/* * QEMU monitor * * Copyright (c) 2003-2004 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "cpu.h" #include "monitor/monitor.h" #include "monitor/hmp-target.h" #include "monitor/hmp.h" #include "qapi/qmp/qdict.h" #include "sysemu/kvm.h" #include "sysemu/sev.h" #include "qapi/error.h" #include "sev_i386.h" #include "qapi/qapi-commands-misc-target.h" #include "qapi/qapi-commands-misc.h" /* Perform linear address sign extension */ static hwaddr addr_canonical(CPUArchState *env, hwaddr addr) { #ifdef TARGET_X86_64 if (env->cr[4] & CR4_LA57_MASK) { if (addr & (1ULL << 56)) { addr |= (hwaddr)-(1LL << 57); } } else { if (addr & (1ULL << 47)) { addr |= (hwaddr)-(1LL << 48); } } #endif return addr; } static void print_pte(Monitor *mon, CPUArchState *env, hwaddr addr, hwaddr pte, hwaddr mask) { addr = addr_canonical(env, addr); monitor_printf(mon, TARGET_FMT_plx ": " TARGET_FMT_plx " %c%c%c%c%c%c%c%c%c\n", addr, pte & mask, pte & PG_NX_MASK ? 'X' : '-', pte & PG_GLOBAL_MASK ? 'G' : '-', pte & PG_PSE_MASK ? 'P' : '-', pte & PG_DIRTY_MASK ? 'D' : '-', pte & PG_ACCESSED_MASK ? 'A' : '-', pte & PG_PCD_MASK ? 'C' : '-', pte & PG_PWT_MASK ? 'T' : '-', pte & PG_USER_MASK ? 'U' : '-', pte & PG_RW_MASK ? 'W' : '-'); } static void tlb_info_32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2; uint32_t pgd, pde, pte; pgd = env->cr[3] & ~0xfff; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, &pde, 4); pde = le32_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { /* 4M pages */ print_pte(mon, env, (l1 << 22), pde, ~((1 << 21) - 1)); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4); pte = le32_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, env, (l1 << 22) + (l2 << 12), pte & ~PG_PSE_MASK, ~0xfff); } } } } } } static void tlb_info_pae32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2, l3; uint64_t pdpe, pde, pte; uint64_t pdp_addr, pd_addr, pt_addr; pdp_addr = env->cr[3] & ~0x1f; for (l1 = 0; l1 < 4; l1++) { cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); if (pdpe & PG_PRESENT_MASK) { pd_addr = pdpe & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8); pde = le64_to_cpu(pde); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { /* 2M pages with PAE, CR4.PSE is ignored */ print_pte(mon, env, (l1 << 30) + (l2 << 21), pde, ~((hwaddr)(1 << 20) - 1)); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8); pte = le64_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, env, (l1 << 30) + (l2 << 21) + (l3 << 12), pte & ~PG_PSE_MASK, ~(hwaddr)0xfff); } } } } } } } } #ifdef TARGET_X86_64 static void tlb_info_la48(Monitor *mon, CPUArchState *env, uint64_t l0, uint64_t pml4_addr) { uint64_t l1, l2, l3, l4; uint64_t pml4e, pdpe, pde, pte; uint64_t pdp_addr, pd_addr, pt_addr; for (l1 = 0; l1 < 512; l1++) { cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8); pml4e = le64_to_cpu(pml4e); if (!(pml4e & PG_PRESENT_MASK)) { continue; } pdp_addr = pml4e & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); if (!(pdpe & PG_PRESENT_MASK)) { continue; } if (pdpe & PG_PSE_MASK) { /* 1G pages, CR4.PSE is ignored */ print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30), pdpe, 0x3ffffc0000000ULL); continue; } pd_addr = pdpe & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8); pde = le64_to_cpu(pde); if (!(pde & PG_PRESENT_MASK)) { continue; } if (pde & PG_PSE_MASK) { /* 2M pages, CR4.PSE is ignored */ print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21), pde, 0x3ffffffe00000ULL); continue; } pt_addr = pde & 0x3fffffffff000ULL; for (l4 = 0; l4 < 512; l4++) { cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8); pte = le64_to_cpu(pte); if (pte & PG_PRESENT_MASK) { print_pte(mon, env, (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21) + (l4 << 12), pte & ~PG_PSE_MASK, 0x3fffffffff000ULL); } } } } } } static void tlb_info_la57(Monitor *mon, CPUArchState *env) { uint64_t l0; uint64_t pml5e; uint64_t pml5_addr; pml5_addr = env->cr[3] & 0x3fffffffff000ULL; for (l0 = 0; l0 < 512; l0++) { cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8); pml5e = le64_to_cpu(pml5e); if (pml5e & PG_PRESENT_MASK) { tlb_info_la48(mon, env, l0, pml5e & 0x3fffffffff000ULL); } } } #endif /* TARGET_X86_64 */ void hmp_info_tlb(Monitor *mon, const QDict *qdict) { CPUArchState *env; env = mon_get_cpu_env(mon); if (!env) { monitor_printf(mon, "No CPU available\n"); return; } if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } if (env->cr[4] & CR4_PAE_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { if (env->cr[4] & CR4_LA57_MASK) { tlb_info_la57(mon, env); } else { tlb_info_la48(mon, env, 0, env->cr[3] & 0x3fffffffff000ULL); } } else #endif { tlb_info_pae32(mon, env); } } else { tlb_info_32(mon, env); } } static void mem_print(Monitor *mon, CPUArchState *env, hwaddr *pstart, int *plast_prot, hwaddr end, int prot) { int prot1; prot1 = *plast_prot; if (prot != prot1) { if (*pstart != -1) { monitor_printf(mon, TARGET_FMT_plx "-" TARGET_FMT_plx " " TARGET_FMT_plx " %c%c%c\n", addr_canonical(env, *pstart), addr_canonical(env, end), addr_canonical(env, end - *pstart), prot1 & PG_USER_MASK ? 'u' : '-', 'r', prot1 & PG_RW_MASK ? 'w' : '-'); } if (prot != 0) *pstart = end; else *pstart = -1; *plast_prot = prot; } } static void mem_info_32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2; int prot, last_prot; uint32_t pgd, pde, pte; hwaddr start, end; pgd = env->cr[3] & ~0xfff; last_prot = 0; start = -1; for(l1 = 0; l1 < 1024; l1++) { cpu_physical_memory_read(pgd + l1 * 4, &pde, 4); pde = le32_to_cpu(pde); end = l1 << 22; if (pde & PG_PRESENT_MASK) { if ((pde & PG_PSE_MASK) && (env->cr[4] & CR4_PSE_MASK)) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(mon, env, &start, &last_prot, end, prot); } else { for(l2 = 0; l2 < 1024; l2++) { cpu_physical_memory_read((pde & ~0xfff) + l2 * 4, &pte, 4); pte = le32_to_cpu(pte); end = (l1 << 22) + (l2 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(mon, env, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0); } static void mem_info_pae32(Monitor *mon, CPUArchState *env) { unsigned int l1, l2, l3; int prot, last_prot; uint64_t pdpe, pde, pte; uint64_t pdp_addr, pd_addr, pt_addr; hwaddr start, end; pdp_addr = env->cr[3] & ~0x1f; last_prot = 0; start = -1; for (l1 = 0; l1 < 4; l1++) { cpu_physical_memory_read(pdp_addr + l1 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); end = l1 << 30; if (pdpe & PG_PRESENT_MASK) { pd_addr = pdpe & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pd_addr + l2 * 8, &pde, 8); pde = le64_to_cpu(pde); end = (l1 << 30) + (l2 << 21); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); mem_print(mon, env, &start, &last_prot, end, prot); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pt_addr + l3 * 8, &pte, 8); pte = le64_to_cpu(pte); end = (l1 << 30) + (l2 << 21) + (l3 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); } else { prot = 0; } mem_print(mon, env, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 32, 0); } #ifdef TARGET_X86_64 static void mem_info_la48(Monitor *mon, CPUArchState *env) { int prot, last_prot; uint64_t l1, l2, l3, l4; uint64_t pml4e, pdpe, pde, pte; uint64_t pml4_addr, pdp_addr, pd_addr, pt_addr, start, end; pml4_addr = env->cr[3] & 0x3fffffffff000ULL; last_prot = 0; start = -1; for (l1 = 0; l1 < 512; l1++) { cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8); pml4e = le64_to_cpu(pml4e); end = l1 << 39; if (pml4e & PG_PRESENT_MASK) { pdp_addr = pml4e & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); end = (l1 << 39) + (l2 << 30); if (pdpe & PG_PRESENT_MASK) { if (pdpe & PG_PSE_MASK) { prot = pdpe & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e; mem_print(mon, env, &start, &last_prot, end, prot); } else { pd_addr = pdpe & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8); pde = le64_to_cpu(pde); end = (l1 << 39) + (l2 << 30) + (l3 << 21); if (pde & PG_PRESENT_MASK) { if (pde & PG_PSE_MASK) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e & pdpe; mem_print(mon, env, &start, &last_prot, end, prot); } else { pt_addr = pde & 0x3fffffffff000ULL; for (l4 = 0; l4 < 512; l4++) { cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8); pte = le64_to_cpu(pte); end = (l1 << 39) + (l2 << 30) + (l3 << 21) + (l4 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml4e & pdpe & pde; } else { prot = 0; } mem_print(mon, env, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } } else { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); } } /* Flush last range */ mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 48, 0); } static void mem_info_la57(Monitor *mon, CPUArchState *env) { int prot, last_prot; uint64_t l0, l1, l2, l3, l4; uint64_t pml5e, pml4e, pdpe, pde, pte; uint64_t pml5_addr, pml4_addr, pdp_addr, pd_addr, pt_addr, start, end; pml5_addr = env->cr[3] & 0x3fffffffff000ULL; last_prot = 0; start = -1; for (l0 = 0; l0 < 512; l0++) { cpu_physical_memory_read(pml5_addr + l0 * 8, &pml5e, 8); pml5e = le64_to_cpu(pml5e); end = l0 << 48; if (!(pml5e & PG_PRESENT_MASK)) { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); continue; } pml4_addr = pml5e & 0x3fffffffff000ULL; for (l1 = 0; l1 < 512; l1++) { cpu_physical_memory_read(pml4_addr + l1 * 8, &pml4e, 8); pml4e = le64_to_cpu(pml4e); end = (l0 << 48) + (l1 << 39); if (!(pml4e & PG_PRESENT_MASK)) { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); continue; } pdp_addr = pml4e & 0x3fffffffff000ULL; for (l2 = 0; l2 < 512; l2++) { cpu_physical_memory_read(pdp_addr + l2 * 8, &pdpe, 8); pdpe = le64_to_cpu(pdpe); end = (l0 << 48) + (l1 << 39) + (l2 << 30); if (pdpe & PG_PRESENT_MASK) { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); continue; } if (pdpe & PG_PSE_MASK) { prot = pdpe & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml5e & pml4e; mem_print(mon, env, &start, &last_prot, end, prot); continue; } pd_addr = pdpe & 0x3fffffffff000ULL; for (l3 = 0; l3 < 512; l3++) { cpu_physical_memory_read(pd_addr + l3 * 8, &pde, 8); pde = le64_to_cpu(pde); end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21); if (pde & PG_PRESENT_MASK) { prot = 0; mem_print(mon, env, &start, &last_prot, end, prot); continue; } if (pde & PG_PSE_MASK) { prot = pde & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml5e & pml4e & pdpe; mem_print(mon, env, &start, &last_prot, end, prot); continue; } pt_addr = pde & 0x3fffffffff000ULL; for (l4 = 0; l4 < 512; l4++) { cpu_physical_memory_read(pt_addr + l4 * 8, &pte, 8); pte = le64_to_cpu(pte); end = (l0 << 48) + (l1 << 39) + (l2 << 30) + (l3 << 21) + (l4 << 12); if (pte & PG_PRESENT_MASK) { prot = pte & (PG_USER_MASK | PG_RW_MASK | PG_PRESENT_MASK); prot &= pml5e & pml4e & pdpe & pde; } else { prot = 0; } mem_print(mon, env, &start, &last_prot, end, prot); } } } } } /* Flush last range */ mem_print(mon, env, &start, &last_prot, (hwaddr)1 << 57, 0); } #endif /* TARGET_X86_64 */ void hmp_info_mem(Monitor *mon, const QDict *qdict) { CPUArchState *env; env = mon_get_cpu_env(mon); if (!env) { monitor_printf(mon, "No CPU available\n"); return; } if (!(env->cr[0] & CR0_PG_MASK)) { monitor_printf(mon, "PG disabled\n"); return; } if (env->cr[4] & CR4_PAE_MASK) { #ifdef TARGET_X86_64 if (env->hflags & HF_LMA_MASK) { if (env->cr[4] & CR4_LA57_MASK) { mem_info_la57(mon, env); } else { mem_info_la48(mon, env); } } else #endif { mem_info_pae32(mon, env); } } else { mem_info_32(mon, env); } } void hmp_mce(Monitor *mon, const QDict *qdict) { X86CPU *cpu; CPUState *cs; int cpu_index = qdict_get_int(qdict, "cpu_index"); int bank = qdict_get_int(qdict, "bank"); uint64_t status = qdict_get_int(qdict, "status"); uint64_t mcg_status = qdict_get_int(qdict, "mcg_status"); uint64_t addr = qdict_get_int(qdict, "addr"); uint64_t misc = qdict_get_int(qdict, "misc"); int flags = MCE_INJECT_UNCOND_AO; if (qdict_get_try_bool(qdict, "broadcast", false)) { flags |= MCE_INJECT_BROADCAST; } cs = qemu_get_cpu(cpu_index); if (cs != NULL) { cpu = X86_CPU(cs); cpu_x86_inject_mce(mon, cpu, bank, status, mcg_status, addr, misc, flags); } } static target_long monitor_get_pc(Monitor *mon, const struct MonitorDef *md, int val) { CPUArchState *env = mon_get_cpu_env(mon); return env->eip + env->segs[R_CS].base; } const MonitorDef monitor_defs[] = { #define SEG(name, seg) \ { name, offsetof(CPUX86State, segs[seg].selector), NULL, MD_I32 },\ { name ".base", offsetof(CPUX86State, segs[seg].base) },\ { name ".limit", offsetof(CPUX86State, segs[seg].limit), NULL, MD_I32 }, { "eax", offsetof(CPUX86State, regs[0]) }, { "ecx", offsetof(CPUX86State, regs[1]) }, { "edx", offsetof(CPUX86State, regs[2]) }, { "ebx", offsetof(CPUX86State, regs[3]) }, { "esp|sp", offsetof(CPUX86State, regs[4]) }, { "ebp|fp", offsetof(CPUX86State, regs[5]) }, { "esi", offsetof(CPUX86State, regs[6]) }, { "edi", offsetof(CPUX86State, regs[7]) }, #ifdef TARGET_X86_64 { "r8", offsetof(CPUX86State, regs[8]) }, { "r9", offsetof(CPUX86State, regs[9]) }, { "r10", offsetof(CPUX86State, regs[10]) }, { "r11", offsetof(CPUX86State, regs[11]) }, { "r12", offsetof(CPUX86State, regs[12]) }, { "r13", offsetof(CPUX86State, regs[13]) }, { "r14", offsetof(CPUX86State, regs[14]) }, { "r15", offsetof(CPUX86State, regs[15]) }, #endif { "eflags", offsetof(CPUX86State, eflags) }, { "eip", offsetof(CPUX86State, eip) }, SEG("cs", R_CS) SEG("ds", R_DS) SEG("es", R_ES) SEG("ss", R_SS) SEG("fs", R_FS) SEG("gs", R_GS) { "pc", 0, monitor_get_pc, }, { NULL }, }; const MonitorDef *target_monitor_defs(void) { return monitor_defs; } void hmp_info_local_apic(Monitor *mon, const QDict *qdict) { CPUState *cs; if (qdict_haskey(qdict, "apic-id")) { int id = qdict_get_try_int(qdict, "apic-id", 0); cs = cpu_by_arch_id(id); } else { cs = mon_get_cpu(mon); } if (!cs) { monitor_printf(mon, "No CPU available\n"); return; } x86_cpu_dump_local_apic_state(cs, CPU_DUMP_FPU); } void hmp_info_io_apic(Monitor *mon, const QDict *qdict) { monitor_printf(mon, "This command is obsolete and will be " "removed soon. Please use 'info pic' instead.\n"); } SevInfo *qmp_query_sev(Error **errp) { SevInfo *info; info = sev_get_info(); if (!info) { error_setg(errp, "SEV feature is not available"); return NULL; } return info; } void hmp_info_sev(Monitor *mon, const QDict *qdict) { SevInfo *info = sev_get_info(); if (info && info->enabled) { monitor_printf(mon, "handle: %d\n", info->handle); monitor_printf(mon, "state: %s\n", SevState_str(info->state)); monitor_printf(mon, "build: %d\n", info->build_id); monitor_printf(mon, "api version: %d.%d\n", info->api_major, info->api_minor); monitor_printf(mon, "debug: %s\n", info->policy & SEV_POLICY_NODBG ? "off" : "on"); monitor_printf(mon, "key-sharing: %s\n", info->policy & SEV_POLICY_NOKS ? "off" : "on"); } else { monitor_printf(mon, "SEV is not enabled\n"); } qapi_free_SevInfo(info); } SevLaunchMeasureInfo *qmp_query_sev_launch_measure(Error **errp) { char *data; SevLaunchMeasureInfo *info; data = sev_get_launch_measurement(); if (!data) { error_setg(errp, "Measurement is not available"); return NULL; } info = g_malloc0(sizeof(*info)); info->data = data; return info; } SevCapability *qmp_query_sev_capabilities(Error **errp) { return sev_get_capabilities(errp); } void qmp_sev_inject_launch_secret(const char *packet_hdr, const char *secret, uint64_t gpa, Error **errp) { sev_inject_launch_secret(packet_hdr, secret, gpa, errp); }