; } static uint32_t cc_calc_sub_32(int32_t a1, int32_t a2, int32_t ar) { if ((a1 > 0 && a2 < 0 && ar < 0) || (a1 < 0 && a2 > 0 && ar > 0)) { return 3; /* overflow */ } else { if (ar < 0) { return 1; } else if (ar > 0) { return 2; } else { return 0; } } } static uint32_t cc_calc_subu_32(uint32_t a1, uint32_t a2, uint32_t ar) { if (ar == 0) { return 2; } else { if (a2 > a1) { return 1; } else { return 3; } } } static uint32_t cc_calc_subb_32(uint32_t a1, uint32_t a2, uint32_t ar) { int borrow_out; if (ar != a1 - a2) { /* difference means borrow-in */ borrow_out = (a2 >= a1); } else { borrow_out = (a2 > a1); } return (ar != 0) + 2 * !borrow_out; } static uint32_t cc_calc_abs_32(int32_t dst) { if ((uint32_t)dst == 0x80000000UL) { return 3; } else if (dst) { return 2; } else { return 0; } } static uint32_t cc_calc_nabs_32(int32_t dst) { return !!dst; } static uint32_t cc_calc_comp_32(int32_t dst) { if ((uint32_t)dst == 0x80000000UL) { return 3; } else if (dst < 0) { return 1; } else if (dst > 0) { return 2; } else { return 0; } } /* calculate condition code for insert character under mask insn */ static uint32_t cc_calc_icm(uint64_t mask, uint64_t val) { if ((val & mask) == 0) { return 0; } else { int top = clz64(mask); if ((int64_t)(val << top) < 0) { return 1; } else { return 2; } } } static uint32_t cc_calc_sla_32(uint32_t src, int shift) { uint32_t mask = ((1U << shift) - 1U) << (32 - shift); uint32_t sign = 1U << 31; uint32_t match; int32_t r; /* Check if the sign bit stays the same. */ if (src & sign) { match = mask; } else { match = 0; } if ((src & mask) != match) { /* Overflow. */ return 3; } r = ((src << shift) & ~sign) | (src & sign); if (r == 0) { return 0; } else if (r < 0) { return 1; } return 2; } static uint32_t cc_calc_sla_64(uint64_t src, int shift) { uint64_t mask = ((1ULL << shift) - 1ULL) << (64 - shift); uint64_t sign = 1ULL << 63; uint64_t match; int64_t r; /* Check if the sign bit stays the same. */ if (src & sign) { match = mask; } else { match = 0; } if ((src & mask) != match) { /* Overflow. */ return 3; } r = ((src << shift) & ~sign) | (src & sign); if (r == 0) { return 0; } else if (r < 0) { return 1; } return 2; } static uint32_t cc_calc_flogr(uint64_t dst) { return dst ? 2 : 0; } static uint32_t do_calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { S390CPU *cpu = s390_env_get_cpu(env); uint32_t r = 0; switch (cc_op) { case CC_OP_CONST0: case CC_OP_CONST1: case CC_OP_CONST2: case CC_OP_CONST3: /* cc_op value _is_ cc */ r = cc_op; break; case CC_OP_LTGT0_32: r = cc_calc_ltgt0_32(dst); break; case CC_OP_LTGT0_64: r = cc_calc_ltgt0_64(dst); break; case CC_OP_LTGT_32: r = cc_calc_ltgt_32(src, dst); break; case CC_OP_LTGT_64: r = cc_calc_ltgt_64(src, dst); break; case CC_OP_LTUGTU_32: r = cc_calc_ltugtu_32(src, dst); break; case CC_OP_LTUGTU_64: r = cc_calc_ltugtu_64(src, dst); break; case CC_OP_TM_32: r = cc_calc_tm_32(src, dst); break; case CC_OP_TM_64: r = cc_calc_tm_64(src, dst); break; case CC_OP_NZ: r = cc_calc_nz(dst); break; case CC_OP_ADD_64: r = cc_calc_add_64(src, dst, vr); break; case CC_OP_ADDU_64: r = cc_calc_addu_64(src, dst, vr); break; case CC_OP_ADDC_64: r = cc_calc_addc_64(src, dst, vr); break; case CC_OP_SUB_64: r = cc_calc_sub_64(src, dst, vr); break; case CC_OP_SUBU_64: r = cc_calc_subu_64(src, dst, vr); break; case CC_OP_SUBB_64: r = cc_calc_subb_64(src, dst, vr); break; case CC_OP_ABS_64: r = cc_calc_abs_64(dst); break; case CC_OP_NABS_64: r = cc_calc_nabs_64(dst); break; case CC_OP_COMP_64: r = cc_calc_comp_64(dst); break; case CC_OP_ADD_32: r = cc_calc_add_32(src, dst, vr); break; case CC_OP_ADDU_32: r = cc_calc_addu_32(src, dst, vr); break; case CC_OP_ADDC_32: r = cc_calc_addc_32(src, dst, vr); break; case CC_OP_SUB_32: r = cc_calc_sub_32(src, dst, vr); break; case CC_OP_SUBU_32: r = cc_calc_subu_32(src, dst, vr); break; case CC_OP_SUBB_32: r = cc_calc_subb_32(src, dst, vr); break; case CC_OP_ABS_32: r = cc_calc_abs_32(dst); break; case CC_OP_NABS_32: r = cc_calc_nabs_32(dst); break; case CC_OP_COMP_32: r = cc_calc_comp_32(dst); break; case CC_OP_ICM: r = cc_calc_icm(src, dst); break; case CC_OP_SLA_32: r = cc_calc_sla_32(src, dst); break; case CC_OP_SLA_64: r = cc_calc_sla_64(src, dst); break; case CC_OP_FLOGR: r = cc_calc_flogr(dst); break; case CC_OP_NZ_F32: r = set_cc_nz_f32(dst); break; case CC_OP_NZ_F64: r = set_cc_nz_f64(dst); break; case CC_OP_NZ_F128: r = set_cc_nz_f128(make_float128(src, dst)); break; default: cpu_abort(CPU(cpu), "Unknown CC operation: %s\n", cc_name(cc_op)); } HELPER_LOG("%s: %15s 0x%016lx 0x%016lx 0x%016lx = %d\n", __func__, cc_name(cc_op), src, dst, vr, r); return r; } uint32_t calc_cc(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { return do_calc_cc(env, cc_op, src, dst, vr); } uint32_t HELPER(calc_cc)(CPUS390XState *env, uint32_t cc_op, uint64_t src, uint64_t dst, uint64_t vr) { return do_calc_cc(env, cc_op, src, dst, vr); } #ifndef CONFIG_USER_ONLY void HELPER(load_psw)(CPUS390XState *env, uint64_t mask, uint64_t addr) { load_psw(env, mask, addr); cpu_loop_exit(CPU(s390_env_get_cpu(env))); } void HELPER(sacf)(CPUS390XState *env, uint64_t a1) { HELPER_LOG("%s: %16" PRIx64 "\n", __func__, a1); switch (a1 & 0xf00) { case 0x000: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_PRIMARY; break; case 0x100: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_SECONDARY; break; case 0x300: env->psw.mask &= ~PSW_MASK_ASC; env->psw.mask |= PSW_ASC_HOME; break; default: HELPER_LOG("unknown sacf mode: %" PRIx64 "\n", a1); program_interrupt(env, PGM_SPECIFICATION, 2); break; } } #endif