/* * PowerPC gdb server stub * * Copyright (c) 2003-2005 Fabrice Bellard * Copyright (c) 2013 SUSE LINUX Products GmbH * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/gdbstub.h" static int ppc_gdb_register_len_apple(int n) { switch (n) { case 0 ... 31: /* gprs */ return 8; case 32 ... 63: /* fprs */ return 8; case 64 ... 95: return 16; case 64 + 32: /* nip */ case 65 + 32: /* msr */ case 67 + 32: /* lr */ case 68 + 32: /* ctr */ case 70 + 32: /* fpscr */ return 8; case 66 + 32: /* cr */ case 69 + 32: /* xer */ return 4; default: return 0; } } static int ppc_gdb_register_len(int n) { switch (n) { case 0 ... 31: /* gprs */ return sizeof(target_ulong); case 32 ... 63: /* fprs */ if (gdb_has_xml) { return 0; } return 8; case 66: /* cr */ case 69: /* xer */ return 4; case 64: /* nip */ case 65: /* msr */ case 67: /* lr */ case 68: /* ctr */ return sizeof(target_ulong); case 70: /* fpscr */ if (gdb_has_xml) { return 0; } return sizeof(target_ulong); default: return 0; } } /* * We need to present the registers to gdb in the "current" memory * ordering. For user-only mode we get this for free; * TARGET_WORDS_BIGENDIAN is set to the proper ordering for the * binary, and cannot be changed. For system mode, * TARGET_WORDS_BIGENDIAN is always set, and we must check the current * mode of the chip to see if we're running in little-endian. */ void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len) { #ifndef CONFIG_USER_ONLY if (!msr_le) { /* do nothing */ } else if (len == 4) { bswap32s((uint32_t *)mem_buf); } else if (len == 8) { bswap64s((uint64_t *)mem_buf); } else { g_assert_not_reached(); } #endif } /* * Old gdb always expects FP registers. Newer (xml-aware) gdb only * expects whatever the target description contains. Due to a * historical mishap the FP registers appear in between core integer * regs and PC, MSR, CR, and so forth. We hack round this by giving * the FP regs zero size when talking to a newer gdb. */ int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; int r = ppc_gdb_register_len(n); if (!r) { return r; } if (n < 32) { /* gprs */ gdb_get_regl(buf, env->gpr[n]); } else if (n < 64) { /* fprs */ gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32)); } else { switch (n) { case 64: gdb_get_regl(buf, env->nip); break; case 65: gdb_get_regl(buf, env->msr); break; case 66: { uint32_t cr = 0; int i; for (i = 0; i < 8; i++) { cr |= env->crf[i] << (32 - ((i + 1) * 4)); } gdb_get_reg32(buf, cr); break; } case 67: gdb_get_regl(buf, env->lr); break; case 68: gdb_get_regl(buf, env->ctr); break; case 69: gdb_get_reg32(buf, env->xer); break; case 70: gdb_get_reg32(buf, env->fpscr); break; } } mem_buf = buf->data + buf->len - r; ppc_maybe_bswap_register(env, mem_buf, r); return r; } int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; uint8_t *mem_buf; int r = ppc_gdb_register_len_apple(n); if (!r) { return r; } if (n < 32) { /* gprs */ gdb_get_reg64(buf, env->gpr[n]); } else if (n < 64) { /* fprs */ gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32)); } else if (n < 96) { /* Altivec */ gdb_get_reg64(buf, n - 64); gdb_get_reg64(buf, 0); } else { switch (n) { case 64 + 32: gdb_get_reg64(buf, env->nip); break; case 65 + 32: gdb_get_reg64(buf, env->msr); break; case 66 + 32: { uint32_t cr = 0; int i; for (i = 0; i < 8; i++) { cr |= env->crf[i] << (32 - ((i + 1) * 4)); } gdb_get_reg32(buf, cr); break; } case 67 + 32: gdb_get_reg64(buf, env->lr); break; case 68 + 32: gdb_get_reg64(buf, env->ctr); break; case 69 + 32: gdb_get_reg32(buf, env->xer); break; case 70 + 32: gdb_get_reg64(buf, env->fpscr); break; } } mem_buf = buf->data + buf->len - r; ppc_maybe_bswap_register(env, mem_buf, r); return r; } int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int r = ppc_gdb_register_len(n); if (!r) { return r; } ppc_maybe_bswap_register(env, mem_buf, r); if (n < 32) { /* gprs */ env->gpr[n] = ldtul_p(mem_buf); } else if (n < 64) { /* fprs */ *cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf); } else { switch (n) { case 64: env->nip = ldtul_p(mem_buf); break; case 65: ppc_store_msr(env, ldtul_p(mem_buf)); break; case 66: { uint32_t cr = ldl_p(mem_buf); int i; for (i = 0; i < 8; i++) { env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; } break; } case 67: env->lr = ldtul_p(mem_buf); break; case 68: env->ctr = ldtul_p(mem_buf); break; case 69: env->xer = ldl_p(mem_buf); break; case 70: /* fpscr */ store_fpscr(env, ldtul_p(mem_buf), 0xffffffff); break; } } return r; } int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n) { PowerPCCPU *cpu = POWERPC_CPU(cs); CPUPPCState *env = &cpu->env; int r = ppc_gdb_register_len_apple(n); if (!r) { return r; } ppc_maybe_bswap_register(env, mem_buf, r); if (n < 32) { /* gprs */ env->gpr[n] = ldq_p(mem_buf); } else if (n < 64) { /* fprs */ *cpu_fpr_ptr(env, n - 32) = ldfq_p(mem_buf); } else { switch (n) { case 64 + 32: env->nip = ldq_p(mem_buf); break; case 65 + 32: ppc_store_msr(env, ldq_p(mem_buf)); break; case 66 + 32: { uint32_t cr = ldl_p(mem_buf); int i; for (i = 0; i < 8; i++) { env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF; } break; } case 67 + 32: env->lr = ldq_p(mem_buf); break; case 68 + 32: env->ctr = ldq_p(mem_buf); break; case 69 + 32: env->xer = ldl_p(mem_buf); break; case 70 + 32: /* fpscr */ store_fpscr(env, ldq_p(mem_buf), 0xffffffff); break; } } return r; } #ifndef CONFIG_USER_ONLY void ppc_gdb_gen_spr_xml(PowerPCCPU *cpu) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); CPUPPCState *env = &cpu->env; GString *xml; char *spr_name; unsigned int num_regs = 0; int i; if (pcc->gdb_spr_xml) { return; } xml = g_string_new(""); g_string_append(xml, ""); g_string_append(xml, ""); for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) { ppc_spr_t *spr = &env->spr_cb[i]; if (!spr->name) { continue; } spr_name = g_ascii_strdown(spr->name, -1); g_string_append_printf(xml, ""); /* * GDB identifies registers based on the order they are * presented in the XML. These ids will not match QEMU's * representation (which follows the PowerISA). * * Store the position of the current register description so * we can make the correspondence later. */ spr->gdb_id = num_regs; num_regs++; } g_string_append(xml, ""); pcc->gdb_num_sprs = num_regs; pcc->gdb_spr_xml = g_string_free(xml, false); } const char *ppc_gdb_get_dynamic_xml(CPUState *cs, const char *xml_name) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); if (strcmp(xml_name, "power-spr.xml") == 0) { return pcc->gdb_spr_xml; } return NULL; } #endif