/* * PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU. * * Copyright (c) 2003-2007 Jocelyn Mayer * Copyright (c) 2013 David Gibson, IBM Corporation * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "qapi/error.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/helper-proto.h" #include "qemu/error-report.h" #include "sysemu/hw_accel.h" #include "kvm_ppc.h" #include "mmu-hash64.h" #include "exec/log.h" //#define DEBUG_SLB #ifdef DEBUG_SLB # define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__) #else # define LOG_SLB(...) do { } while (0) #endif /* * Used to indicate that a CPU has its hash page table (HPT) managed * within the host kernel */ #define MMU_HASH64_KVM_MANAGED_HPT ((void *)-1) /* * SLB handling */ static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr) { CPUPPCState *env = &cpu->env; uint64_t esid_256M, esid_1T; int n; LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr); esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V; esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V; for (n = 0; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; LOG_SLB("%s: slot %d %016" PRIx64 " %016" PRIx64 "\n", __func__, n, slb->esid, slb->vsid); /* We check for 1T matches on all MMUs here - if the MMU * doesn't have 1T segment support, we will have prevented 1T * entries from being inserted in the slbmte code. */ if (((slb->esid == esid_256M) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M)) || ((slb->esid == esid_1T) && ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) { return slb; } } return NULL; } void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu) { CPUPPCState *env = &cpu->env; int i; uint64_t slbe, slbv; cpu_synchronize_state(CPU(cpu)); cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n"); for (i = 0; i < env->slb_nr; i++) { slbe = env->slb[i].esid; slbv = env->slb[i].vsid; if (slbe == 0 && slbv == 0) { continue; } cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n", i, slbe, slbv); } } void helper_slbia(CPUPPCState *env) { int n; /* XXX: Warning: slbia never invalidates the first segment */ for (n = 1; n < env->slb_nr; n++) { ppc_slb_t *slb = &env->slb[n]; if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in QEMU, we just invalidate all TLBs */ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; } } } void helper_slbie(CPUPPCState *env, target_ulong addr) { PowerPCCPU *cpu = ppc_env_get_cpu(env); ppc_slb_t *slb; slb = slb_lookup(cpu, addr); if (!slb) { return; } if (slb->esid & SLB_ESID_V) { slb->esid &= ~SLB_ESID_V; /* XXX: given the fact that segment size is 256 MB or 1TB, * and we still don't have a tlb_flush_mask(env, n, mask) * in QEMU, we just invalidate all TLBs */ env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH; } } int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot, target_ulong esid, target_ulong vsid) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb = &env->slb[slot]; const struct ppc_one_seg_page_size *sps = NULL; int i; if (slot >= env->slb_nr) { return -1; /* Bad slot number */ } if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) { return -1; /* Reserved bits set */ } if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) { return -1; /* Bad segment size */ } if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) { return -1; /* 1T segment on MMU that doesn't support it */ } for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; if (!sps1->page_shift) { break; } if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { sps = sps1; break; } } if (!sps) { error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx, slot, esid, vsid); return -1; } slb->esid = esid; slb->vsid = vsid; slb->sps = sps; LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64 " %016" PRIx64 "\n", __func__, slot, esid, vsid, slb->esid, slb->vsid); return 0; } static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->esid; return 0; } static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; int slot = rb & 0xfff; ppc_slb_t *slb = &env->slb[slot]; if (slot >= env->slb_nr) { return -1; } *rt = slb->vsid; return 0; } static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb, target_ulong *rt) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb; if (!msr_is_64bit(env, env->msr)) { rb &= 0xffffffff; } slb = slb_lookup(cpu, rb); if (slb == NULL) { *rt = (target_ulong)-1ul; } else { *rt = slb->vsid; } return 0; } void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs) { PowerPCCPU *cpu = ppc_env_get_cpu(env); if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } } target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = ppc_env_get_cpu(env); target_ulong rt = 0; if (ppc_load_slb_esid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = ppc_env_get_cpu(env); target_ulong rt = 0; if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb) { PowerPCCPU *cpu = ppc_env_get_cpu(env); target_ulong rt = 0; if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) { raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, POWERPC_EXCP_INVAL, GETPC()); } return rt; } /* * 64-bit hash table MMU handling */ void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value, Error **errp) { CPUPPCState *env = &cpu->env; target_ulong htabsize = value & SDR_64_HTABSIZE; env->spr[SPR_SDR1] = value; if (htabsize > 28) { error_setg(errp, "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1", htabsize); htabsize = 28; } env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1; env->htab_base = value & SDR_64_HTABORG; } void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift, Error **errp) { CPUPPCState *env = &cpu->env; Error *local_err = NULL; if (hpt) { env->external_htab = hpt; } else { env->external_htab = MMU_HASH64_KVM_MANAGED_HPT; } ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18), &local_err); if (local_err) { error_propagate(errp, local_err); return; } /* Not strictly necessary, but makes it clearer that an external * htab is in use when debugging */ env->htab_base = -1; if (kvm_enabled()) { if (kvmppc_put_books_sregs(cpu) < 0) { error_setg(errp, "Unable to update SDR1 in KVM"); } } } static int ppc_hash64_pte_prot(PowerPCCPU *cpu, ppc_slb_t *slb, ppc_hash_pte64_t pte) { CPUPPCState *env = &cpu->env; unsigned pp, key; /* Some pp bit combinations have undefined behaviour, so default * to no access in those cases */ int prot = 0; key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP) : (slb->vsid & SLB_VSID_KS)); pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61); if (key == 0) { switch (pp) { case 0x0: case 0x1: case 0x2: prot = PAGE_READ | PAGE_WRITE; break; case 0x3: case 0x6: prot = PAGE_READ; break; } } else { switch (pp) { case 0x0: case 0x6: prot = 0; break; case 0x1: case 0x3: prot = PAGE_READ; break; case 0x2: prot = PAGE_READ | PAGE_WRITE; break; } } /* No execute if either noexec or guarded bits set */ if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G) || (slb->vsid & SLB_VSID_N)) { prot |= PAGE_EXEC; } return prot; } static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte) { CPUPPCState *env = &cpu->env; int key, amrbits; int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; /* Only recent MMUs implement Virtual Page Class Key Protection */ if (!(env->mmu_model & POWERPC_MMU_AMR)) { return prot; } key = HPTE64_R_KEY(pte.pte1); amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3; /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */ /* env->spr[SPR_AMR]); */ /* * A store is permitted if the AMR bit is 0. Remove write * protection if it is set. */ if (amrbits & 0x2) { prot &= ~PAGE_WRITE; } /* * A load is permitted if the AMR bit is 0. Remove read * protection if it is set. */ if (amrbits & 0x1) { prot &= ~PAGE_READ; } return prot; } uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index) { uint64_t token = 0; hwaddr pte_offset; pte_offset = pte_index * HASH_PTE_SIZE_64; if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { /* * HTAB is controlled by KVM. Fetch the PTEG into a new buffer. */ token = kvmppc_hash64_read_pteg(cpu, pte_index); } else if (cpu->env.external_htab) { /* * HTAB is controlled by QEMU. Just point to the internally * accessible PTEG. */ token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset; } else if (cpu->env.htab_base) { token = cpu->env.htab_base + pte_offset; } return token; } void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token) { if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) { kvmppc_hash64_free_pteg(token); } } static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps, uint64_t pte0, uint64_t pte1) { int i; if (!(pte0 & HPTE64_V_LARGE)) { if (sps->page_shift != 12) { /* 4kiB page in a non 4kiB segment */ return 0; } /* Normal 4kiB page */ return 12; } for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const struct ppc_one_page_size *ps = &sps->enc[i]; uint64_t mask; if (!ps->page_shift) { break; } if (ps->page_shift == 12) { /* L bit is set so this can't be a 4kiB page */ continue; } mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN; if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) { return ps->page_shift; } } return 0; /* Bad page size encoding */ } static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash, const struct ppc_one_seg_page_size *sps, target_ulong ptem, ppc_hash_pte64_t *pte, unsigned *pshift) { CPUPPCState *env = &cpu->env; int i; uint64_t token; target_ulong pte0, pte1; target_ulong pte_index; pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP; token = ppc_hash64_start_access(cpu, pte_index); if (!token) { return -1; } for (i = 0; i < HPTES_PER_GROUP; i++) { pte0 = ppc_hash64_load_hpte0(cpu, token, i); pte1 = ppc_hash64_load_hpte1(cpu, token, i); /* This compares V, B, H (secondary) and the AVPN */ if (HPTE64_V_COMPARE(pte0, ptem)) { *pshift = hpte_page_shift(sps, pte0, pte1); /* * If there is no match, ignore the PTE, it could simply * be for a different segment size encoding and the * architecture specifies we should not match. Linux will * potentially leave behind PTEs for the wrong base page * size when demoting segments. */ if (*pshift == 0) { continue; } /* We don't do anything with pshift yet as qemu TLB only deals * with 4K pages anyway */ pte->pte0 = pte0; pte->pte1 = pte1; ppc_hash64_stop_access(cpu, token); return (pte_index + i) * HASH_PTE_SIZE_64; } } ppc_hash64_stop_access(cpu, token); /* * We didn't find a valid entry. */ return -1; } static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu, ppc_slb_t *slb, target_ulong eaddr, ppc_hash_pte64_t *pte, unsigned *pshift) { CPUPPCState *env = &cpu->env; hwaddr pte_offset; hwaddr hash; uint64_t vsid, epnmask, epn, ptem; const struct ppc_one_seg_page_size *sps = slb->sps; /* The SLB store path should prevent any bad page size encodings * getting in there, so: */ assert(sps); /* If ISL is set in LPCR we need to clamp the page size to 4K */ if (env->spr[SPR_LPCR] & LPCR_ISL) { /* We assume that when using TCG, 4k is first entry of SPS */ sps = &env->sps.sps[0]; assert(sps->page_shift == 12); } epnmask = ~((1ULL << sps->page_shift) - 1); if (slb->vsid & SLB_VSID_B) { /* 1TB segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T; epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask; hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift); } else { /* 256M segment */ vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT; epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask; hash = vsid ^ (epn >> sps->page_shift); } ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN); ptem |= HPTE64_V_VALID; /* Page address translation */ qemu_log_mask(CPU_LOG_MMU, "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx " hash " TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, hash); /* Primary PTEG lookup */ qemu_log_mask(CPU_LOG_MMU, "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, hash); pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift); if (pte_offset == -1) { /* Secondary PTEG lookup */ ptem |= HPTE64_V_SECONDARY; qemu_log_mask(CPU_LOG_MMU, "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx " hash=" TARGET_FMT_plx "\n", env->htab_base, env->htab_mask, vsid, ptem, ~hash); pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift); } return pte_offset; } unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu, uint64_t pte0, uint64_t pte1) { CPUPPCState *env = &cpu->env; int i; if (!(pte0 & HPTE64_V_LARGE)) { return 12; } /* * The encodings in env->sps need to be carefully chosen so that * this gives an unambiguous result. */ for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const struct ppc_one_seg_page_size *sps = &env->sps.sps[i]; unsigned shift; if (!sps->page_shift) { break; } shift = hpte_page_shift(sps, pte0, pte1); if (shift) { return shift; } } return 0; } static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env, uint64_t error_code) { bool vpm; if (msr_ir) { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); } else { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); } if (vpm && !msr_hv) { cs->exception_index = POWERPC_EXCP_HISI; } else { cs->exception_index = POWERPC_EXCP_ISI; } env->error_code = error_code; } static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar, uint64_t dsisr) { bool vpm; if (msr_dr) { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1); } else { vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0); } if (vpm && !msr_hv) { cs->exception_index = POWERPC_EXCP_HDSI; env->spr[SPR_HDAR] = dar; env->spr[SPR_HDSISR] = dsisr; } else { cs->exception_index = POWERPC_EXCP_DSI; env->spr[SPR_DAR] = dar; env->spr[SPR_DSISR] = dsisr; } env->error_code = 0; } int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr, int rwx, int mmu_idx) { CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; ppc_slb_t *slb; unsigned apshift; hwaddr pte_offset; ppc_hash_pte64_t pte; int pp_prot, amr_prot, prot; uint64_t new_pte1, dsisr; const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC}; hwaddr raddr; assert((rwx == 0) || (rwx == 1) || (rwx == 2)); /* Note on LPCR usage: 970 uses HID4, but our special variant * of store_spr copies relevant fields into env->spr[SPR_LPCR]. * Similarily we filter unimplemented bits when storing into * LPCR depending on the MMU version. This code can thus just * use the LPCR "as-is". */ /* 1. Handle real mode accesses */ if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) { /* Translation is supposedly "off" */ /* In real mode the top 4 effective address bits are (mostly) ignored */ raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL; /* In HV mode, add HRMOR if top EA bit is clear */ if (msr_hv || !env->has_hv_mode) { if (!(eaddr >> 63)) { raddr |= env->spr[SPR_HRMOR]; } } else { /* Otherwise, check VPM for RMA vs VRMA */ if (env->spr[SPR_LPCR] & LPCR_VPM0) { slb = &env->vrma_slb; if (slb->sps) { goto skip_slb_search; } /* Not much else to do here */ cs->exception_index = POWERPC_EXCP_MCHECK; env->error_code = 0; return 1; } else if (raddr < env->rmls) { /* RMA. Check bounds in RMLS */ raddr |= env->spr[SPR_RMOR]; } else { /* The access failed, generate the approriate interrupt */ if (rwx == 2) { ppc_hash64_set_isi(cs, env, 0x08000000); } else { dsisr = 0x08000000; if (rwx == 1) { dsisr |= 0x02000000; } ppc_hash64_set_dsi(cs, env, eaddr, dsisr); } return 1; } } tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, TARGET_PAGE_SIZE); return 0; } /* 2. Translation is on, so look up the SLB */ slb = slb_lookup(cpu, eaddr); if (!slb) { if (rwx == 2) { cs->exception_index = POWERPC_EXCP_ISEG; env->error_code = 0; } else { cs->exception_index = POWERPC_EXCP_DSEG; env->error_code = 0; env->spr[SPR_DAR] = eaddr; } return 1; } skip_slb_search: /* 3. Check for segment level no-execute violation */ if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) { ppc_hash64_set_isi(cs, env, 0x10000000); return 1; } /* 4. Locate the PTE in the hash table */ pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift); if (pte_offset == -1) { dsisr = 0x40000000; if (rwx == 2) { ppc_hash64_set_isi(cs, env, dsisr); } else { if (rwx == 1) { dsisr |= 0x02000000; } ppc_hash64_set_dsi(cs, env, eaddr, dsisr); } return 1; } qemu_log_mask(CPU_LOG_MMU, "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset); /* 5. Check access permissions */ pp_prot = ppc_hash64_pte_prot(cpu, slb, pte); amr_prot = ppc_hash64_amr_prot(cpu, pte); prot = pp_prot & amr_prot; if ((need_prot[rwx] & ~prot) != 0) { /* Access right violation */ qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n"); if (rwx == 2) { ppc_hash64_set_isi(cs, env, 0x08000000); } else { dsisr = 0; if (need_prot[rwx] & ~pp_prot) { dsisr |= 0x08000000; } if (rwx == 1) { dsisr |= 0x02000000; } if (need_prot[rwx] & ~amr_prot) { dsisr |= 0x00200000; } ppc_hash64_set_dsi(cs, env, eaddr, dsisr); } return 1; } qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n"); /* 6. Update PTE referenced and changed bits if necessary */ new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */ if (rwx == 1) { new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */ } else { /* Treat the page as read-only for now, so that a later write * will pass through this function again to set the C bit */ prot &= ~PAGE_WRITE; } if (new_pte1 != pte.pte1) { ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64, pte.pte0, new_pte1); } /* 7. Determine the real address from the PTE */ raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr); tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK, prot, mmu_idx, 1ULL << apshift); return 0; } hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr) { CPUPPCState *env = &cpu->env; ppc_slb_t *slb; hwaddr pte_offset, raddr; ppc_hash_pte64_t pte; unsigned apshift; /* Handle real mode */ if (msr_dr == 0) { /* In real mode the top 4 effective address bits are ignored */ raddr = addr & 0x0FFFFFFFFFFFFFFFULL; /* In HV mode, add HRMOR if top EA bit is clear */ if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) { return raddr | env->spr[SPR_HRMOR]; } /* Otherwise, check VPM for RMA vs VRMA */ if (env->spr[SPR_LPCR] & LPCR_VPM0) { slb = &env->vrma_slb; if (!slb->sps) { return -1; } } else if (raddr < env->rmls) { /* RMA. Check bounds in RMLS */ return raddr | env->spr[SPR_RMOR]; } else { return -1; } } else { slb = slb_lookup(cpu, addr); if (!slb) { return -1; } } pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift); if (pte_offset == -1) { return -1; } return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr) & TARGET_PAGE_MASK; } void ppc_hash64_store_hpte(PowerPCCPU *cpu, target_ulong pte_index, target_ulong pte0, target_ulong pte1) { CPUPPCState *env = &cpu->env; if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) { kvmppc_hash64_write_pte(env, pte_index, pte0, pte1); return; } pte_index *= HASH_PTE_SIZE_64; if (env->external_htab) { stq_p(env->external_htab + pte_index, pte0); stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1); } else { stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0); stq_phys(CPU(cpu)->as, env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1); } } void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu, target_ulong pte_index, target_ulong pte0, target_ulong pte1) { /* * XXX: given the fact that there are too many segments to * invalidate, and we still don't have a tlb_flush_mask(env, n, * mask) in QEMU, we just invalidate all TLBs */ cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH; } void ppc_hash64_update_rmls(CPUPPCState *env) { uint64_t lpcr = env->spr[SPR_LPCR]; /* * This is the full 4 bits encoding of POWER8. Previous * CPUs only support a subset of these but the filtering * is done when writing LPCR */ switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) { case 0x8: /* 32MB */ env->rmls = 0x2000000ull; break; case 0x3: /* 64MB */ env->rmls = 0x4000000ull; break; case 0x7: /* 128MB */ env->rmls = 0x8000000ull; break; case 0x4: /* 256MB */ env->rmls = 0x10000000ull; break; case 0x2: /* 1GB */ env->rmls = 0x40000000ull; break; case 0x1: /* 16GB */ env->rmls = 0x400000000ull; break; default: /* What to do here ??? */ env->rmls = 0; } } void ppc_hash64_update_vrma(CPUPPCState *env) { const struct ppc_one_seg_page_size *sps = NULL; target_ulong esid, vsid, lpcr; ppc_slb_t *slb = &env->vrma_slb; uint32_t vrmasd; int i; /* First clear it */ slb->esid = slb->vsid = 0; slb->sps = NULL; /* Is VRMA enabled ? */ lpcr = env->spr[SPR_LPCR]; if (!(lpcr & LPCR_VPM0)) { return; } /* Make one up. Mostly ignore the ESID which will not be * needed for translation */ vsid = SLB_VSID_VRMA; vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT; vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP); esid = SLB_ESID_V; for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) { const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i]; if (!sps1->page_shift) { break; } if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) { sps = sps1; break; } } if (!sps) { error_report("Bad page size encoding esid 0x"TARGET_FMT_lx " vsid 0x"TARGET_FMT_lx, esid, vsid); return; } slb->vsid = vsid; slb->esid = esid; slb->sps = sps; } void helper_store_lpcr(CPUPPCState *env, target_ulong val) { uint64_t lpcr = 0; /* Filter out bits */ switch (env->mmu_model) { case POWERPC_MMU_64B: /* 970 */ if (val & 0x40) { lpcr |= LPCR_LPES0; } if (val & 0x8000000000000000ull) { lpcr |= LPCR_LPES1; } if (val & 0x20) { lpcr |= (0x4ull << LPCR_RMLS_SHIFT); } if (val & 0x4000000000000000ull) { lpcr |= (0x2ull << LPCR_RMLS_SHIFT); } if (val & 0x2000000000000000ull) { lpcr |= (0x1ull << LPCR_RMLS_SHIFT); } env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26; /* XXX We could also write LPID from HID4 here * but since we don't tag any translation on it * it doesn't actually matter */ /* XXX For proper emulation of 970 we also need * to dig HRMOR out of HID5 */ break; case POWERPC_MMU_2_03: /* P5p */ lpcr = val & (LPCR_RMLS | LPCR_ILE | LPCR_LPES0 | LPCR_LPES1 | LPCR_RMI | LPCR_HDICE); break; case POWERPC_MMU_2_06: /* P7 */ lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 | LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE); break; case POWERPC_MMU_2_07: /* P8 */ lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE | LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 | LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 | LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE); break; default: ; } env->spr[SPR_LPCR] = lpcr; ppc_hash64_update_rmls(env); ppc_hash64_update_vrma(env); }