/* * m68k op helpers * * Copyright (c) 2006-2007 CodeSourcery * Written by Paul Brook * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "exec/gdbstub.h" #include "exec/helper-proto.h" #include "fpu/softfloat.h" #include "qemu/qemu-print.h" #define SIGNBIT (1u << 31) /* Sort alphabetically, except for "any". */ static gint m68k_cpu_list_compare(gconstpointer a, gconstpointer b) { ObjectClass *class_a = (ObjectClass *)a; ObjectClass *class_b = (ObjectClass *)b; const char *name_a, *name_b; name_a = object_class_get_name(class_a); name_b = object_class_get_name(class_b); if (strcmp(name_a, "any-" TYPE_M68K_CPU) == 0) { return 1; } else if (strcmp(name_b, "any-" TYPE_M68K_CPU) == 0) { return -1; } else { return strcasecmp(name_a, name_b); } } static void m68k_cpu_list_entry(gpointer data, gpointer user_data) { ObjectClass *c = data; const char *typename; char *name; typename = object_class_get_name(c); name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_M68K_CPU)); qemu_printf("%s\n", name); g_free(name); } void m68k_cpu_list(void) { GSList *list; list = object_class_get_list(TYPE_M68K_CPU, false); list = g_slist_sort(list, m68k_cpu_list_compare); g_slist_foreach(list, m68k_cpu_list_entry, NULL); g_slist_free(list); } static int cf_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n) { if (n < 8) { float_status s; stfq_p(mem_buf, floatx80_to_float64(env->fregs[n].d, &s)); return 8; } switch (n) { case 8: /* fpcontrol */ stl_be_p(mem_buf, env->fpcr); return 4; case 9: /* fpstatus */ stl_be_p(mem_buf, env->fpsr); return 4; case 10: /* fpiar, not implemented */ memset(mem_buf, 0, 4); return 4; } return 0; } static int cf_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n) { if (n < 8) { float_status s; env->fregs[n].d = float64_to_floatx80(ldfq_p(mem_buf), &s); return 8; } switch (n) { case 8: /* fpcontrol */ cpu_m68k_set_fpcr(env, ldl_p(mem_buf)); return 4; case 9: /* fpstatus */ env->fpsr = ldl_p(mem_buf); return 4; case 10: /* fpiar, not implemented */ return 4; } return 0; } static int m68k_fpu_gdb_get_reg(CPUM68KState *env, uint8_t *mem_buf, int n) { if (n < 8) { stw_be_p(mem_buf, env->fregs[n].l.upper); memset(mem_buf + 2, 0, 2); stq_be_p(mem_buf + 4, env->fregs[n].l.lower); return 12; } switch (n) { case 8: /* fpcontrol */ stl_be_p(mem_buf, env->fpcr); return 4; case 9: /* fpstatus */ stl_be_p(mem_buf, env->fpsr); return 4; case 10: /* fpiar, not implemented */ memset(mem_buf, 0, 4); return 4; } return 0; } static int m68k_fpu_gdb_set_reg(CPUM68KState *env, uint8_t *mem_buf, int n) { if (n < 8) { env->fregs[n].l.upper = lduw_be_p(mem_buf); env->fregs[n].l.lower = ldq_be_p(mem_buf + 4); return 12; } switch (n) { case 8: /* fpcontrol */ cpu_m68k_set_fpcr(env, ldl_p(mem_buf)); return 4; case 9: /* fpstatus */ env->fpsr = ldl_p(mem_buf); return 4; case 10: /* fpiar, not implemented */ return 4; } return 0; } void m68k_cpu_init_gdb(M68kCPU *cpu) { CPUState *cs = CPU(cpu); CPUM68KState *env = &cpu->env; if (m68k_feature(env, M68K_FEATURE_CF_FPU)) { gdb_register_coprocessor(cs, cf_fpu_gdb_get_reg, cf_fpu_gdb_set_reg, 11, "cf-fp.xml", 18); } else if (m68k_feature(env, M68K_FEATURE_FPU)) { gdb_register_coprocessor(cs, m68k_fpu_gdb_get_reg, m68k_fpu_gdb_set_reg, 11, "m68k-fp.xml", 18); } /* TODO: Add [E]MAC registers. */ } void HELPER(cf_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val) { M68kCPU *cpu = m68k_env_get_cpu(env); switch (reg) { case M68K_CR_CACR: env->cacr = val; m68k_switch_sp(env); break; case M68K_CR_ACR0: case M68K_CR_ACR1: case M68K_CR_ACR2: case M68K_CR_ACR3: /* TODO: Implement Access Control Registers. */ break; case M68K_CR_VBR: env->vbr = val; break; /* TODO: Implement control registers. */ default: cpu_abort(CPU(cpu), "Unimplemented control register write 0x%x = 0x%x\n", reg, val); } } void HELPER(m68k_movec_to)(CPUM68KState *env, uint32_t reg, uint32_t val) { M68kCPU *cpu = m68k_env_get_cpu(env); switch (reg) { /* MC680[1234]0 */ case M68K_CR_SFC: env->sfc = val & 7; return; case M68K_CR_DFC: env->dfc = val & 7; return; case M68K_CR_VBR: env->vbr = val; return; /* MC680[234]0 */ case M68K_CR_CACR: env->cacr = val; m68k_switch_sp(env); return; /* MC680[34]0 */ case M68K_CR_TC: env->mmu.tcr = val; return; case M68K_CR_MMUSR: env->mmu.mmusr = val; return; case M68K_CR_SRP: env->mmu.srp = val; return; case M68K_CR_URP: env->mmu.urp = val; return; case M68K_CR_USP: env->sp[M68K_USP] = val; return; case M68K_CR_MSP: env->sp[M68K_SSP] = val; return; case M68K_CR_ISP: env->sp[M68K_ISP] = val; return; /* MC68040/MC68LC040 */ case M68K_CR_ITT0: env->mmu.ttr[M68K_ITTR0] = val; return; case M68K_CR_ITT1: env->mmu.ttr[M68K_ITTR1] = val; return; case M68K_CR_DTT0: env->mmu.ttr[M68K_DTTR0] = val; return; case M68K_CR_DTT1: env->mmu.ttr[M68K_DTTR1] = val; return; } cpu_abort(CPU(cpu), "Unimplemented control register write 0x%x = 0x%x\n", reg, val); } uint32_t HELPER(m68k_movec_from)(CPUM68KState *env, uint32_t reg) { M68kCPU *cpu = m68k_env_get_cpu(env); switch (reg) { /* MC680[1234]0 */ case M68K_CR_SFC: return env->sfc; case M68K_CR_DFC: return env->dfc; case M68K_CR_VBR: return env->vbr; /* MC680[234]0 */ case M68K_CR_CACR: return env->cacr; /* MC680[34]0 */ case M68K_CR_TC: return env->mmu.tcr; case M68K_CR_MMUSR: return env->mmu.mmusr; case M68K_CR_SRP: return env->mmu.srp; case M68K_CR_USP: return env->sp[M68K_USP]; case M68K_CR_MSP: return env->sp[M68K_SSP]; case M68K_CR_ISP: return env->sp[M68K_ISP]; /* MC68040/MC68LC040 */ case M68K_CR_URP: return env->mmu.urp; case M68K_CR_ITT0: return env->mmu.ttr[M68K_ITTR0]; case M68K_CR_ITT1: return env->mmu.ttr[M68K_ITTR1]; case M68K_CR_DTT0: return env->mmu.ttr[M68K_DTTR0]; case M68K_CR_DTT1: return env->mmu.ttr[M68K_DTTR1]; } cpu_abort(CPU(cpu), "Unimplemented control register read 0x%x\n", reg); } void HELPER(set_macsr)(CPUM68KState *env, uint32_t val) { uint32_t acc; int8_t exthigh; uint8_t extlow; uint64_t regval; int i; if ((env->macsr ^ val) & (MACSR_FI | MACSR_SU)) { for (i = 0; i < 4; i++) { regval = env->macc[i]; exthigh = regval >> 40; if (env->macsr & MACSR_FI) { acc = regval >> 8; extlow = regval; } else { acc = regval; extlow = regval >> 32; } if (env->macsr & MACSR_FI) { regval = (((uint64_t)acc) << 8) | extlow; regval |= ((int64_t)exthigh) << 40; } else if (env->macsr & MACSR_SU) { regval = acc | (((int64_t)extlow) << 32); regval |= ((int64_t)exthigh) << 40; } else { regval = acc | (((uint64_t)extlow) << 32); regval |= ((uint64_t)(uint8_t)exthigh) << 40; } env->macc[i] = regval; } } env->macsr = val; } void m68k_switch_sp(CPUM68KState *env) { int new_sp; env->sp[env->current_sp] = env->aregs[7]; if (m68k_feature(env, M68K_FEATURE_M68000)) { if (env->sr & SR_S) { if (env->sr & SR_M) { new_sp = M68K_SSP; } else { new_sp = M68K_ISP; } } else { new_sp = M68K_USP; } } else { new_sp = (env->sr & SR_S && env->cacr & M68K_CACR_EUSP) ? M68K_SSP : M68K_USP; } env->aregs[7] = env->sp[new_sp]; env->current_sp = new_sp; } #if defined(CONFIG_USER_ONLY) int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw, int mmu_idx) { M68kCPU *cpu = M68K_CPU(cs); cs->exception_index = EXCP_ACCESS; cpu->env.mmu.ar = address; return 1; } #else /* MMU: 68040 only */ static void print_address_zone(uint32_t logical, uint32_t physical, uint32_t size, int attr) { qemu_printf("%08x - %08x -> %08x - %08x %c ", logical, logical + size - 1, physical, physical + size - 1, attr & 4 ? 'W' : '-'); size >>= 10; if (size < 1024) { qemu_printf("(%d KiB)\n", size); } else { size >>= 10; if (size < 1024) { qemu_printf("(%d MiB)\n", size); } else { size >>= 10; qemu_printf("(%d GiB)\n", size); } } } static void dump_address_map(CPUM68KState *env, uint32_t root_pointer) { int i, j, k; int tic_size, tic_shift; uint32_t tib_mask; uint32_t tia, tib, tic; uint32_t logical = 0xffffffff, physical = 0xffffffff; uint32_t first_logical = 0xffffffff, first_physical = 0xffffffff; uint32_t last_logical, last_physical; int32_t size; int last_attr = -1, attr = -1; M68kCPU *cpu = m68k_env_get_cpu(env); CPUState *cs = CPU(cpu); if (env->mmu.tcr & M68K_TCR_PAGE_8K) { /* 8k page */ tic_size = 32; tic_shift = 13; tib_mask = M68K_8K_PAGE_MASK; } else { /* 4k page */ tic_size = 64; tic_shift = 12; tib_mask = M68K_4K_PAGE_MASK; } for (i = 0; i < M68K_ROOT_POINTER_ENTRIES; i++) { tia = ldl_phys(cs->as, M68K_POINTER_BASE(root_pointer) + i * 4); if (!M68K_UDT_VALID(tia)) { continue; } for (j = 0; j < M68K_ROOT_POINTER_ENTRIES; j++) { tib = ldl_phys(cs->as, M68K_POINTER_BASE(tia) + j * 4); if (!M68K_UDT_VALID(tib)) { continue; } for (k = 0; k < tic_size; k++) { tic = ldl_phys(cs->as, (tib & tib_mask) + k * 4); if (!M68K_PDT_VALID(tic)) { continue; } if (M68K_PDT_INDIRECT(tic)) { tic = ldl_phys(cs->as, M68K_INDIRECT_POINTER(tic)); } last_logical = logical; logical = (i << M68K_TTS_ROOT_SHIFT) | (j << M68K_TTS_POINTER_SHIFT) | (k << tic_shift); last_physical = physical; physical = tic & ~((1 << tic_shift) - 1); last_attr = attr; attr = tic & ((1 << tic_shift) - 1); if ((logical != (last_logical + (1 << tic_shift))) || (physical != (last_physical + (1 << tic_shift))) || (attr & 4) != (last_attr & 4)) { if (first_logical != 0xffffffff) { size = last_logical + (1 << tic_shift) - first_logical; print_address_zone(first_logical, first_physical, size, last_attr); } first_logical = logical; first_physical = physical; } } } } if (first_logical != logical || (attr & 4) != (last_attr & 4)) { size = logical + (1 << tic_shift) - first_logical; print_address_zone(first_logical, first_physical, size, last_attr); } } #define DUMP_CACHEFLAGS(a) \ switch (a & M68K_DESC_CACHEMODE) { \ case M68K_DESC_CM_WRTHRU: /* cachable, write-through */ \ qemu_printf("T"); \ break; \ case M68K_DESC_CM_COPYBK: /* cachable, copyback */ \ qemu_printf("C"); \ break; \ case M68K_DESC_CM_SERIAL: /* noncachable, serialized */ \ qemu_printf("S"); \ break; \ case M68K_DESC_CM_NCACHE: /* noncachable */ \ qemu_printf("N"); \ break; \ } static void dump_ttr(uint32_t ttr) { if ((ttr & M68K_TTR_ENABLED) == 0) { qemu_printf("disabled\n"); return; } qemu_printf("Base: 0x%08x Mask: 0x%08x Control: ", ttr & M68K_TTR_ADDR_BASE, (ttr & M68K_TTR_ADDR_MASK) << M68K_TTR_ADDR_MASK_SHIFT); switch (ttr & M68K_TTR_SFIELD) { case M68K_TTR_SFIELD_USER: qemu_printf("U"); break; case M68K_TTR_SFIELD_SUPER: qemu_printf("S"); break; default: qemu_printf("*"); break; } DUMP_CACHEFLAGS(ttr); if (ttr & M68K_DESC_WRITEPROT) { qemu_printf("R"); } else { qemu_printf("W"); } qemu_printf(" U: %d\n", (ttr & M68K_DESC_USERATTR) >> M68K_DESC_USERATTR_SHIFT); } void dump_mmu(CPUM68KState *env) { if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) { qemu_printf("Translation disabled\n"); return; } qemu_printf("Page Size: "); if (env->mmu.tcr & M68K_TCR_PAGE_8K) { qemu_printf("8kB\n"); } else { qemu_printf("4kB\n"); } qemu_printf("MMUSR: "); if (env->mmu.mmusr & M68K_MMU_B_040) { qemu_printf("BUS ERROR\n"); } else { qemu_printf("Phy=%08x Flags: ", env->mmu.mmusr & 0xfffff000); /* flags found on the page descriptor */ if (env->mmu.mmusr & M68K_MMU_G_040) { qemu_printf("G"); /* Global */ } else { qemu_printf("."); } if (env->mmu.mmusr & M68K_MMU_S_040) { qemu_printf("S"); /* Supervisor */ } else { qemu_printf("."); } if (env->mmu.mmusr & M68K_MMU_M_040) { qemu_printf("M"); /* Modified */ } else { qemu_printf("."); } if (env->mmu.mmusr & M68K_MMU_WP_040) { qemu_printf("W"); /* Write protect */ } else { qemu_printf("."); } if (env->mmu.mmusr & M68K_MMU_T_040) { qemu_printf("T"); /* Transparent */ } else { qemu_printf("."); } if (env->mmu.mmusr & M68K_MMU_R_040) { qemu_printf("R"); /* Resident */ } else { qemu_printf("."); } qemu_printf(" Cache: "); DUMP_CACHEFLAGS(env->mmu.mmusr); qemu_printf(" U: %d\n", (env->mmu.mmusr >> 8) & 3); qemu_printf("\n"); } qemu_printf("ITTR0: "); dump_ttr(env->mmu.ttr[M68K_ITTR0]); qemu_printf("ITTR1: "); dump_ttr(env->mmu.ttr[M68K_ITTR1]); qemu_printf("DTTR0: "); dump_ttr(env->mmu.ttr[M68K_DTTR0]); qemu_printf("DTTR1: "); dump_ttr(env->mmu.ttr[M68K_DTTR1]); qemu_printf("SRP: 0x%08x\n", env->mmu.srp); dump_address_map(env, env->mmu.srp); qemu_printf("URP: 0x%08x\n", env->mmu.urp); dump_address_map(env, env->mmu.urp); } static int check_TTR(uint32_t ttr, int *prot, target_ulong addr, int access_type) { uint32_t base, mask; /* check if transparent translation is enabled */ if ((ttr & M68K_TTR_ENABLED) == 0) { return 0; } /* check mode access */ switch (ttr & M68K_TTR_SFIELD) { case M68K_TTR_SFIELD_USER: /* match only if user */ if ((access_type & ACCESS_SUPER) != 0) { return 0; } break; case M68K_TTR_SFIELD_SUPER: /* match only if supervisor */ if ((access_type & ACCESS_SUPER) == 0) { return 0; } break; default: /* all other values disable mode matching (FC2) */ break; } /* check address matching */ base = ttr & M68K_TTR_ADDR_BASE; mask = (ttr & M68K_TTR_ADDR_MASK) ^ M68K_TTR_ADDR_MASK; mask <<= M68K_TTR_ADDR_MASK_SHIFT; if ((addr & mask) != (base & mask)) { return 0; } *prot = PAGE_READ | PAGE_EXEC; if ((ttr & M68K_DESC_WRITEPROT) == 0) { *prot |= PAGE_WRITE; } return 1; } static int get_physical_address(CPUM68KState *env, hwaddr *physical, int *prot, target_ulong address, int access_type, target_ulong *page_size) { M68kCPU *cpu = m68k_env_get_cpu(env); CPUState *cs = CPU(cpu); uint32_t entry; uint32_t next; target_ulong page_mask; bool debug = access_type & ACCESS_DEBUG; int page_bits; int i; /* Transparent Translation (physical = logical) */ for (i = 0; i < M68K_MAX_TTR; i++) { if (check_TTR(env->mmu.TTR(access_type, i), prot, address, access_type)) { if (access_type & ACCESS_PTEST) { /* Transparent Translation Register bit */ env->mmu.mmusr = M68K_MMU_T_040 | M68K_MMU_R_040; } *physical = address & TARGET_PAGE_MASK; *page_size = TARGET_PAGE_SIZE; return 0; } } /* Page Table Root Pointer */ *prot = PAGE_READ | PAGE_WRITE; if (access_type & ACCESS_CODE) { *prot |= PAGE_EXEC; } if (access_type & ACCESS_SUPER) { next = env->mmu.srp; } else { next = env->mmu.urp; } /* Root Index */ entry = M68K_POINTER_BASE(next) | M68K_ROOT_INDEX(address); next = ldl_phys(cs->as, entry); if (!M68K_UDT_VALID(next)) { return -1; } if (!(next & M68K_DESC_USED) && !debug) { stl_phys(cs->as, entry, next | M68K_DESC_USED); } if (next & M68K_DESC_WRITEPROT) { if (access_type & ACCESS_PTEST) { env->mmu.mmusr |= M68K_MMU_WP_040; } *prot &= ~PAGE_WRITE; if (access_type & ACCESS_STORE) { return -1; } } /* Pointer Index */ entry = M68K_POINTER_BASE(next) | M68K_POINTER_INDEX(address); next = ldl_phys(cs->as, entry); if (!M68K_UDT_VALID(next)) { return -1; } if (!(next & M68K_DESC_USED) && !debug) { stl_phys(cs->as, entry, next | M68K_DESC_USED); } if (next & M68K_DESC_WRITEPROT) { if (access_type & ACCESS_PTEST) { env->mmu.mmusr |= M68K_MMU_WP_040; } *prot &= ~PAGE_WRITE; if (access_type & ACCESS_STORE) { return -1; } } /* Page Index */ if (env->mmu.tcr & M68K_TCR_PAGE_8K) { entry = M68K_8K_PAGE_BASE(next) | M68K_8K_PAGE_INDEX(address); } else { entry = M68K_4K_PAGE_BASE(next) | M68K_4K_PAGE_INDEX(address); } next = ldl_phys(cs->as, entry); if (!M68K_PDT_VALID(next)) { return -1; } if (M68K_PDT_INDIRECT(next)) { next = ldl_phys(cs->as, M68K_INDIRECT_POINTER(next)); } if (access_type & ACCESS_STORE) { if (next & M68K_DESC_WRITEPROT) { if (!(next & M68K_DESC_USED) && !debug) { stl_phys(cs->as, entry, next | M68K_DESC_USED); } } else if ((next & (M68K_DESC_MODIFIED | M68K_DESC_USED)) != (M68K_DESC_MODIFIED | M68K_DESC_USED) && !debug) { stl_phys(cs->as, entry, next | (M68K_DESC_MODIFIED | M68K_DESC_USED)); } } else { if (!(next & M68K_DESC_USED) && !debug) { stl_phys(cs->as, entry, next | M68K_DESC_USED); } } if (env->mmu.tcr & M68K_TCR_PAGE_8K) { page_bits = 13; } else { page_bits = 12; } *page_size = 1 << page_bits; page_mask = ~(*page_size - 1); *physical = next & page_mask; if (access_type & ACCESS_PTEST) { env->mmu.mmusr |= next & M68K_MMU_SR_MASK_040; env->mmu.mmusr |= *physical & 0xfffff000; env->mmu.mmusr |= M68K_MMU_R_040; } if (next & M68K_DESC_WRITEPROT) { *prot &= ~PAGE_WRITE; if (access_type & ACCESS_STORE) { return -1; } } if (next & M68K_DESC_SUPERONLY) { if ((access_type & ACCESS_SUPER) == 0) { return -1; } } return 0; } hwaddr m68k_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) { M68kCPU *cpu = M68K_CPU(cs); CPUM68KState *env = &cpu->env; hwaddr phys_addr; int prot; int access_type; target_ulong page_size; if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) { /* MMU disabled */ return addr; } access_type = ACCESS_DATA | ACCESS_DEBUG; if (env->sr & SR_S) { access_type |= ACCESS_SUPER; } if (get_physical_address(env, &phys_addr, &prot, addr, access_type, &page_size) != 0) { return -1; } return phys_addr; } int m68k_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size, int rw, int mmu_idx) { M68kCPU *cpu = M68K_CPU(cs); CPUM68KState *env = &cpu->env; hwaddr physical; int prot; int access_type; int ret; target_ulong page_size; if ((env->mmu.tcr & M68K_TCR_ENABLED) == 0) { /* MMU disabled */ tlb_set_page(cs, address & TARGET_PAGE_MASK, address & TARGET_PAGE_MASK, PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx, TARGET_PAGE_SIZE); return 0; } if (rw == 2) { access_type = ACCESS_CODE; rw = 0; } else { access_type = ACCESS_DATA; if (rw) { access_type |= ACCESS_STORE; } } if (mmu_idx != MMU_USER_IDX) { access_type |= ACCESS_SUPER; } ret = get_physical_address(&cpu->env, &physical, &prot, address, access_type, &page_size); if (ret == 0) { address &= TARGET_PAGE_MASK; physical += address & (page_size - 1); tlb_set_page(cs, address, physical, prot, mmu_idx, TARGET_PAGE_SIZE); return 0; } /* page fault */ env->mmu.ssw = M68K_ATC_040; switch (size) { case 1: env->mmu.ssw |= M68K_BA_SIZE_BYTE; break; case 2: env->mmu.ssw |= M68K_BA_SIZE_WORD; break; case 4: env->mmu.ssw |= M68K_BA_SIZE_LONG; break; } if (access_type & ACCESS_SUPER) { env->mmu.ssw |= M68K_TM_040_SUPER; } if (access_type & ACCESS_CODE) { env->mmu.ssw |= M68K_TM_040_CODE; } else { env->mmu.ssw |= M68K_TM_040_DATA; } if (!(access_type & ACCESS_STORE)) { env->mmu.ssw |= M68K_RW_040; } env->mmu.ar = address; cs->exception_index = EXCP_ACCESS; return 1; } /* Notify CPU of a pending interrupt. Prioritization and vectoring should be handled by the interrupt controller. Real hardware only requests the vector when the interrupt is acknowledged by the CPU. For simplicitly we calculate it when the interrupt is signalled. */ void m68k_set_irq_level(M68kCPU *cpu, int level, uint8_t vector) { CPUState *cs = CPU(cpu); CPUM68KState *env = &cpu->env; env->pending_level = level; env->pending_vector = vector; if (level) { cpu_interrupt(cs, CPU_INTERRUPT_HARD); } else { cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); } } #endif uint32_t HELPER(bitrev)(uint32_t x) { x = ((x >> 1) & 0x55555555u) | ((x << 1) & 0xaaaaaaaau); x = ((x >> 2) & 0x33333333u) | ((x << 2) & 0xccccccccu); x = ((x >> 4) & 0x0f0f0f0fu) | ((x << 4) & 0xf0f0f0f0u); return bswap32(x); } uint32_t HELPER(ff1)(uint32_t x) { int n; for (n = 32; x; n--) x >>= 1; return n; } uint32_t HELPER(sats)(uint32_t val, uint32_t v) { /* The result has the opposite sign to the original value. */ if ((int32_t)v < 0) { val = (((int32_t)val) >> 31) ^ SIGNBIT; } return val; } void cpu_m68k_set_sr(CPUM68KState *env, uint32_t sr) { env->sr = sr & 0xffe0; cpu_m68k_set_ccr(env, sr); m68k_switch_sp(env); } void HELPER(set_sr)(CPUM68KState *env, uint32_t val) { cpu_m68k_set_sr(env, val); } /* MAC unit. */ /* FIXME: The MAC unit implementation is a bit of a mess. Some helpers take values, others take register numbers and manipulate the contents in-place. */ void HELPER(mac_move)(CPUM68KState *env, uint32_t dest, uint32_t src) { uint32_t mask; env->macc[dest] = env->macc[src]; mask = MACSR_PAV0 << dest; if (env->macsr & (MACSR_PAV0 << src)) env->macsr |= mask; else env->macsr &= ~mask; } uint64_t HELPER(macmuls)(CPUM68KState *env, uint32_t op1, uint32_t op2) { int64_t product; int64_t res; product = (uint64_t)op1 * op2; res = (product << 24) >> 24; if (res != product) { env->macsr |= MACSR_V; if (env->macsr & MACSR_OMC) { /* Make sure the accumulate operation overflows. */ if (product < 0) res = ~(1ll << 50); else res = 1ll << 50; } } return res; } uint64_t HELPER(macmulu)(CPUM68KState *env, uint32_t op1, uint32_t op2) { uint64_t product; product = (uint64_t)op1 * op2; if (product & (0xffffffull << 40)) { env->macsr |= MACSR_V; if (env->macsr & MACSR_OMC) { /* Make sure the accumulate operation overflows. */ product = 1ll << 50; } else { product &= ((1ull << 40) - 1); } } return product; } uint64_t HELPER(macmulf)(CPUM68KState *env, uint32_t op1, uint32_t op2) { uint64_t product; uint32_t remainder; product = (uint64_t)op1 * op2; if (env->macsr & MACSR_RT) { remainder = product & 0xffffff; product >>= 24; if (remainder > 0x800000) product++; else if (remainder == 0x800000) product += (product & 1); } else { product >>= 24; } return product; } void HELPER(macsats)(CPUM68KState *env, uint32_t acc) { int64_t tmp; int64_t result; tmp = env->macc[acc]; result = ((tmp << 16) >> 16); if (result != tmp) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { /* The result is saturated to 32 bits, despite overflow occurring at 48 bits. Seems weird, but that's what the hardware docs say. */ result = (result >> 63) ^ 0x7fffffff; } } env->macc[acc] = result; } void HELPER(macsatu)(CPUM68KState *env, uint32_t acc) { uint64_t val; val = env->macc[acc]; if (val & (0xffffull << 48)) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { if (val > (1ull << 53)) val = 0; else val = (1ull << 48) - 1; } else { val &= ((1ull << 48) - 1); } } env->macc[acc] = val; } void HELPER(macsatf)(CPUM68KState *env, uint32_t acc) { int64_t sum; int64_t result; sum = env->macc[acc]; result = (sum << 16) >> 16; if (result != sum) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_V) { env->macsr |= MACSR_PAV0 << acc; if (env->macsr & MACSR_OMC) { result = (result >> 63) ^ 0x7fffffffffffll; } } env->macc[acc] = result; } void HELPER(mac_set_flags)(CPUM68KState *env, uint32_t acc) { uint64_t val; val = env->macc[acc]; if (val == 0) { env->macsr |= MACSR_Z; } else if (val & (1ull << 47)) { env->macsr |= MACSR_N; } if (env->macsr & (MACSR_PAV0 << acc)) { env->macsr |= MACSR_V; } if (env->macsr & MACSR_FI) { val = ((int64_t)val) >> 40; if (val != 0 && val != -1) env->macsr |= MACSR_EV; } else if (env->macsr & MACSR_SU) { val = ((int64_t)val) >> 32; if (val != 0 && val != -1) env->macsr |= MACSR_EV; } else { if ((val >> 32) != 0) env->macsr |= MACSR_EV; } } #define EXTSIGN(val, index) ( \ (index == 0) ? (int8_t)(val) : ((index == 1) ? (int16_t)(val) : (val)) \ ) #define COMPUTE_CCR(op, x, n, z, v, c) { \ switch (op) { \ case CC_OP_FLAGS: \ /* Everything in place. */ \ break; \ case CC_OP_ADDB: \ case CC_OP_ADDW: \ case CC_OP_ADDL: \ res = n; \ src2 = v; \ src1 = EXTSIGN(res - src2, op - CC_OP_ADDB); \ c = x; \ z = n; \ v = (res ^ src1) & ~(src1 ^ src2); \ break; \ case CC_OP_SUBB: \ case CC_OP_SUBW: \ case CC_OP_SUBL: \ res = n; \ src2 = v; \ src1 = EXTSIGN(res + src2, op - CC_OP_SUBB); \ c = x; \ z = n; \ v = (res ^ src1) & (src1 ^ src2); \ break; \ case CC_OP_CMPB: \ case CC_OP_CMPW: \ case CC_OP_CMPL: \ src1 = n; \ src2 = v; \ res = EXTSIGN(src1 - src2, op - CC_OP_CMPB); \ n = res; \ z = res; \ c = src1 < src2; \ v = (res ^ src1) & (src1 ^ src2); \ break; \ case CC_OP_LOGIC: \ c = v = 0; \ z = n; \ break; \ default: \ cpu_abort(CPU(m68k_env_get_cpu(env)), "Bad CC_OP %d", op); \ } \ } while (0) uint32_t cpu_m68k_get_ccr(CPUM68KState *env) { uint32_t x, c, n, z, v; uint32_t res, src1, src2; x = env->cc_x; n = env->cc_n; z = env->cc_z; v = env->cc_v; c = env->cc_c; COMPUTE_CCR(env->cc_op, x, n, z, v, c); n = n >> 31; z = (z == 0); v = v >> 31; return x * CCF_X + n * CCF_N + z * CCF_Z + v * CCF_V + c * CCF_C; } uint32_t HELPER(get_ccr)(CPUM68KState *env) { return cpu_m68k_get_ccr(env); } void cpu_m68k_set_ccr(CPUM68KState *env, uint32_t ccr) { env->cc_x = (ccr & CCF_X ? 1 : 0); env->cc_n = (ccr & CCF_N ? -1 : 0); env->cc_z = (ccr & CCF_Z ? 0 : 1); env->cc_v = (ccr & CCF_V ? -1 : 0); env->cc_c = (ccr & CCF_C ? 1 : 0); env->cc_op = CC_OP_FLAGS; } void HELPER(set_ccr)(CPUM68KState *env, uint32_t ccr) { cpu_m68k_set_ccr(env, ccr); } void HELPER(flush_flags)(CPUM68KState *env, uint32_t cc_op) { uint32_t res, src1, src2; COMPUTE_CCR(cc_op, env->cc_x, env->cc_n, env->cc_z, env->cc_v, env->cc_c); env->cc_op = CC_OP_FLAGS; } uint32_t HELPER(get_macf)(CPUM68KState *env, uint64_t val) { int rem; uint32_t result; if (env->macsr & MACSR_SU) { /* 16-bit rounding. */ rem = val & 0xffffff; val = (val >> 24) & 0xffffu; if (rem > 0x800000) val++; else if (rem == 0x800000) val += (val & 1); } else if (env->macsr & MACSR_RT) { /* 32-bit rounding. */ rem = val & 0xff; val >>= 8; if (rem > 0x80) val++; else if (rem == 0x80) val += (val & 1); } else { /* No rounding. */ val >>= 8; } if (env->macsr & MACSR_OMC) { /* Saturate. */ if (env->macsr & MACSR_SU) { if (val != (uint16_t) val) { result = ((val >> 63) ^ 0x7fff) & 0xffff; } else { result = val & 0xffff; } } else { if (val != (uint32_t)val) { result = ((uint32_t)(val >> 63) & 0x7fffffff); } else { result = (uint32_t)val; } } } else { /* No saturation. */ if (env->macsr & MACSR_SU) { result = val & 0xffff; } else { result = (uint32_t)val; } } return result; } uint32_t HELPER(get_macs)(uint64_t val) { if (val == (int32_t)val) { return (int32_t)val; } else { return (val >> 61) ^ ~SIGNBIT; } } uint32_t HELPER(get_macu)(uint64_t val) { if ((val >> 32) == 0) { return (uint32_t)val; } else { return 0xffffffffu; } } uint32_t HELPER(get_mac_extf)(CPUM68KState *env, uint32_t acc) { uint32_t val; val = env->macc[acc] & 0x00ff; val |= (env->macc[acc] >> 32) & 0xff00; val |= (env->macc[acc + 1] << 16) & 0x00ff0000; val |= (env->macc[acc + 1] >> 16) & 0xff000000; return val; } uint32_t HELPER(get_mac_exti)(CPUM68KState *env, uint32_t acc) { uint32_t val; val = (env->macc[acc] >> 32) & 0xffff; val |= (env->macc[acc + 1] >> 16) & 0xffff0000; return val; } void HELPER(set_mac_extf)(CPUM68KState *env, uint32_t val, uint32_t acc) { int64_t res; int32_t tmp; res = env->macc[acc] & 0xffffffff00ull; tmp = (int16_t)(val & 0xff00); res |= ((int64_t)tmp) << 32; res |= val & 0xff; env->macc[acc] = res; res = env->macc[acc + 1] & 0xffffffff00ull; tmp = (val & 0xff000000); res |= ((int64_t)tmp) << 16; res |= (val >> 16) & 0xff; env->macc[acc + 1] = res; } void HELPER(set_mac_exts)(CPUM68KState *env, uint32_t val, uint32_t acc) { int64_t res; int32_t tmp; res = (uint32_t)env->macc[acc]; tmp = (int16_t)val; res |= ((int64_t)tmp) << 32; env->macc[acc] = res; res = (uint32_t)env->macc[acc + 1]; tmp = val & 0xffff0000; res |= (int64_t)tmp << 16; env->macc[acc + 1] = res; } void HELPER(set_mac_extu)(CPUM68KState *env, uint32_t val, uint32_t acc) { uint64_t res; res = (uint32_t)env->macc[acc]; res |= ((uint64_t)(val & 0xffff)) << 32; env->macc[acc] = res; res = (uint32_t)env->macc[acc + 1]; res |= (uint64_t)(val & 0xffff0000) << 16; env->macc[acc + 1] = res; } #if defined(CONFIG_SOFTMMU) void HELPER(ptest)(CPUM68KState *env, uint32_t addr, uint32_t is_read) { M68kCPU *cpu = m68k_env_get_cpu(env); CPUState *cs = CPU(cpu); hwaddr physical; int access_type; int prot; int ret; target_ulong page_size; access_type = ACCESS_PTEST; if (env->dfc & 4) { access_type |= ACCESS_SUPER; } if ((env->dfc & 3) == 2) { access_type |= ACCESS_CODE; } if (!is_read) { access_type |= ACCESS_STORE; } env->mmu.mmusr = 0; env->mmu.ssw = 0; ret = get_physical_address(env, &physical, &prot, addr, access_type, &page_size); if (ret == 0) { addr &= TARGET_PAGE_MASK; physical += addr & (page_size - 1); tlb_set_page(cs, addr, physical, prot, access_type & ACCESS_SUPER ? MMU_KERNEL_IDX : MMU_USER_IDX, page_size); } } void HELPER(pflush)(CPUM68KState *env, uint32_t addr, uint32_t opmode) { M68kCPU *cpu = m68k_env_get_cpu(env); switch (opmode) { case 0: /* Flush page entry if not global */ case 1: /* Flush page entry */ tlb_flush_page(CPU(cpu), addr); break; case 2: /* Flush all except global entries */ tlb_flush(CPU(cpu)); break; case 3: /* Flush all entries */ tlb_flush(CPU(cpu)); break; } } void HELPER(reset)(CPUM68KState *env) { /* FIXME: reset all except CPU */ } #endif