/* * AArch64 translation * * Copyright (c) 2013 Alexander Graf * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, see . */ #include "qemu/osdep.h" #include "cpu.h" #include "exec/exec-all.h" #include "tcg-op.h" #include "tcg-op-gvec.h" #include "qemu/log.h" #include "arm_ldst.h" #include "translate.h" #include "internals.h" #include "qemu/host-utils.h" #include "exec/semihost.h" #include "exec/gen-icount.h" #include "exec/helper-proto.h" #include "exec/helper-gen.h" #include "exec/log.h" #include "trace-tcg.h" #include "translate-a64.h" static TCGv_i64 cpu_X[32]; static TCGv_i64 cpu_pc; /* Load/store exclusive handling */ static TCGv_i64 cpu_exclusive_high; static const char *regnames[] = { "x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15", "x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23", "x24", "x25", "x26", "x27", "x28", "x29", "lr", "sp" }; enum a64_shift_type { A64_SHIFT_TYPE_LSL = 0, A64_SHIFT_TYPE_LSR = 1, A64_SHIFT_TYPE_ASR = 2, A64_SHIFT_TYPE_ROR = 3 }; /* Table based decoder typedefs - used when the relevant bits for decode * are too awkwardly scattered across the instruction (eg SIMD). */ typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn); typedef struct AArch64DecodeTable { uint32_t pattern; uint32_t mask; AArch64DecodeFn *disas_fn; } AArch64DecodeTable; /* Function prototype for gen_ functions for calling Neon helpers */ typedef void NeonGenOneOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32); typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32); typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32); typedef void NeonGenTwo64OpFn(TCGv_i64, TCGv_i64, TCGv_i64); typedef void NeonGenTwo64OpEnvFn(TCGv_i64, TCGv_ptr, TCGv_i64, TCGv_i64); typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64); typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64); typedef void NeonGenWidenFn(TCGv_i64, TCGv_i32); typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr); typedef void NeonGenOneOpFn(TCGv_i64, TCGv_i64); typedef void CryptoTwoOpFn(TCGv_ptr, TCGv_ptr); typedef void CryptoThreeOpIntFn(TCGv_ptr, TCGv_ptr, TCGv_i32); typedef void CryptoThreeOpFn(TCGv_ptr, TCGv_ptr, TCGv_ptr); typedef void AtomicThreeOpFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGArg, TCGMemOp); /* initialize TCG globals. */ void a64_translate_init(void) { int i; cpu_pc = tcg_global_mem_new_i64(cpu_env, offsetof(CPUARMState, pc), "pc"); for (i = 0; i < 32; i++) { cpu_X[i] = tcg_global_mem_new_i64(cpu_env, offsetof(CPUARMState, xregs[i]), regnames[i]); } cpu_exclusive_high = tcg_global_mem_new_i64(cpu_env, offsetof(CPUARMState, exclusive_high), "exclusive_high"); } static inline int get_a64_user_mem_index(DisasContext *s) { /* Return the core mmu_idx to use for A64 "unprivileged load/store" insns: * if EL1, access as if EL0; otherwise access at current EL */ ARMMMUIdx useridx; switch (s->mmu_idx) { case ARMMMUIdx_S12NSE1: useridx = ARMMMUIdx_S12NSE0; break; case ARMMMUIdx_S1SE1: useridx = ARMMMUIdx_S1SE0; break; case ARMMMUIdx_S2NS: g_assert_not_reached(); default: useridx = s->mmu_idx; break; } return arm_to_core_mmu_idx(useridx); } void aarch64_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf, int flags) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; uint32_t psr = pstate_read(env); int i; int el = arm_current_el(env); const char *ns_status; cpu_fprintf(f, " PC=%016" PRIx64 " ", env->pc); for (i = 0; i < 32; i++) { if (i == 31) { cpu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]); } else { cpu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i], (i + 2) % 3 ? " " : "\n"); } } if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) { ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S "; } else { ns_status = ""; } cpu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c", psr, psr & PSTATE_N ? 'N' : '-', psr & PSTATE_Z ? 'Z' : '-', psr & PSTATE_C ? 'C' : '-', psr & PSTATE_V ? 'V' : '-', ns_status, el, psr & PSTATE_SP ? 'h' : 't'); if (!(flags & CPU_DUMP_FPU)) { cpu_fprintf(f, "\n"); return; } if (fp_exception_el(env, el) != 0) { cpu_fprintf(f, " FPU disabled\n"); return; } cpu_fprintf(f, " FPCR=%08x FPSR=%08x\n", vfp_get_fpcr(env), vfp_get_fpsr(env)); if (arm_feature(env, ARM_FEATURE_SVE) && sve_exception_el(env, el) == 0) { int j, zcr_len = sve_zcr_len_for_el(env, el); for (i = 0; i <= FFR_PRED_NUM; i++) { bool eol; if (i == FFR_PRED_NUM) { cpu_fprintf(f, "FFR="); /* It's last, so end the line. */ eol = true; } else { cpu_fprintf(f, "P%02d=", i); switch (zcr_len) { case 0: eol = i % 8 == 7; break; case 1: eol = i % 6 == 5; break; case 2: case 3: eol = i % 3 == 2; break; default: /* More than one quadword per predicate. */ eol = true; break; } } for (j = zcr_len / 4; j >= 0; j--) { int digits; if (j * 4 + 4 <= zcr_len + 1) { digits = 16; } else { digits = (zcr_len % 4 + 1) * 4; } cpu_fprintf(f, "%0*" PRIx64 "%s", digits, env->vfp.pregs[i].p[j], j ? ":" : eol ? "\n" : " "); } } for (i = 0; i < 32; i++) { if (zcr_len == 0) { cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s", i, env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0], i & 1 ? "\n" : " "); } else if (zcr_len == 1) { cpu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 ":%016" PRIx64 ":%016" PRIx64 "\n", i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2], env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]); } else { for (j = zcr_len; j >= 0; j--) { bool odd = (zcr_len - j) % 2 != 0; if (j == zcr_len) { cpu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1); } else if (!odd) { if (j > 0) { cpu_fprintf(f, " [%x-%x]=", j, j - 1); } else { cpu_fprintf(f, " [%x]=", j); } } cpu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s", env->vfp.zregs[i].d[j * 2 + 1], env->vfp.zregs[i].d[j * 2], odd || j == 0 ? "\n" : ":"); } } } } else { for (i = 0; i < 32; i++) { uint64_t *q = aa64_vfp_qreg(env, i); cpu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s", i, q[1], q[0], (i & 1 ? "\n" : " ")); } } } void gen_a64_set_pc_im(uint64_t val) { tcg_gen_movi_i64(cpu_pc, val); } /* Load the PC from a generic TCG variable. * * If address tagging is enabled via the TCR TBI bits, then loading * an address into the PC will clear out any tag in the it: * + for EL2 and EL3 there is only one TBI bit, and if it is set * then the address is zero-extended, clearing bits [63:56] * + for EL0 and EL1, TBI0 controls addresses with bit 55 == 0 * and TBI1 controls addressses with bit 55 == 1. * If the appropriate TBI bit is set for the address then * the address is sign-extended from bit 55 into bits [63:56] * * We can avoid doing this for relative-branches, because the * PC + offset can never overflow into the tag bits (assuming * that virtual addresses are less than 56 bits wide, as they * are currently), but we must handle it for branch-to-register. */ static void gen_a64_set_pc(DisasContext *s, TCGv_i64 src) { if (s->current_el <= 1) { /* Test if NEITHER or BOTH TBI values are set. If so, no need to * examine bit 55 of address, can just generate code. * If mixed, then test via generated code */ if (s->tbi0 && s->tbi1) { TCGv_i64 tmp_reg = tcg_temp_new_i64(); /* Both bits set, sign extension from bit 55 into [63:56] will * cover both cases */ tcg_gen_shli_i64(tmp_reg, src, 8); tcg_gen_sari_i64(cpu_pc, tmp_reg, 8); tcg_temp_free_i64(tmp_reg); } else if (!s->tbi0 && !s->tbi1) { /* Neither bit set, just load it as-is */ tcg_gen_mov_i64(cpu_pc, src); } else { TCGv_i64 tcg_tmpval = tcg_temp_new_i64(); TCGv_i64 tcg_bit55 = tcg_temp_new_i64(); TCGv_i64 tcg_zero = tcg_const_i64(0); tcg_gen_andi_i64(tcg_bit55, src, (1ull << 55)); if (s->tbi0) { /* tbi0==1, tbi1==0, so 0-fill upper byte if bit 55 = 0 */ tcg_gen_andi_i64(tcg_tmpval, src, 0x00FFFFFFFFFFFFFFull); tcg_gen_movcond_i64(TCG_COND_EQ, cpu_pc, tcg_bit55, tcg_zero, tcg_tmpval, src); } else { /* tbi0==0, tbi1==1, so 1-fill upper byte if bit 55 = 1 */ tcg_gen_ori_i64(tcg_tmpval, src, 0xFF00000000000000ull); tcg_gen_movcond_i64(TCG_COND_NE, cpu_pc, tcg_bit55, tcg_zero, tcg_tmpval, src); } tcg_temp_free_i64(tcg_zero); tcg_temp_free_i64(tcg_bit55); tcg_temp_free_i64(tcg_tmpval); } } else { /* EL > 1 */ if (s->tbi0) { /* Force tag byte to all zero */ tcg_gen_andi_i64(cpu_pc, src, 0x00FFFFFFFFFFFFFFull); } else { /* Load unmodified address */ tcg_gen_mov_i64(cpu_pc, src); } } } typedef struct DisasCompare64 { TCGCond cond; TCGv_i64 value; } DisasCompare64; static void a64_test_cc(DisasCompare64 *c64, int cc) { DisasCompare c32; arm_test_cc(&c32, cc); /* Sign-extend the 32-bit value so that the GE/LT comparisons work * properly. The NE/EQ comparisons are also fine with this choice. */ c64->cond = c32.cond; c64->value = tcg_temp_new_i64(); tcg_gen_ext_i32_i64(c64->value, c32.value); arm_free_cc(&c32); } static void a64_free_cc(DisasCompare64 *c64) { tcg_temp_free_i64(c64->value); } static void gen_exception_internal(int excp) { TCGv_i32 tcg_excp = tcg_const_i32(excp); assert(excp_is_internal(excp)); gen_helper_exception_internal(cpu_env, tcg_excp); tcg_temp_free_i32(tcg_excp); } static void gen_exception(int excp, uint32_t syndrome, uint32_t target_el) { TCGv_i32 tcg_excp = tcg_const_i32(excp); TCGv_i32 tcg_syn = tcg_const_i32(syndrome); TCGv_i32 tcg_el = tcg_const_i32(target_el); gen_helper_exception_with_syndrome(cpu_env, tcg_excp, tcg_syn, tcg_el); tcg_temp_free_i32(tcg_el); tcg_temp_free_i32(tcg_syn); tcg_temp_free_i32(tcg_excp); } static void gen_exception_internal_insn(DisasContext *s, int offset, int excp) { gen_a64_set_pc_im(s->pc - offset); gen_exception_internal(excp); s->base.is_jmp = DISAS_NORETURN; } static void gen_exception_insn(DisasContext *s, int offset, int excp, uint32_t syndrome, uint32_t target_el) { gen_a64_set_pc_im(s->pc - offset); gen_exception(excp, syndrome, target_el); s->base.is_jmp = DISAS_NORETURN; } static void gen_exception_bkpt_insn(DisasContext *s, int offset, uint32_t syndrome) { TCGv_i32 tcg_syn; gen_a64_set_pc_im(s->pc - offset); tcg_syn = tcg_const_i32(syndrome); gen_helper_exception_bkpt_insn(cpu_env, tcg_syn); tcg_temp_free_i32(tcg_syn); s->base.is_jmp = DISAS_NORETURN; } static void gen_ss_advance(DisasContext *s) { /* If the singlestep state is Active-not-pending, advance to * Active-pending. */ if (s->ss_active) { s->pstate_ss = 0; gen_helper_clear_pstate_ss(cpu_env); } } static void gen_step_complete_exception(DisasContext *s) { /* We just completed step of an insn. Move from Active-not-pending * to Active-pending, and then also take the swstep exception. * This corresponds to making the (IMPDEF) choice to prioritize * swstep exceptions over asynchronous exceptions taken to an exception * level where debug is disabled. This choice has the advantage that * we do not need to maintain internal state corresponding to the * ISV/EX syndrome bits between completion of the step and generation * of the exception, and our syndrome information is always correct. */ gen_ss_advance(s); gen_exception(EXCP_UDEF, syn_swstep(s->ss_same_el, 1, s->is_ldex), default_exception_el(s)); s->base.is_jmp = DISAS_NORETURN; } static inline bool use_goto_tb(DisasContext *s, int n, uint64_t dest) { /* No direct tb linking with singlestep (either QEMU's or the ARM * debug architecture kind) or deterministic io */ if (s->base.singlestep_enabled || s->ss_active || (tb_cflags(s->base.tb) & CF_LAST_IO)) { return false; } #ifndef CONFIG_USER_ONLY /* Only link tbs from inside the same guest page */ if ((s->base.tb->pc & TARGET_PAGE_MASK) != (dest & TARGET_PAGE_MASK)) { return false; } #endif return true; } static inline void gen_goto_tb(DisasContext *s, int n, uint64_t dest) { TranslationBlock *tb; tb = s->base.tb; if (use_goto_tb(s, n, dest)) { tcg_gen_goto_tb(n); gen_a64_set_pc_im(dest); tcg_gen_exit_tb(tb, n); s->base.is_jmp = DISAS_NORETURN; } else { gen_a64_set_pc_im(dest); if (s->ss_active) { gen_step_complete_exception(s); } else if (s->base.singlestep_enabled) { gen_exception_internal(EXCP_DEBUG); } else { tcg_gen_lookup_and_goto_ptr(); s->base.is_jmp = DISAS_NORETURN; } } } void unallocated_encoding(DisasContext *s) { /* Unallocated and reserved encodings are uncategorized */ gen_exception_insn(s, 4, EXCP_UDEF, syn_uncategorized(), default_exception_el(s)); } static void init_tmp_a64_array(DisasContext *s) { #ifdef CONFIG_DEBUG_TCG memset(s->tmp_a64, 0, sizeof(s->tmp_a64)); #endif s->tmp_a64_count = 0; } static void free_tmp_a64(DisasContext *s) { int i; for (i = 0; i < s->tmp_a64_count; i++) { tcg_temp_free_i64(s->tmp_a64[i]); } init_tmp_a64_array(s); } TCGv_i64 new_tmp_a64(DisasContext *s) { assert(s->tmp_a64_count < TMP_A64_MAX); return s->tmp_a64[s->tmp_a64_count++] = tcg_temp_new_i64(); } TCGv_i64 new_tmp_a64_zero(DisasContext *s) { TCGv_i64 t = new_tmp_a64(s); tcg_gen_movi_i64(t, 0); return t; } /* * Register access functions * * These functions are used for directly accessing a register in where * changes to the final register value are likely to be made. If you * need to use a register for temporary calculation (e.g. index type * operations) use the read_* form. * * B1.2.1 Register mappings * * In instruction register encoding 31 can refer to ZR (zero register) or * the SP (stack pointer) depending on context. In QEMU's case we map SP * to cpu_X[31] and ZR accesses to a temporary which can be discarded. * This is the point of the _sp forms. */ TCGv_i64 cpu_reg(DisasContext *s, int reg) { if (reg == 31) { return new_tmp_a64_zero(s); } else { return cpu_X[reg]; } } /* register access for when 31 == SP */ TCGv_i64 cpu_reg_sp(DisasContext *s, int reg) { return cpu_X[reg]; } /* read a cpu register in 32bit/64bit mode. Returns a TCGv_i64 * representing the register contents. This TCGv is an auto-freed * temporary so it need not be explicitly freed, and may be modified. */ TCGv_i64 read_cpu_reg(DisasContext *s, int reg, int sf) { TCGv_i64 v = new_tmp_a64(s); if (reg != 31) { if (sf) { tcg_gen_mov_i64(v, cpu_X[reg]); } else { tcg_gen_ext32u_i64(v, cpu_X[reg]); } } else { tcg_gen_movi_i64(v, 0); } return v; } TCGv_i64 read_cpu_reg_sp(DisasContext *s, int reg, int sf) { TCGv_i64 v = new_tmp_a64(s); if (sf) { tcg_gen_mov_i64(v, cpu_X[reg]); } else { tcg_gen_ext32u_i64(v, cpu_X[reg]); } return v; } /* Return the offset into CPUARMState of a slice (from * the least significant end) of FP register Qn (ie * Dn, Sn, Hn or Bn). * (Note that this is not the same mapping as for A32; see cpu.h) */ static inline int fp_reg_offset(DisasContext *s, int regno, TCGMemOp size) { return vec_reg_offset(s, regno, 0, size); } /* Offset of the high half of the 128 bit vector Qn */ static inline int fp_reg_hi_offset(DisasContext *s, int regno) { return vec_reg_offset(s, regno, 1, MO_64); } /* Convenience accessors for reading and writing single and double * FP registers. Writing clears the upper parts of the associated * 128 bit vector register, as required by the architecture. * Note that unlike the GP register accessors, the values returned * by the read functions must be manually freed. */ static TCGv_i64 read_fp_dreg(DisasContext *s, int reg) { TCGv_i64 v = tcg_temp_new_i64(); tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(s, reg, MO_64)); return v; } static TCGv_i32 read_fp_sreg(DisasContext *s, int reg) { TCGv_i32 v = tcg_temp_new_i32(); tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(s, reg, MO_32)); return v; } static TCGv_i32 read_fp_hreg(DisasContext *s, int reg) { TCGv_i32 v = tcg_temp_new_i32(); tcg_gen_ld16u_i32(v, cpu_env, fp_reg_offset(s, reg, MO_16)); return v; } /* Clear the bits above an N-bit vector, for N = (is_q ? 128 : 64). * If SVE is not enabled, then there are only 128 bits in the vector. */ static void clear_vec_high(DisasContext *s, bool is_q, int rd) { unsigned ofs = fp_reg_offset(s, rd, MO_64); unsigned vsz = vec_full_reg_size(s); if (!is_q) { TCGv_i64 tcg_zero = tcg_const_i64(0); tcg_gen_st_i64(tcg_zero, cpu_env, ofs + 8); tcg_temp_free_i64(tcg_zero); } if (vsz > 16) { tcg_gen_gvec_dup8i(ofs + 16, vsz - 16, vsz - 16, 0); } } void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v) { unsigned ofs = fp_reg_offset(s, reg, MO_64); tcg_gen_st_i64(v, cpu_env, ofs); clear_vec_high(s, false, reg); } static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v) { TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(tmp, v); write_fp_dreg(s, reg, tmp); tcg_temp_free_i64(tmp); } TCGv_ptr get_fpstatus_ptr(bool is_f16) { TCGv_ptr statusptr = tcg_temp_new_ptr(); int offset; /* In A64 all instructions (both FP and Neon) use the FPCR; there * is no equivalent of the A32 Neon "standard FPSCR value". * However half-precision operations operate under a different * FZ16 flag and use vfp.fp_status_f16 instead of vfp.fp_status. */ if (is_f16) { offset = offsetof(CPUARMState, vfp.fp_status_f16); } else { offset = offsetof(CPUARMState, vfp.fp_status); } tcg_gen_addi_ptr(statusptr, cpu_env, offset); return statusptr; } /* Expand a 2-operand AdvSIMD vector operation using an expander function. */ static void gen_gvec_fn2(DisasContext *s, bool is_q, int rd, int rn, GVecGen2Fn *gvec_fn, int vece) { gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), is_q ? 16 : 8, vec_full_reg_size(s)); } /* Expand a 2-operand + immediate AdvSIMD vector operation using * an expander function. */ static void gen_gvec_fn2i(DisasContext *s, bool is_q, int rd, int rn, int64_t imm, GVecGen2iFn *gvec_fn, int vece) { gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), imm, is_q ? 16 : 8, vec_full_reg_size(s)); } /* Expand a 3-operand AdvSIMD vector operation using an expander function. */ static void gen_gvec_fn3(DisasContext *s, bool is_q, int rd, int rn, int rm, GVecGen3Fn *gvec_fn, int vece) { gvec_fn(vece, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); } /* Expand a 2-operand + immediate AdvSIMD vector operation using * an op descriptor. */ static void gen_gvec_op2i(DisasContext *s, bool is_q, int rd, int rn, int64_t imm, const GVecGen2i *gvec_op) { tcg_gen_gvec_2i(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), is_q ? 16 : 8, vec_full_reg_size(s), imm, gvec_op); } /* Expand a 3-operand AdvSIMD vector operation using an op descriptor. */ static void gen_gvec_op3(DisasContext *s, bool is_q, int rd, int rn, int rm, const GVecGen3 *gvec_op) { tcg_gen_gvec_3(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s), gvec_op); } /* Expand a 3-operand operation using an out-of-line helper. */ static void gen_gvec_op3_ool(DisasContext *s, bool is_q, int rd, int rn, int rm, int data, gen_helper_gvec_3 *fn) { tcg_gen_gvec_3_ool(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s), data, fn); } /* Expand a 3-operand + env pointer operation using * an out-of-line helper. */ static void gen_gvec_op3_env(DisasContext *s, bool is_q, int rd, int rn, int rm, gen_helper_gvec_3_ptr *fn) { tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), cpu_env, is_q ? 16 : 8, vec_full_reg_size(s), 0, fn); } /* Expand a 3-operand + fpstatus pointer + simd data value operation using * an out-of-line helper. */ static void gen_gvec_op3_fpst(DisasContext *s, bool is_q, int rd, int rn, int rm, bool is_fp16, int data, gen_helper_gvec_3_ptr *fn) { TCGv_ptr fpst = get_fpstatus_ptr(is_fp16); tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), fpst, is_q ? 16 : 8, vec_full_reg_size(s), data, fn); tcg_temp_free_ptr(fpst); } /* Set ZF and NF based on a 64 bit result. This is alas fiddlier * than the 32 bit equivalent. */ static inline void gen_set_NZ64(TCGv_i64 result) { tcg_gen_extr_i64_i32(cpu_ZF, cpu_NF, result); tcg_gen_or_i32(cpu_ZF, cpu_ZF, cpu_NF); } /* Set NZCV as for a logical operation: NZ as per result, CV cleared. */ static inline void gen_logic_CC(int sf, TCGv_i64 result) { if (sf) { gen_set_NZ64(result); } else { tcg_gen_extrl_i64_i32(cpu_ZF, result); tcg_gen_mov_i32(cpu_NF, cpu_ZF); } tcg_gen_movi_i32(cpu_CF, 0); tcg_gen_movi_i32(cpu_VF, 0); } /* dest = T0 + T1; compute C, N, V and Z flags */ static void gen_add_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) { if (sf) { TCGv_i64 result, flag, tmp; result = tcg_temp_new_i64(); flag = tcg_temp_new_i64(); tmp = tcg_temp_new_i64(); tcg_gen_movi_i64(tmp, 0); tcg_gen_add2_i64(result, flag, t0, tmp, t1, tmp); tcg_gen_extrl_i64_i32(cpu_CF, flag); gen_set_NZ64(result); tcg_gen_xor_i64(flag, result, t0); tcg_gen_xor_i64(tmp, t0, t1); tcg_gen_andc_i64(flag, flag, tmp); tcg_temp_free_i64(tmp); tcg_gen_extrh_i64_i32(cpu_VF, flag); tcg_gen_mov_i64(dest, result); tcg_temp_free_i64(result); tcg_temp_free_i64(flag); } else { /* 32 bit arithmetic */ TCGv_i32 t0_32 = tcg_temp_new_i32(); TCGv_i32 t1_32 = tcg_temp_new_i32(); TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_movi_i32(tmp, 0); tcg_gen_extrl_i64_i32(t0_32, t0); tcg_gen_extrl_i64_i32(t1_32, t1); tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, t1_32, tmp); tcg_gen_mov_i32(cpu_ZF, cpu_NF); tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); tcg_gen_xor_i32(tmp, t0_32, t1_32); tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); tcg_gen_extu_i32_i64(dest, cpu_NF); tcg_temp_free_i32(tmp); tcg_temp_free_i32(t0_32); tcg_temp_free_i32(t1_32); } } /* dest = T0 - T1; compute C, N, V and Z flags */ static void gen_sub_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) { if (sf) { /* 64 bit arithmetic */ TCGv_i64 result, flag, tmp; result = tcg_temp_new_i64(); flag = tcg_temp_new_i64(); tcg_gen_sub_i64(result, t0, t1); gen_set_NZ64(result); tcg_gen_setcond_i64(TCG_COND_GEU, flag, t0, t1); tcg_gen_extrl_i64_i32(cpu_CF, flag); tcg_gen_xor_i64(flag, result, t0); tmp = tcg_temp_new_i64(); tcg_gen_xor_i64(tmp, t0, t1); tcg_gen_and_i64(flag, flag, tmp); tcg_temp_free_i64(tmp); tcg_gen_extrh_i64_i32(cpu_VF, flag); tcg_gen_mov_i64(dest, result); tcg_temp_free_i64(flag); tcg_temp_free_i64(result); } else { /* 32 bit arithmetic */ TCGv_i32 t0_32 = tcg_temp_new_i32(); TCGv_i32 t1_32 = tcg_temp_new_i32(); TCGv_i32 tmp; tcg_gen_extrl_i64_i32(t0_32, t0); tcg_gen_extrl_i64_i32(t1_32, t1); tcg_gen_sub_i32(cpu_NF, t0_32, t1_32); tcg_gen_mov_i32(cpu_ZF, cpu_NF); tcg_gen_setcond_i32(TCG_COND_GEU, cpu_CF, t0_32, t1_32); tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); tmp = tcg_temp_new_i32(); tcg_gen_xor_i32(tmp, t0_32, t1_32); tcg_temp_free_i32(t0_32); tcg_temp_free_i32(t1_32); tcg_gen_and_i32(cpu_VF, cpu_VF, tmp); tcg_temp_free_i32(tmp); tcg_gen_extu_i32_i64(dest, cpu_NF); } } /* dest = T0 + T1 + CF; do not compute flags. */ static void gen_adc(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) { TCGv_i64 flag = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(flag, cpu_CF); tcg_gen_add_i64(dest, t0, t1); tcg_gen_add_i64(dest, dest, flag); tcg_temp_free_i64(flag); if (!sf) { tcg_gen_ext32u_i64(dest, dest); } } /* dest = T0 + T1 + CF; compute C, N, V and Z flags. */ static void gen_adc_CC(int sf, TCGv_i64 dest, TCGv_i64 t0, TCGv_i64 t1) { if (sf) { TCGv_i64 result, cf_64, vf_64, tmp; result = tcg_temp_new_i64(); cf_64 = tcg_temp_new_i64(); vf_64 = tcg_temp_new_i64(); tmp = tcg_const_i64(0); tcg_gen_extu_i32_i64(cf_64, cpu_CF); tcg_gen_add2_i64(result, cf_64, t0, tmp, cf_64, tmp); tcg_gen_add2_i64(result, cf_64, result, cf_64, t1, tmp); tcg_gen_extrl_i64_i32(cpu_CF, cf_64); gen_set_NZ64(result); tcg_gen_xor_i64(vf_64, result, t0); tcg_gen_xor_i64(tmp, t0, t1); tcg_gen_andc_i64(vf_64, vf_64, tmp); tcg_gen_extrh_i64_i32(cpu_VF, vf_64); tcg_gen_mov_i64(dest, result); tcg_temp_free_i64(tmp); tcg_temp_free_i64(vf_64); tcg_temp_free_i64(cf_64); tcg_temp_free_i64(result); } else { TCGv_i32 t0_32, t1_32, tmp; t0_32 = tcg_temp_new_i32(); t1_32 = tcg_temp_new_i32(); tmp = tcg_const_i32(0); tcg_gen_extrl_i64_i32(t0_32, t0); tcg_gen_extrl_i64_i32(t1_32, t1); tcg_gen_add2_i32(cpu_NF, cpu_CF, t0_32, tmp, cpu_CF, tmp); tcg_gen_add2_i32(cpu_NF, cpu_CF, cpu_NF, cpu_CF, t1_32, tmp); tcg_gen_mov_i32(cpu_ZF, cpu_NF); tcg_gen_xor_i32(cpu_VF, cpu_NF, t0_32); tcg_gen_xor_i32(tmp, t0_32, t1_32); tcg_gen_andc_i32(cpu_VF, cpu_VF, tmp); tcg_gen_extu_i32_i64(dest, cpu_NF); tcg_temp_free_i32(tmp); tcg_temp_free_i32(t1_32); tcg_temp_free_i32(t0_32); } } /* * Load/Store generators */ /* * Store from GPR register to memory. */ static void do_gpr_st_memidx(DisasContext *s, TCGv_i64 source, TCGv_i64 tcg_addr, int size, int memidx, bool iss_valid, unsigned int iss_srt, bool iss_sf, bool iss_ar) { g_assert(size <= 3); tcg_gen_qemu_st_i64(source, tcg_addr, memidx, s->be_data + size); if (iss_valid) { uint32_t syn; syn = syn_data_abort_with_iss(0, size, false, iss_srt, iss_sf, iss_ar, 0, 0, 0, 0, 0, false); disas_set_insn_syndrome(s, syn); } } static void do_gpr_st(DisasContext *s, TCGv_i64 source, TCGv_i64 tcg_addr, int size, bool iss_valid, unsigned int iss_srt, bool iss_sf, bool iss_ar) { do_gpr_st_memidx(s, source, tcg_addr, size, get_mem_index(s), iss_valid, iss_srt, iss_sf, iss_ar); } /* * Load from memory to GPR register */ static void do_gpr_ld_memidx(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, int size, bool is_signed, bool extend, int memidx, bool iss_valid, unsigned int iss_srt, bool iss_sf, bool iss_ar) { TCGMemOp memop = s->be_data + size; g_assert(size <= 3); if (is_signed) { memop += MO_SIGN; } tcg_gen_qemu_ld_i64(dest, tcg_addr, memidx, memop); if (extend && is_signed) { g_assert(size < 3); tcg_gen_ext32u_i64(dest, dest); } if (iss_valid) { uint32_t syn; syn = syn_data_abort_with_iss(0, size, is_signed, iss_srt, iss_sf, iss_ar, 0, 0, 0, 0, 0, false); disas_set_insn_syndrome(s, syn); } } static void do_gpr_ld(DisasContext *s, TCGv_i64 dest, TCGv_i64 tcg_addr, int size, bool is_signed, bool extend, bool iss_valid, unsigned int iss_srt, bool iss_sf, bool iss_ar) { do_gpr_ld_memidx(s, dest, tcg_addr, size, is_signed, extend, get_mem_index(s), iss_valid, iss_srt, iss_sf, iss_ar); } /* * Store from FP register to memory */ static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size) { /* This writes the bottom N bits of a 128 bit wide vector to memory */ TCGv_i64 tmp = tcg_temp_new_i64(); tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(s, srcidx, MO_64)); if (size < 4) { tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), s->be_data + size); } else { bool be = s->be_data == MO_BE; TCGv_i64 tcg_hiaddr = tcg_temp_new_i64(); tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); tcg_gen_qemu_st_i64(tmp, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), s->be_data | MO_Q); tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(s, srcidx)); tcg_gen_qemu_st_i64(tmp, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), s->be_data | MO_Q); tcg_temp_free_i64(tcg_hiaddr); } tcg_temp_free_i64(tmp); } /* * Load from memory to FP register */ static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size) { /* This always zero-extends and writes to a full 128 bit wide vector */ TCGv_i64 tmplo = tcg_temp_new_i64(); TCGv_i64 tmphi; if (size < 4) { TCGMemOp memop = s->be_data + size; tmphi = tcg_const_i64(0); tcg_gen_qemu_ld_i64(tmplo, tcg_addr, get_mem_index(s), memop); } else { bool be = s->be_data == MO_BE; TCGv_i64 tcg_hiaddr; tmphi = tcg_temp_new_i64(); tcg_hiaddr = tcg_temp_new_i64(); tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8); tcg_gen_qemu_ld_i64(tmplo, be ? tcg_hiaddr : tcg_addr, get_mem_index(s), s->be_data | MO_Q); tcg_gen_qemu_ld_i64(tmphi, be ? tcg_addr : tcg_hiaddr, get_mem_index(s), s->be_data | MO_Q); tcg_temp_free_i64(tcg_hiaddr); } tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(s, destidx, MO_64)); tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(s, destidx)); tcg_temp_free_i64(tmplo); tcg_temp_free_i64(tmphi); clear_vec_high(s, true, destidx); } /* * Vector load/store helpers. * * The principal difference between this and a FP load is that we don't * zero extend as we are filling a partial chunk of the vector register. * These functions don't support 128 bit loads/stores, which would be * normal load/store operations. * * The _i32 versions are useful when operating on 32 bit quantities * (eg for floating point single or using Neon helper functions). */ /* Get value of an element within a vector register */ static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx, int element, TCGMemOp memop) { int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); switch (memop) { case MO_8: tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off); break; case MO_16: tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off); break; case MO_32: tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off); break; case MO_8|MO_SIGN: tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off); break; case MO_16|MO_SIGN: tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off); break; case MO_32|MO_SIGN: tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off); break; case MO_64: case MO_64|MO_SIGN: tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off); break; default: g_assert_not_reached(); } } static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx, int element, TCGMemOp memop) { int vect_off = vec_reg_offset(s, srcidx, element, memop & MO_SIZE); switch (memop) { case MO_8: tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off); break; case MO_16: tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off); break; case MO_8|MO_SIGN: tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off); break; case MO_16|MO_SIGN: tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off); break; case MO_32: case MO_32|MO_SIGN: tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off); break; default: g_assert_not_reached(); } } /* Set value of an element within a vector register */ static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx, int element, TCGMemOp memop) { int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); switch (memop) { case MO_8: tcg_gen_st8_i64(tcg_src, cpu_env, vect_off); break; case MO_16: tcg_gen_st16_i64(tcg_src, cpu_env, vect_off); break; case MO_32: tcg_gen_st32_i64(tcg_src, cpu_env, vect_off); break; case MO_64: tcg_gen_st_i64(tcg_src, cpu_env, vect_off); break; default: g_assert_not_reached(); } } static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src, int destidx, int element, TCGMemOp memop) { int vect_off = vec_reg_offset(s, destidx, element, memop & MO_SIZE); switch (memop) { case MO_8: tcg_gen_st8_i32(tcg_src, cpu_env, vect_off); break; case MO_16: tcg_gen_st16_i32(tcg_src, cpu_env, vect_off); break; case MO_32: tcg_gen_st_i32(tcg_src, cpu_env, vect_off); break; default: g_assert_not_reached(); } } /* Store from vector register to memory */ static void do_vec_st(DisasContext *s, int srcidx, int element, TCGv_i64 tcg_addr, int size) { TCGMemOp memop = s->be_data + size; TCGv_i64 tcg_tmp = tcg_temp_new_i64(); read_vec_element(s, tcg_tmp, srcidx, element, size); tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); tcg_temp_free_i64(tcg_tmp); } /* Load from memory to vector register */ static void do_vec_ld(DisasContext *s, int destidx, int element, TCGv_i64 tcg_addr, int size) { TCGMemOp memop = s->be_data + size; TCGv_i64 tcg_tmp = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop); write_vec_element(s, tcg_tmp, destidx, element, size); tcg_temp_free_i64(tcg_tmp); } /* Check that FP/Neon access is enabled. If it is, return * true. If not, emit code to generate an appropriate exception, * and return false; the caller should not emit any code for * the instruction. Note that this check must happen after all * unallocated-encoding checks (otherwise the syndrome information * for the resulting exception will be incorrect). */ static inline bool fp_access_check(DisasContext *s) { assert(!s->fp_access_checked); s->fp_access_checked = true; if (!s->fp_excp_el) { return true; } gen_exception_insn(s, 4, EXCP_UDEF, syn_fp_access_trap(1, 0xe, false), s->fp_excp_el); return false; } /* Check that SVE access is enabled. If it is, return true. * If not, emit code to generate an appropriate exception and return false. */ bool sve_access_check(DisasContext *s) { if (s->sve_excp_el) { gen_exception_insn(s, 4, EXCP_UDEF, syn_sve_access_trap(), s->sve_excp_el); return false; } return fp_access_check(s); } /* * This utility function is for doing register extension with an * optional shift. You will likely want to pass a temporary for the * destination register. See DecodeRegExtend() in the ARM ARM. */ static void ext_and_shift_reg(TCGv_i64 tcg_out, TCGv_i64 tcg_in, int option, unsigned int shift) { int extsize = extract32(option, 0, 2); bool is_signed = extract32(option, 2, 1); if (is_signed) { switch (extsize) { case 0: tcg_gen_ext8s_i64(tcg_out, tcg_in); break; case 1: tcg_gen_ext16s_i64(tcg_out, tcg_in); break; case 2: tcg_gen_ext32s_i64(tcg_out, tcg_in); break; case 3: tcg_gen_mov_i64(tcg_out, tcg_in); break; } } else { switch (extsize) { case 0: tcg_gen_ext8u_i64(tcg_out, tcg_in); break; case 1: tcg_gen_ext16u_i64(tcg_out, tcg_in); break; case 2: tcg_gen_ext32u_i64(tcg_out, tcg_in); break; case 3: tcg_gen_mov_i64(tcg_out, tcg_in); break; } } if (shift) { tcg_gen_shli_i64(tcg_out, tcg_out, shift); } } static inline void gen_check_sp_alignment(DisasContext *s) { /* The AArch64 architecture mandates that (if enabled via PSTATE * or SCTLR bits) there is a check that SP is 16-aligned on every * SP-relative load or store (with an exception generated if it is not). * In line with general QEMU practice regarding misaligned accesses, * we omit these checks for the sake of guest program performance. * This function is provided as a hook so we can more easily add these * checks in future (possibly as a "favour catching guest program bugs * over speed" user selectable option). */ } /* * This provides a simple table based table lookup decoder. It is * intended to be used when the relevant bits for decode are too * awkwardly placed and switch/if based logic would be confusing and * deeply nested. Since it's a linear search through the table, tables * should be kept small. * * It returns the first handler where insn & mask == pattern, or * NULL if there is no match. * The table is terminated by an empty mask (i.e. 0) */ static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table, uint32_t insn) { const AArch64DecodeTable *tptr = table; while (tptr->mask) { if ((insn & tptr->mask) == tptr->pattern) { return tptr->disas_fn; } tptr++; } return NULL; } /* * The instruction disassembly implemented here matches * the instruction encoding classifications in chapter C4 * of the ARM Architecture Reference Manual (DDI0487B_a); * classification names and decode diagrams here should generally * match up with those in the manual. */ /* Unconditional branch (immediate) * 31 30 26 25 0 * +----+-----------+-------------------------------------+ * | op | 0 0 1 0 1 | imm26 | * +----+-----------+-------------------------------------+ */ static void disas_uncond_b_imm(DisasContext *s, uint32_t insn) { uint64_t addr = s->pc + sextract32(insn, 0, 26) * 4 - 4; if (insn & (1U << 31)) { /* BL Branch with link */ tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); } /* B Branch / BL Branch with link */ gen_goto_tb(s, 0, addr); } /* Compare and branch (immediate) * 31 30 25 24 23 5 4 0 * +----+-------------+----+---------------------+--------+ * | sf | 0 1 1 0 1 0 | op | imm19 | Rt | * +----+-------------+----+---------------------+--------+ */ static void disas_comp_b_imm(DisasContext *s, uint32_t insn) { unsigned int sf, op, rt; uint64_t addr; TCGLabel *label_match; TCGv_i64 tcg_cmp; sf = extract32(insn, 31, 1); op = extract32(insn, 24, 1); /* 0: CBZ; 1: CBNZ */ rt = extract32(insn, 0, 5); addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; tcg_cmp = read_cpu_reg(s, rt, sf); label_match = gen_new_label(); tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, tcg_cmp, 0, label_match); gen_goto_tb(s, 0, s->pc); gen_set_label(label_match); gen_goto_tb(s, 1, addr); } /* Test and branch (immediate) * 31 30 25 24 23 19 18 5 4 0 * +----+-------------+----+-------+-------------+------+ * | b5 | 0 1 1 0 1 1 | op | b40 | imm14 | Rt | * +----+-------------+----+-------+-------------+------+ */ static void disas_test_b_imm(DisasContext *s, uint32_t insn) { unsigned int bit_pos, op, rt; uint64_t addr; TCGLabel *label_match; TCGv_i64 tcg_cmp; bit_pos = (extract32(insn, 31, 1) << 5) | extract32(insn, 19, 5); op = extract32(insn, 24, 1); /* 0: TBZ; 1: TBNZ */ addr = s->pc + sextract32(insn, 5, 14) * 4 - 4; rt = extract32(insn, 0, 5); tcg_cmp = tcg_temp_new_i64(); tcg_gen_andi_i64(tcg_cmp, cpu_reg(s, rt), (1ULL << bit_pos)); label_match = gen_new_label(); tcg_gen_brcondi_i64(op ? TCG_COND_NE : TCG_COND_EQ, tcg_cmp, 0, label_match); tcg_temp_free_i64(tcg_cmp); gen_goto_tb(s, 0, s->pc); gen_set_label(label_match); gen_goto_tb(s, 1, addr); } /* Conditional branch (immediate) * 31 25 24 23 5 4 3 0 * +---------------+----+---------------------+----+------+ * | 0 1 0 1 0 1 0 | o1 | imm19 | o0 | cond | * +---------------+----+---------------------+----+------+ */ static void disas_cond_b_imm(DisasContext *s, uint32_t insn) { unsigned int cond; uint64_t addr; if ((insn & (1 << 4)) || (insn & (1 << 24))) { unallocated_encoding(s); return; } addr = s->pc + sextract32(insn, 5, 19) * 4 - 4; cond = extract32(insn, 0, 4); if (cond < 0x0e) { /* genuinely conditional branches */ TCGLabel *label_match = gen_new_label(); arm_gen_test_cc(cond, label_match); gen_goto_tb(s, 0, s->pc); gen_set_label(label_match); gen_goto_tb(s, 1, addr); } else { /* 0xe and 0xf are both "always" conditions */ gen_goto_tb(s, 0, addr); } } /* HINT instruction group, including various allocated HINTs */ static void handle_hint(DisasContext *s, uint32_t insn, unsigned int op1, unsigned int op2, unsigned int crm) { unsigned int selector = crm << 3 | op2; if (op1 != 3) { unallocated_encoding(s); return; } switch (selector) { case 0: /* NOP */ return; case 3: /* WFI */ s->base.is_jmp = DISAS_WFI; return; /* When running in MTTCG we don't generate jumps to the yield and * WFE helpers as it won't affect the scheduling of other vCPUs. * If we wanted to more completely model WFE/SEV so we don't busy * spin unnecessarily we would need to do something more involved. */ case 1: /* YIELD */ if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { s->base.is_jmp = DISAS_YIELD; } return; case 2: /* WFE */ if (!(tb_cflags(s->base.tb) & CF_PARALLEL)) { s->base.is_jmp = DISAS_WFE; } return; case 4: /* SEV */ case 5: /* SEVL */ /* we treat all as NOP at least for now */ return; default: /* default specified as NOP equivalent */ return; } } static void gen_clrex(DisasContext *s, uint32_t insn) { tcg_gen_movi_i64(cpu_exclusive_addr, -1); } /* CLREX, DSB, DMB, ISB */ static void handle_sync(DisasContext *s, uint32_t insn, unsigned int op1, unsigned int op2, unsigned int crm) { TCGBar bar; if (op1 != 3) { unallocated_encoding(s); return; } switch (op2) { case 2: /* CLREX */ gen_clrex(s, insn); return; case 4: /* DSB */ case 5: /* DMB */ switch (crm & 3) { case 1: /* MBReqTypes_Reads */ bar = TCG_BAR_SC | TCG_MO_LD_LD | TCG_MO_LD_ST; break; case 2: /* MBReqTypes_Writes */ bar = TCG_BAR_SC | TCG_MO_ST_ST; break; default: /* MBReqTypes_All */ bar = TCG_BAR_SC | TCG_MO_ALL; break; } tcg_gen_mb(bar); return; case 6: /* ISB */ /* We need to break the TB after this insn to execute * a self-modified code correctly and also to take * any pending interrupts immediately. */ gen_goto_tb(s, 0, s->pc); return; default: unallocated_encoding(s); return; } } /* MSR (immediate) - move immediate to processor state field */ static void handle_msr_i(DisasContext *s, uint32_t insn, unsigned int op1, unsigned int op2, unsigned int crm) { int op = op1 << 3 | op2; switch (op) { case 0x05: /* SPSel */ if (s->current_el == 0) { unallocated_encoding(s); return; } /* fall through */ case 0x1e: /* DAIFSet */ case 0x1f: /* DAIFClear */ { TCGv_i32 tcg_imm = tcg_const_i32(crm); TCGv_i32 tcg_op = tcg_const_i32(op); gen_a64_set_pc_im(s->pc - 4); gen_helper_msr_i_pstate(cpu_env, tcg_op, tcg_imm); tcg_temp_free_i32(tcg_imm); tcg_temp_free_i32(tcg_op); /* For DAIFClear, exit the cpu loop to re-evaluate pending IRQs. */ gen_a64_set_pc_im(s->pc); s->base.is_jmp = (op == 0x1f ? DISAS_EXIT : DISAS_JUMP); break; } default: unallocated_encoding(s); return; } } static void gen_get_nzcv(TCGv_i64 tcg_rt) { TCGv_i32 tmp = tcg_temp_new_i32(); TCGv_i32 nzcv = tcg_temp_new_i32(); /* build bit 31, N */ tcg_gen_andi_i32(nzcv, cpu_NF, (1U << 31)); /* build bit 30, Z */ tcg_gen_setcondi_i32(TCG_COND_EQ, tmp, cpu_ZF, 0); tcg_gen_deposit_i32(nzcv, nzcv, tmp, 30, 1); /* build bit 29, C */ tcg_gen_deposit_i32(nzcv, nzcv, cpu_CF, 29, 1); /* build bit 28, V */ tcg_gen_shri_i32(tmp, cpu_VF, 31); tcg_gen_deposit_i32(nzcv, nzcv, tmp, 28, 1); /* generate result */ tcg_gen_extu_i32_i64(tcg_rt, nzcv); tcg_temp_free_i32(nzcv); tcg_temp_free_i32(tmp); } static void gen_set_nzcv(TCGv_i64 tcg_rt) { TCGv_i32 nzcv = tcg_temp_new_i32(); /* take NZCV from R[t] */ tcg_gen_extrl_i64_i32(nzcv, tcg_rt); /* bit 31, N */ tcg_gen_andi_i32(cpu_NF, nzcv, (1U << 31)); /* bit 30, Z */ tcg_gen_andi_i32(cpu_ZF, nzcv, (1 << 30)); tcg_gen_setcondi_i32(TCG_COND_EQ, cpu_ZF, cpu_ZF, 0); /* bit 29, C */ tcg_gen_andi_i32(cpu_CF, nzcv, (1 << 29)); tcg_gen_shri_i32(cpu_CF, cpu_CF, 29); /* bit 28, V */ tcg_gen_andi_i32(cpu_VF, nzcv, (1 << 28)); tcg_gen_shli_i32(cpu_VF, cpu_VF, 3); tcg_temp_free_i32(nzcv); } /* MRS - move from system register * MSR (register) - move to system register * SYS * SYSL * These are all essentially the same insn in 'read' and 'write' * versions, with varying op0 fields. */ static void handle_sys(DisasContext *s, uint32_t insn, bool isread, unsigned int op0, unsigned int op1, unsigned int op2, unsigned int crn, unsigned int crm, unsigned int rt) { const ARMCPRegInfo *ri; TCGv_i64 tcg_rt; ri = get_arm_cp_reginfo(s->cp_regs, ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)); if (!ri) { /* Unknown register; this might be a guest error or a QEMU * unimplemented feature. */ qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 " "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n", isread ? "read" : "write", op0, op1, crn, crm, op2); unallocated_encoding(s); return; } /* Check access permissions */ if (!cp_access_ok(s->current_el, ri, isread)) { unallocated_encoding(s); return; } if (ri->accessfn) { /* Emit code to perform further access permissions checks at * runtime; this may result in an exception. */ TCGv_ptr tmpptr; TCGv_i32 tcg_syn, tcg_isread; uint32_t syndrome; gen_a64_set_pc_im(s->pc - 4); tmpptr = tcg_const_ptr(ri); syndrome = syn_aa64_sysregtrap(op0, op1, op2, crn, crm, rt, isread); tcg_syn = tcg_const_i32(syndrome); tcg_isread = tcg_const_i32(isread); gen_helper_access_check_cp_reg(cpu_env, tmpptr, tcg_syn, tcg_isread); tcg_temp_free_ptr(tmpptr); tcg_temp_free_i32(tcg_syn); tcg_temp_free_i32(tcg_isread); } /* Handle special cases first */ switch (ri->type & ~(ARM_CP_FLAG_MASK & ~ARM_CP_SPECIAL)) { case ARM_CP_NOP: return; case ARM_CP_NZCV: tcg_rt = cpu_reg(s, rt); if (isread) { gen_get_nzcv(tcg_rt); } else { gen_set_nzcv(tcg_rt); } return; case ARM_CP_CURRENTEL: /* Reads as current EL value from pstate, which is * guaranteed to be constant by the tb flags. */ tcg_rt = cpu_reg(s, rt); tcg_gen_movi_i64(tcg_rt, s->current_el << 2); return; case ARM_CP_DC_ZVA: /* Writes clear the aligned block of memory which rt points into. */ tcg_rt = cpu_reg(s, rt); gen_helper_dc_zva(cpu_env, tcg_rt); return; default: break; } if ((ri->type & ARM_CP_FPU) && !fp_access_check(s)) { return; } else if ((ri->type & ARM_CP_SVE) && !sve_access_check(s)) { return; } if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { gen_io_start(); } tcg_rt = cpu_reg(s, rt); if (isread) { if (ri->type & ARM_CP_CONST) { tcg_gen_movi_i64(tcg_rt, ri->resetvalue); } else if (ri->readfn) { TCGv_ptr tmpptr; tmpptr = tcg_const_ptr(ri); gen_helper_get_cp_reg64(tcg_rt, cpu_env, tmpptr); tcg_temp_free_ptr(tmpptr); } else { tcg_gen_ld_i64(tcg_rt, cpu_env, ri->fieldoffset); } } else { if (ri->type & ARM_CP_CONST) { /* If not forbidden by access permissions, treat as WI */ return; } else if (ri->writefn) { TCGv_ptr tmpptr; tmpptr = tcg_const_ptr(ri); gen_helper_set_cp_reg64(cpu_env, tmpptr, tcg_rt); tcg_temp_free_ptr(tmpptr); } else { tcg_gen_st_i64(tcg_rt, cpu_env, ri->fieldoffset); } } if ((tb_cflags(s->base.tb) & CF_USE_ICOUNT) && (ri->type & ARM_CP_IO)) { /* I/O operations must end the TB here (whether read or write) */ gen_io_end(); s->base.is_jmp = DISAS_UPDATE; } else if (!isread && !(ri->type & ARM_CP_SUPPRESS_TB_END)) { /* We default to ending the TB on a coprocessor register write, * but allow this to be suppressed by the register definition * (usually only necessary to work around guest bugs). */ s->base.is_jmp = DISAS_UPDATE; } } /* System * 31 22 21 20 19 18 16 15 12 11 8 7 5 4 0 * +---------------------+---+-----+-----+-------+-------+-----+------+ * | 1 1 0 1 0 1 0 1 0 0 | L | op0 | op1 | CRn | CRm | op2 | Rt | * +---------------------+---+-----+-----+-------+-------+-----+------+ */ static void disas_system(DisasContext *s, uint32_t insn) { unsigned int l, op0, op1, crn, crm, op2, rt; l = extract32(insn, 21, 1); op0 = extract32(insn, 19, 2); op1 = extract32(insn, 16, 3); crn = extract32(insn, 12, 4); crm = extract32(insn, 8, 4); op2 = extract32(insn, 5, 3); rt = extract32(insn, 0, 5); if (op0 == 0) { if (l || rt != 31) { unallocated_encoding(s); return; } switch (crn) { case 2: /* HINT (including allocated hints like NOP, YIELD, etc) */ handle_hint(s, insn, op1, op2, crm); break; case 3: /* CLREX, DSB, DMB, ISB */ handle_sync(s, insn, op1, op2, crm); break; case 4: /* MSR (immediate) */ handle_msr_i(s, insn, op1, op2, crm); break; default: unallocated_encoding(s); break; } return; } handle_sys(s, insn, l, op0, op1, op2, crn, crm, rt); } /* Exception generation * * 31 24 23 21 20 5 4 2 1 0 * +-----------------+-----+------------------------+-----+----+ * | 1 1 0 1 0 1 0 0 | opc | imm16 | op2 | LL | * +-----------------------+------------------------+----------+ */ static void disas_exc(DisasContext *s, uint32_t insn) { int opc = extract32(insn, 21, 3); int op2_ll = extract32(insn, 0, 5); int imm16 = extract32(insn, 5, 16); TCGv_i32 tmp; switch (opc) { case 0: /* For SVC, HVC and SMC we advance the single-step state * machine before taking the exception. This is architecturally * mandated, to ensure that single-stepping a system call * instruction works properly. */ switch (op2_ll) { case 1: /* SVC */ gen_ss_advance(s); gen_exception_insn(s, 0, EXCP_SWI, syn_aa64_svc(imm16), default_exception_el(s)); break; case 2: /* HVC */ if (s->current_el == 0) { unallocated_encoding(s); break; } /* The pre HVC helper handles cases when HVC gets trapped * as an undefined insn by runtime configuration. */ gen_a64_set_pc_im(s->pc - 4); gen_helper_pre_hvc(cpu_env); gen_ss_advance(s); gen_exception_insn(s, 0, EXCP_HVC, syn_aa64_hvc(imm16), 2); break; case 3: /* SMC */ if (s->current_el == 0) { unallocated_encoding(s); break; } gen_a64_set_pc_im(s->pc - 4); tmp = tcg_const_i32(syn_aa64_smc(imm16)); gen_helper_pre_smc(cpu_env, tmp); tcg_temp_free_i32(tmp); gen_ss_advance(s); gen_exception_insn(s, 0, EXCP_SMC, syn_aa64_smc(imm16), 3); break; default: unallocated_encoding(s); break; } break; case 1: if (op2_ll != 0) { unallocated_encoding(s); break; } /* BRK */ gen_exception_bkpt_insn(s, 4, syn_aa64_bkpt(imm16)); break; case 2: if (op2_ll != 0) { unallocated_encoding(s); break; } /* HLT. This has two purposes. * Architecturally, it is an external halting debug instruction. * Since QEMU doesn't implement external debug, we treat this as * it is required for halting debug disabled: it will UNDEF. * Secondly, "HLT 0xf000" is the A64 semihosting syscall instruction. */ if (semihosting_enabled() && imm16 == 0xf000) { #ifndef CONFIG_USER_ONLY /* In system mode, don't allow userspace access to semihosting, * to provide some semblance of security (and for consistency * with our 32-bit semihosting). */ if (s->current_el == 0) { unsupported_encoding(s, insn); break; } #endif gen_exception_internal_insn(s, 0, EXCP_SEMIHOST); } else { unsupported_encoding(s, insn); } break; case 5: if (op2_ll < 1 || op2_ll > 3) { unallocated_encoding(s); break; } /* DCPS1, DCPS2, DCPS3 */ unsupported_encoding(s, insn); break; default: unallocated_encoding(s); break; } } /* Unconditional branch (register) * 31 25 24 21 20 16 15 10 9 5 4 0 * +---------------+-------+-------+-------+------+-------+ * | 1 1 0 1 0 1 1 | opc | op2 | op3 | Rn | op4 | * +---------------+-------+-------+-------+------+-------+ */ static void disas_uncond_b_reg(DisasContext *s, uint32_t insn) { unsigned int opc, op2, op3, rn, op4; opc = extract32(insn, 21, 4); op2 = extract32(insn, 16, 5); op3 = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); op4 = extract32(insn, 0, 5); if (op4 != 0x0 || op3 != 0x0 || op2 != 0x1f) { unallocated_encoding(s); return; } switch (opc) { case 0: /* BR */ case 1: /* BLR */ case 2: /* RET */ gen_a64_set_pc(s, cpu_reg(s, rn)); /* BLR also needs to load return address */ if (opc == 1) { tcg_gen_movi_i64(cpu_reg(s, 30), s->pc); } break; case 4: /* ERET */ if (s->current_el == 0) { unallocated_encoding(s); return; } if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { gen_io_start(); } gen_helper_exception_return(cpu_env); if (tb_cflags(s->base.tb) & CF_USE_ICOUNT) { gen_io_end(); } /* Must exit loop to check un-masked IRQs */ s->base.is_jmp = DISAS_EXIT; return; case 5: /* DRPS */ if (rn != 0x1f) { unallocated_encoding(s); } else { unsupported_encoding(s, insn); } return; default: unallocated_encoding(s); return; } s->base.is_jmp = DISAS_JUMP; } /* Branches, exception generating and system instructions */ static void disas_b_exc_sys(DisasContext *s, uint32_t insn) { switch (extract32(insn, 25, 7)) { case 0x0a: case 0x0b: case 0x4a: case 0x4b: /* Unconditional branch (immediate) */ disas_uncond_b_imm(s, insn); break; case 0x1a: case 0x5a: /* Compare & branch (immediate) */ disas_comp_b_imm(s, insn); break; case 0x1b: case 0x5b: /* Test & branch (immediate) */ disas_test_b_imm(s, insn); break; case 0x2a: /* Conditional branch (immediate) */ disas_cond_b_imm(s, insn); break; case 0x6a: /* Exception generation / System */ if (insn & (1 << 24)) { disas_system(s, insn); } else { disas_exc(s, insn); } break; case 0x6b: /* Unconditional branch (register) */ disas_uncond_b_reg(s, insn); break; default: unallocated_encoding(s); break; } } /* * Load/Store exclusive instructions are implemented by remembering * the value/address loaded, and seeing if these are the same * when the store is performed. This is not actually the architecturally * mandated semantics, but it works for typical guest code sequences * and avoids having to monitor regular stores. * * The store exclusive uses the atomic cmpxchg primitives to avoid * races in multi-threaded linux-user and when MTTCG softmmu is * enabled. */ static void gen_load_exclusive(DisasContext *s, int rt, int rt2, TCGv_i64 addr, int size, bool is_pair) { int idx = get_mem_index(s); TCGMemOp memop = s->be_data; g_assert(size <= 3); if (is_pair) { g_assert(size >= 2); if (size == 2) { /* The pair must be single-copy atomic for the doubleword. */ memop |= MO_64 | MO_ALIGN; tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); if (s->be_data == MO_LE) { tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 0, 32); tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 32, 32); } else { tcg_gen_extract_i64(cpu_reg(s, rt), cpu_exclusive_val, 32, 32); tcg_gen_extract_i64(cpu_reg(s, rt2), cpu_exclusive_val, 0, 32); } } else { /* The pair must be single-copy atomic for *each* doubleword, not the entire quadword, however it must be quadword aligned. */ memop |= MO_64; tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop | MO_ALIGN_16); TCGv_i64 addr2 = tcg_temp_new_i64(); tcg_gen_addi_i64(addr2, addr, 8); tcg_gen_qemu_ld_i64(cpu_exclusive_high, addr2, idx, memop); tcg_temp_free_i64(addr2); tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); tcg_gen_mov_i64(cpu_reg(s, rt2), cpu_exclusive_high); } } else { memop |= size | MO_ALIGN; tcg_gen_qemu_ld_i64(cpu_exclusive_val, addr, idx, memop); tcg_gen_mov_i64(cpu_reg(s, rt), cpu_exclusive_val); } tcg_gen_mov_i64(cpu_exclusive_addr, addr); } static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2, TCGv_i64 addr, int size, int is_pair) { /* if (env->exclusive_addr == addr && env->exclusive_val == [addr] * && (!is_pair || env->exclusive_high == [addr + datasize])) { * [addr] = {Rt}; * if (is_pair) { * [addr + datasize] = {Rt2}; * } * {Rd} = 0; * } else { * {Rd} = 1; * } * env->exclusive_addr = -1; */ TCGLabel *fail_label = gen_new_label(); TCGLabel *done_label = gen_new_label(); TCGv_i64 tmp; tcg_gen_brcond_i64(TCG_COND_NE, addr, cpu_exclusive_addr, fail_label); tmp = tcg_temp_new_i64(); if (is_pair) { if (size == 2) { if (s->be_data == MO_LE) { tcg_gen_concat32_i64(tmp, cpu_reg(s, rt), cpu_reg(s, rt2)); } else { tcg_gen_concat32_i64(tmp, cpu_reg(s, rt2), cpu_reg(s, rt)); } tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, tmp, get_mem_index(s), MO_64 | MO_ALIGN | s->be_data); tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); } else if (s->be_data == MO_LE) { if (tb_cflags(s->base.tb) & CF_PARALLEL) { gen_helper_paired_cmpxchg64_le_parallel(tmp, cpu_env, cpu_exclusive_addr, cpu_reg(s, rt), cpu_reg(s, rt2)); } else { gen_helper_paired_cmpxchg64_le(tmp, cpu_env, cpu_exclusive_addr, cpu_reg(s, rt), cpu_reg(s, rt2)); } } else { if (tb_cflags(s->base.tb) & CF_PARALLEL) { gen_helper_paired_cmpxchg64_be_parallel(tmp, cpu_env, cpu_exclusive_addr, cpu_reg(s, rt), cpu_reg(s, rt2)); } else { gen_helper_paired_cmpxchg64_be(tmp, cpu_env, cpu_exclusive_addr, cpu_reg(s, rt), cpu_reg(s, rt2)); } } } else { tcg_gen_atomic_cmpxchg_i64(tmp, cpu_exclusive_addr, cpu_exclusive_val, cpu_reg(s, rt), get_mem_index(s), size | MO_ALIGN | s->be_data); tcg_gen_setcond_i64(TCG_COND_NE, tmp, tmp, cpu_exclusive_val); } tcg_gen_mov_i64(cpu_reg(s, rd), tmp); tcg_temp_free_i64(tmp); tcg_gen_br(done_label); gen_set_label(fail_label); tcg_gen_movi_i64(cpu_reg(s, rd), 1); gen_set_label(done_label); tcg_gen_movi_i64(cpu_exclusive_addr, -1); } static void gen_compare_and_swap(DisasContext *s, int rs, int rt, int rn, int size) { TCGv_i64 tcg_rs = cpu_reg(s, rs); TCGv_i64 tcg_rt = cpu_reg(s, rt); int memidx = get_mem_index(s); TCGv_i64 addr = cpu_reg_sp(s, rn); if (rn == 31) { gen_check_sp_alignment(s); } tcg_gen_atomic_cmpxchg_i64(tcg_rs, addr, tcg_rs, tcg_rt, memidx, size | MO_ALIGN | s->be_data); } static void gen_compare_and_swap_pair(DisasContext *s, int rs, int rt, int rn, int size) { TCGv_i64 s1 = cpu_reg(s, rs); TCGv_i64 s2 = cpu_reg(s, rs + 1); TCGv_i64 t1 = cpu_reg(s, rt); TCGv_i64 t2 = cpu_reg(s, rt + 1); TCGv_i64 addr = cpu_reg_sp(s, rn); int memidx = get_mem_index(s); if (rn == 31) { gen_check_sp_alignment(s); } if (size == 2) { TCGv_i64 cmp = tcg_temp_new_i64(); TCGv_i64 val = tcg_temp_new_i64(); if (s->be_data == MO_LE) { tcg_gen_concat32_i64(val, t1, t2); tcg_gen_concat32_i64(cmp, s1, s2); } else { tcg_gen_concat32_i64(val, t2, t1); tcg_gen_concat32_i64(cmp, s2, s1); } tcg_gen_atomic_cmpxchg_i64(cmp, addr, cmp, val, memidx, MO_64 | MO_ALIGN | s->be_data); tcg_temp_free_i64(val); if (s->be_data == MO_LE) { tcg_gen_extr32_i64(s1, s2, cmp); } else { tcg_gen_extr32_i64(s2, s1, cmp); } tcg_temp_free_i64(cmp); } else if (tb_cflags(s->base.tb) & CF_PARALLEL) { TCGv_i32 tcg_rs = tcg_const_i32(rs); if (s->be_data == MO_LE) { gen_helper_casp_le_parallel(cpu_env, tcg_rs, addr, t1, t2); } else { gen_helper_casp_be_parallel(cpu_env, tcg_rs, addr, t1, t2); } tcg_temp_free_i32(tcg_rs); } else { TCGv_i64 d1 = tcg_temp_new_i64(); TCGv_i64 d2 = tcg_temp_new_i64(); TCGv_i64 a2 = tcg_temp_new_i64(); TCGv_i64 c1 = tcg_temp_new_i64(); TCGv_i64 c2 = tcg_temp_new_i64(); TCGv_i64 zero = tcg_const_i64(0); /* Load the two words, in memory order. */ tcg_gen_qemu_ld_i64(d1, addr, memidx, MO_64 | MO_ALIGN_16 | s->be_data); tcg_gen_addi_i64(a2, addr, 8); tcg_gen_qemu_ld_i64(d2, addr, memidx, MO_64 | s->be_data); /* Compare the two words, also in memory order. */ tcg_gen_setcond_i64(TCG_COND_EQ, c1, d1, s1); tcg_gen_setcond_i64(TCG_COND_EQ, c2, d2, s2); tcg_gen_and_i64(c2, c2, c1); /* If compare equal, write back new data, else write back old data. */ tcg_gen_movcond_i64(TCG_COND_NE, c1, c2, zero, t1, d1); tcg_gen_movcond_i64(TCG_COND_NE, c2, c2, zero, t2, d2); tcg_gen_qemu_st_i64(c1, addr, memidx, MO_64 | s->be_data); tcg_gen_qemu_st_i64(c2, a2, memidx, MO_64 | s->be_data); tcg_temp_free_i64(a2); tcg_temp_free_i64(c1); tcg_temp_free_i64(c2); tcg_temp_free_i64(zero); /* Write back the data from memory to Rs. */ tcg_gen_mov_i64(s1, d1); tcg_gen_mov_i64(s2, d2); tcg_temp_free_i64(d1); tcg_temp_free_i64(d2); } } /* Update the Sixty-Four bit (SF) registersize. This logic is derived * from the ARMv8 specs for LDR (Shared decode for all encodings). */ static bool disas_ldst_compute_iss_sf(int size, bool is_signed, int opc) { int opc0 = extract32(opc, 0, 1); int regsize; if (is_signed) { regsize = opc0 ? 32 : 64; } else { regsize = size == 3 ? 64 : 32; } return regsize == 64; } /* Load/store exclusive * * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0 * +-----+-------------+----+---+----+------+----+-------+------+------+ * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt | * +-----+-------------+----+---+----+------+----+-------+------+------+ * * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit * L: 0 -> store, 1 -> load * o2: 0 -> exclusive, 1 -> not * o1: 0 -> single register, 1 -> register pair * o0: 1 -> load-acquire/store-release, 0 -> not */ static void disas_ldst_excl(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int rt2 = extract32(insn, 10, 5); int rs = extract32(insn, 16, 5); int is_lasr = extract32(insn, 15, 1); int o2_L_o1_o0 = extract32(insn, 21, 3) * 2 | is_lasr; int size = extract32(insn, 30, 2); TCGv_i64 tcg_addr; switch (o2_L_o1_o0) { case 0x0: /* STXR */ case 0x1: /* STLXR */ if (rn == 31) { gen_check_sp_alignment(s); } if (is_lasr) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); } tcg_addr = read_cpu_reg_sp(s, rn, 1); gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, false); return; case 0x4: /* LDXR */ case 0x5: /* LDAXR */ if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); s->is_ldex = true; gen_load_exclusive(s, rt, rt2, tcg_addr, size, false); if (is_lasr) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); } return; case 0x9: /* STLR */ /* Generate ISS for non-exclusive accesses including LASR. */ if (rn == 31) { gen_check_sp_alignment(s); } tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); tcg_addr = read_cpu_reg_sp(s, rn, 1); do_gpr_st(s, cpu_reg(s, rt), tcg_addr, size, true, rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); return; case 0xd: /* LDAR */ /* Generate ISS for non-exclusive accesses including LASR. */ if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); do_gpr_ld(s, cpu_reg(s, rt), tcg_addr, size, false, false, true, rt, disas_ldst_compute_iss_sf(size, false, 0), is_lasr); tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); return; case 0x2: case 0x3: /* CASP / STXP */ if (size & 2) { /* STXP / STLXP */ if (rn == 31) { gen_check_sp_alignment(s); } if (is_lasr) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_STRL); } tcg_addr = read_cpu_reg_sp(s, rn, 1); gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, true); return; } if (rt2 == 31 && ((rt | rs) & 1) == 0 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) { /* CASP / CASPL */ gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); return; } break; case 0x6: case 0x7: /* CASPA / LDXP */ if (size & 2) { /* LDXP / LDAXP */ if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); s->is_ldex = true; gen_load_exclusive(s, rt, rt2, tcg_addr, size, true); if (is_lasr) { tcg_gen_mb(TCG_MO_ALL | TCG_BAR_LDAQ); } return; } if (rt2 == 31 && ((rt | rs) & 1) == 0 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) { /* CASPA / CASPAL */ gen_compare_and_swap_pair(s, rs, rt, rn, size | 2); return; } break; case 0xa: /* CAS */ case 0xb: /* CASL */ case 0xe: /* CASA */ case 0xf: /* CASAL */ if (rt2 == 31 && arm_dc_feature(s, ARM_FEATURE_V8_ATOMICS)) { gen_compare_and_swap(s, rs, rt, rn, size); return; } break; } unallocated_encoding(s); } /* * Load register (literal) * * 31 30 29 27 26 25 24 23 5 4 0 * +-----+-------+---+-----+-------------------+-------+ * | opc | 0 1 1 | V | 0 0 | imm19 | Rt | * +-----+-------+---+-----+-------------------+-------+ * * V: 1 -> vector (simd/fp) * opc (non-vector): 00 -> 32 bit, 01 -> 64 bit, * 10-> 32 bit signed, 11 -> prefetch * opc (vector): 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit (11 unallocated) */ static void disas_ld_lit(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int64_t imm = sextract32(insn, 5, 19) << 2; bool is_vector = extract32(insn, 26, 1); int opc = extract32(insn, 30, 2); bool is_signed = false; int size = 2; TCGv_i64 tcg_rt, tcg_addr; if (is_vector) { if (opc == 3) { unallocated_encoding(s); return; } size = 2 + opc; if (!fp_access_check(s)) { return; } } else { if (opc == 3) { /* PRFM (literal) : prefetch */ return; } size = 2 + extract32(opc, 0, 1); is_signed = extract32(opc, 1, 1); } tcg_rt = cpu_reg(s, rt); tcg_addr = tcg_const_i64((s->pc - 4) + imm); if (is_vector) { do_fp_ld(s, rt, tcg_addr, size); } else { /* Only unsigned 32bit loads target 32bit registers. */ bool iss_sf = opc != 0; do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, false, true, rt, iss_sf, false); } tcg_temp_free_i64(tcg_addr); } /* * LDNP (Load Pair - non-temporal hint) * LDP (Load Pair - non vector) * LDPSW (Load Pair Signed Word - non vector) * STNP (Store Pair - non-temporal hint) * STP (Store Pair - non vector) * LDNP (Load Pair of SIMD&FP - non-temporal hint) * LDP (Load Pair of SIMD&FP) * STNP (Store Pair of SIMD&FP - non-temporal hint) * STP (Store Pair of SIMD&FP) * * 31 30 29 27 26 25 24 23 22 21 15 14 10 9 5 4 0 * +-----+-------+---+---+-------+---+-----------------------------+ * | opc | 1 0 1 | V | 0 | index | L | imm7 | Rt2 | Rn | Rt | * +-----+-------+---+---+-------+---+-------+-------+------+------+ * * opc: LDP/STP/LDNP/STNP 00 -> 32 bit, 10 -> 64 bit * LDPSW 01 * LDP/STP/LDNP/STNP (SIMD) 00 -> 32 bit, 01 -> 64 bit, 10 -> 128 bit * V: 0 -> GPR, 1 -> Vector * idx: 00 -> signed offset with non-temporal hint, 01 -> post-index, * 10 -> signed offset, 11 -> pre-index * L: 0 -> Store 1 -> Load * * Rt, Rt2 = GPR or SIMD registers to be stored * Rn = general purpose register containing address * imm7 = signed offset (multiple of 4 or 8 depending on size) */ static void disas_ldst_pair(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int rt2 = extract32(insn, 10, 5); uint64_t offset = sextract64(insn, 15, 7); int index = extract32(insn, 23, 2); bool is_vector = extract32(insn, 26, 1); bool is_load = extract32(insn, 22, 1); int opc = extract32(insn, 30, 2); bool is_signed = false; bool postindex = false; bool wback = false; TCGv_i64 tcg_addr; /* calculated address */ int size; if (opc == 3) { unallocated_encoding(s); return; } if (is_vector) { size = 2 + opc; } else { size = 2 + extract32(opc, 1, 1); is_signed = extract32(opc, 0, 1); if (!is_load && is_signed) { unallocated_encoding(s); return; } } switch (index) { case 1: /* post-index */ postindex = true; wback = true; break; case 0: /* signed offset with "non-temporal" hint. Since we don't emulate * caches we don't care about hints to the cache system about * data access patterns, and handle this identically to plain * signed offset. */ if (is_signed) { /* There is no non-temporal-hint version of LDPSW */ unallocated_encoding(s); return; } postindex = false; break; case 2: /* signed offset, rn not updated */ postindex = false; break; case 3: /* pre-index */ postindex = false; wback = true; break; } if (is_vector && !fp_access_check(s)) { return; } offset <<= size; if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); if (!postindex) { tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); } if (is_vector) { if (is_load) { do_fp_ld(s, rt, tcg_addr, size); } else { do_fp_st(s, rt, tcg_addr, size); } tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); if (is_load) { do_fp_ld(s, rt2, tcg_addr, size); } else { do_fp_st(s, rt2, tcg_addr, size); } } else { TCGv_i64 tcg_rt = cpu_reg(s, rt); TCGv_i64 tcg_rt2 = cpu_reg(s, rt2); if (is_load) { TCGv_i64 tmp = tcg_temp_new_i64(); /* Do not modify tcg_rt before recognizing any exception * from the second load. */ do_gpr_ld(s, tmp, tcg_addr, size, is_signed, false, false, 0, false, false); tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); do_gpr_ld(s, tcg_rt2, tcg_addr, size, is_signed, false, false, 0, false, false); tcg_gen_mov_i64(tcg_rt, tmp); tcg_temp_free_i64(tmp); } else { do_gpr_st(s, tcg_rt, tcg_addr, size, false, 0, false, false); tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size); do_gpr_st(s, tcg_rt2, tcg_addr, size, false, 0, false, false); } } if (wback) { if (postindex) { tcg_gen_addi_i64(tcg_addr, tcg_addr, offset - (1 << size)); } else { tcg_gen_subi_i64(tcg_addr, tcg_addr, 1 << size); } tcg_gen_mov_i64(cpu_reg_sp(s, rn), tcg_addr); } } /* * Load/store (immediate post-indexed) * Load/store (immediate pre-indexed) * Load/store (unscaled immediate) * * 31 30 29 27 26 25 24 23 22 21 20 12 11 10 9 5 4 0 * +----+-------+---+-----+-----+---+--------+-----+------+------+ * |size| 1 1 1 | V | 0 0 | opc | 0 | imm9 | idx | Rn | Rt | * +----+-------+---+-----+-----+---+--------+-----+------+------+ * * idx = 01 -> post-indexed, 11 pre-indexed, 00 unscaled imm. (no writeback) 10 -> unprivileged * V = 0 -> non-vector * size: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64bit * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 */ static void disas_ldst_reg_imm9(DisasContext *s, uint32_t insn, int opc, int size, int rt, bool is_vector) { int rn = extract32(insn, 5, 5); int imm9 = sextract32(insn, 12, 9); int idx = extract32(insn, 10, 2); bool is_signed = false; bool is_store = false; bool is_extended = false; bool is_unpriv = (idx == 2); bool iss_valid = !is_vector; bool post_index; bool writeback; TCGv_i64 tcg_addr; if (is_vector) { size |= (opc & 2) << 1; if (size > 4 || is_unpriv) { unallocated_encoding(s); return; } is_store = ((opc & 1) == 0); if (!fp_access_check(s)) { return; } } else { if (size == 3 && opc == 2) { /* PRFM - prefetch */ if (is_unpriv) { unallocated_encoding(s); return; } return; } if (opc == 3 && size > 1) { unallocated_encoding(s); return; } is_store = (opc == 0); is_signed = extract32(opc, 1, 1); is_extended = (size < 3) && extract32(opc, 0, 1); } switch (idx) { case 0: case 2: post_index = false; writeback = false; break; case 1: post_index = true; writeback = true; break; case 3: post_index = false; writeback = true; break; default: g_assert_not_reached(); } if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); if (!post_index) { tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); } if (is_vector) { if (is_store) { do_fp_st(s, rt, tcg_addr, size); } else { do_fp_ld(s, rt, tcg_addr, size); } } else { TCGv_i64 tcg_rt = cpu_reg(s, rt); int memidx = is_unpriv ? get_a64_user_mem_index(s) : get_mem_index(s); bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); if (is_store) { do_gpr_st_memidx(s, tcg_rt, tcg_addr, size, memidx, iss_valid, rt, iss_sf, false); } else { do_gpr_ld_memidx(s, tcg_rt, tcg_addr, size, is_signed, is_extended, memidx, iss_valid, rt, iss_sf, false); } } if (writeback) { TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); if (post_index) { tcg_gen_addi_i64(tcg_addr, tcg_addr, imm9); } tcg_gen_mov_i64(tcg_rn, tcg_addr); } } /* * Load/store (register offset) * * 31 30 29 27 26 25 24 23 22 21 20 16 15 13 12 11 10 9 5 4 0 * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ * |size| 1 1 1 | V | 0 0 | opc | 1 | Rm | opt | S| 1 0 | Rn | Rt | * +----+-------+---+-----+-----+---+------+-----+--+-----+----+----+ * * For non-vector: * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 * For vector: * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated * opc<0>: 0 -> store, 1 -> load * V: 1 -> vector/simd * opt: extend encoding (see DecodeRegExtend) * S: if S=1 then scale (essentially index by sizeof(size)) * Rt: register to transfer into/out of * Rn: address register or SP for base * Rm: offset register or ZR for offset */ static void disas_ldst_reg_roffset(DisasContext *s, uint32_t insn, int opc, int size, int rt, bool is_vector) { int rn = extract32(insn, 5, 5); int shift = extract32(insn, 12, 1); int rm = extract32(insn, 16, 5); int opt = extract32(insn, 13, 3); bool is_signed = false; bool is_store = false; bool is_extended = false; TCGv_i64 tcg_rm; TCGv_i64 tcg_addr; if (extract32(opt, 1, 1) == 0) { unallocated_encoding(s); return; } if (is_vector) { size |= (opc & 2) << 1; if (size > 4) { unallocated_encoding(s); return; } is_store = !extract32(opc, 0, 1); if (!fp_access_check(s)) { return; } } else { if (size == 3 && opc == 2) { /* PRFM - prefetch */ return; } if (opc == 3 && size > 1) { unallocated_encoding(s); return; } is_store = (opc == 0); is_signed = extract32(opc, 1, 1); is_extended = (size < 3) && extract32(opc, 0, 1); } if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); tcg_rm = read_cpu_reg(s, rm, 1); ext_and_shift_reg(tcg_rm, tcg_rm, opt, shift ? size : 0); tcg_gen_add_i64(tcg_addr, tcg_addr, tcg_rm); if (is_vector) { if (is_store) { do_fp_st(s, rt, tcg_addr, size); } else { do_fp_ld(s, rt, tcg_addr, size); } } else { TCGv_i64 tcg_rt = cpu_reg(s, rt); bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); if (is_store) { do_gpr_st(s, tcg_rt, tcg_addr, size, true, rt, iss_sf, false); } else { do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended, true, rt, iss_sf, false); } } } /* * Load/store (unsigned immediate) * * 31 30 29 27 26 25 24 23 22 21 10 9 5 * +----+-------+---+-----+-----+------------+-------+------+ * |size| 1 1 1 | V | 0 1 | opc | imm12 | Rn | Rt | * +----+-------+---+-----+-----+------------+-------+------+ * * For non-vector: * size: 00-> byte, 01 -> 16 bit, 10 -> 32bit, 11 -> 64bit * opc: 00 -> store, 01 -> loadu, 10 -> loads 64, 11 -> loads 32 * For vector: * size is opc<1>:size<1:0> so 100 -> 128 bit; 110 and 111 unallocated * opc<0>: 0 -> store, 1 -> load * Rn: base address register (inc SP) * Rt: target register */ static void disas_ldst_reg_unsigned_imm(DisasContext *s, uint32_t insn, int opc, int size, int rt, bool is_vector) { int rn = extract32(insn, 5, 5); unsigned int imm12 = extract32(insn, 10, 12); unsigned int offset; TCGv_i64 tcg_addr; bool is_store; bool is_signed = false; bool is_extended = false; if (is_vector) { size |= (opc & 2) << 1; if (size > 4) { unallocated_encoding(s); return; } is_store = !extract32(opc, 0, 1); if (!fp_access_check(s)) { return; } } else { if (size == 3 && opc == 2) { /* PRFM - prefetch */ return; } if (opc == 3 && size > 1) { unallocated_encoding(s); return; } is_store = (opc == 0); is_signed = extract32(opc, 1, 1); is_extended = (size < 3) && extract32(opc, 0, 1); } if (rn == 31) { gen_check_sp_alignment(s); } tcg_addr = read_cpu_reg_sp(s, rn, 1); offset = imm12 << size; tcg_gen_addi_i64(tcg_addr, tcg_addr, offset); if (is_vector) { if (is_store) { do_fp_st(s, rt, tcg_addr, size); } else { do_fp_ld(s, rt, tcg_addr, size); } } else { TCGv_i64 tcg_rt = cpu_reg(s, rt); bool iss_sf = disas_ldst_compute_iss_sf(size, is_signed, opc); if (is_store) { do_gpr_st(s, tcg_rt, tcg_addr, size, true, rt, iss_sf, false); } else { do_gpr_ld(s, tcg_rt, tcg_addr, size, is_signed, is_extended, true, rt, iss_sf, false); } } } /* Atomic memory operations * * 31 30 27 26 24 22 21 16 15 12 10 5 0 * +------+-------+---+-----+-----+---+----+----+-----+-----+----+-----+ * | size | 1 1 1 | V | 0 0 | A R | 1 | Rs | o3 | opc | 0 0 | Rn | Rt | * +------+-------+---+-----+-----+--------+----+-----+-----+----+-----+ * * Rt: the result register * Rn: base address or SP * Rs: the source register for the operation * V: vector flag (always 0 as of v8.3) * A: acquire flag * R: release flag */ static void disas_ldst_atomic(DisasContext *s, uint32_t insn, int size, int rt, bool is_vector) { int rs = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int o3_opc = extract32(insn, 12, 4); int feature = ARM_FEATURE_V8_ATOMICS; TCGv_i64 tcg_rn, tcg_rs; AtomicThreeOpFn *fn; if (is_vector) { unallocated_encoding(s); return; } switch (o3_opc) { case 000: /* LDADD */ fn = tcg_gen_atomic_fetch_add_i64; break; case 001: /* LDCLR */ fn = tcg_gen_atomic_fetch_and_i64; break; case 002: /* LDEOR */ fn = tcg_gen_atomic_fetch_xor_i64; break; case 003: /* LDSET */ fn = tcg_gen_atomic_fetch_or_i64; break; case 004: /* LDSMAX */ fn = tcg_gen_atomic_fetch_smax_i64; break; case 005: /* LDSMIN */ fn = tcg_gen_atomic_fetch_smin_i64; break; case 006: /* LDUMAX */ fn = tcg_gen_atomic_fetch_umax_i64; break; case 007: /* LDUMIN */ fn = tcg_gen_atomic_fetch_umin_i64; break; case 010: /* SWP */ fn = tcg_gen_atomic_xchg_i64; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (rn == 31) { gen_check_sp_alignment(s); } tcg_rn = cpu_reg_sp(s, rn); tcg_rs = read_cpu_reg(s, rs, true); if (o3_opc == 1) { /* LDCLR */ tcg_gen_not_i64(tcg_rs, tcg_rs); } /* The tcg atomic primitives are all full barriers. Therefore we * can ignore the Acquire and Release bits of this instruction. */ fn(cpu_reg(s, rt), tcg_rn, tcg_rs, get_mem_index(s), s->be_data | size | MO_ALIGN); } /* Load/store register (all forms) */ static void disas_ldst_reg(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int opc = extract32(insn, 22, 2); bool is_vector = extract32(insn, 26, 1); int size = extract32(insn, 30, 2); switch (extract32(insn, 24, 2)) { case 0: if (extract32(insn, 21, 1) == 0) { /* Load/store register (unscaled immediate) * Load/store immediate pre/post-indexed * Load/store register unprivileged */ disas_ldst_reg_imm9(s, insn, opc, size, rt, is_vector); return; } switch (extract32(insn, 10, 2)) { case 0: disas_ldst_atomic(s, insn, size, rt, is_vector); return; case 2: disas_ldst_reg_roffset(s, insn, opc, size, rt, is_vector); return; } break; case 1: disas_ldst_reg_unsigned_imm(s, insn, opc, size, rt, is_vector); return; } unallocated_encoding(s); } /* AdvSIMD load/store multiple structures * * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0 * +---+---+---------------+---+-------------+--------+------+------+------+ * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt | * +---+---+---------------+---+-------------+--------+------+------+------+ * * AdvSIMD load/store multiple structures (post-indexed) * * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0 * +---+---+---------------+---+---+---------+--------+------+------+------+ * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt | * +---+---+---------------+---+---+---------+--------+------+------+------+ * * Rt: first (or only) SIMD&FP register to be transferred * Rn: base address or SP * Rm (post-index only): post-index register (when !31) or size dependent #imm */ static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int size = extract32(insn, 10, 2); int opcode = extract32(insn, 12, 4); bool is_store = !extract32(insn, 22, 1); bool is_postidx = extract32(insn, 23, 1); bool is_q = extract32(insn, 30, 1); TCGv_i64 tcg_addr, tcg_rn; int ebytes = 1 << size; int elements = (is_q ? 128 : 64) / (8 << size); int rpt; /* num iterations */ int selem; /* structure elements */ int r; if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) { unallocated_encoding(s); return; } /* From the shared decode logic */ switch (opcode) { case 0x0: rpt = 1; selem = 4; break; case 0x2: rpt = 4; selem = 1; break; case 0x4: rpt = 1; selem = 3; break; case 0x6: rpt = 3; selem = 1; break; case 0x7: rpt = 1; selem = 1; break; case 0x8: rpt = 1; selem = 2; break; case 0xa: rpt = 2; selem = 1; break; default: unallocated_encoding(s); return; } if (size == 3 && !is_q && selem != 1) { /* reserved */ unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (rn == 31) { gen_check_sp_alignment(s); } tcg_rn = cpu_reg_sp(s, rn); tcg_addr = tcg_temp_new_i64(); tcg_gen_mov_i64(tcg_addr, tcg_rn); for (r = 0; r < rpt; r++) { int e; for (e = 0; e < elements; e++) { int tt = (rt + r) % 32; int xs; for (xs = 0; xs < selem; xs++) { if (is_store) { do_vec_st(s, tt, e, tcg_addr, size); } else { do_vec_ld(s, tt, e, tcg_addr, size); /* For non-quad operations, setting a slice of the low * 64 bits of the register clears the high 64 bits (in * the ARM ARM pseudocode this is implicit in the fact * that 'rval' is a 64 bit wide variable). * For quad operations, we might still need to zero the * high bits of SVE. We optimize by noticing that we only * need to do this the first time we touch a register. */ if (e == 0 && (r == 0 || xs == selem - 1)) { clear_vec_high(s, is_q, tt); } } tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); tt = (tt + 1) % 32; } } } if (is_postidx) { int rm = extract32(insn, 16, 5); if (rm == 31) { tcg_gen_mov_i64(tcg_rn, tcg_addr); } else { tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); } } tcg_temp_free_i64(tcg_addr); } /* AdvSIMD load/store single structure * * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt | * +---+---+---------------+-----+-----------+-----+---+------+------+------+ * * AdvSIMD load/store single structure (post-indexed) * * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0 * +---+---+---------------+-----+-----------+-----+---+------+------+------+ * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt | * +---+---+---------------+-----+-----------+-----+---+------+------+------+ * * Rt: first (or only) SIMD&FP register to be transferred * Rn: base address or SP * Rm (post-index only): post-index register (when !31) or size dependent #imm * index = encoded in Q:S:size dependent on size * * lane_size = encoded in R, opc * transfer width = encoded in opc, S, size */ static void disas_ldst_single_struct(DisasContext *s, uint32_t insn) { int rt = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int size = extract32(insn, 10, 2); int S = extract32(insn, 12, 1); int opc = extract32(insn, 13, 3); int R = extract32(insn, 21, 1); int is_load = extract32(insn, 22, 1); int is_postidx = extract32(insn, 23, 1); int is_q = extract32(insn, 30, 1); int scale = extract32(opc, 1, 2); int selem = (extract32(opc, 0, 1) << 1 | R) + 1; bool replicate = false; int index = is_q << 3 | S << 2 | size; int ebytes, xs; TCGv_i64 tcg_addr, tcg_rn; switch (scale) { case 3: if (!is_load || S) { unallocated_encoding(s); return; } scale = size; replicate = true; break; case 0: break; case 1: if (extract32(size, 0, 1)) { unallocated_encoding(s); return; } index >>= 1; break; case 2: if (extract32(size, 1, 1)) { unallocated_encoding(s); return; } if (!extract32(size, 0, 1)) { index >>= 2; } else { if (S) { unallocated_encoding(s); return; } index >>= 3; scale = 3; } break; default: g_assert_not_reached(); } if (!fp_access_check(s)) { return; } ebytes = 1 << scale; if (rn == 31) { gen_check_sp_alignment(s); } tcg_rn = cpu_reg_sp(s, rn); tcg_addr = tcg_temp_new_i64(); tcg_gen_mov_i64(tcg_addr, tcg_rn); for (xs = 0; xs < selem; xs++) { if (replicate) { /* Load and replicate to all elements */ uint64_t mulconst; TCGv_i64 tcg_tmp = tcg_temp_new_i64(); tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), s->be_data + scale); switch (scale) { case 0: mulconst = 0x0101010101010101ULL; break; case 1: mulconst = 0x0001000100010001ULL; break; case 2: mulconst = 0x0000000100000001ULL; break; case 3: mulconst = 0; break; default: g_assert_not_reached(); } if (mulconst) { tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst); } write_vec_element(s, tcg_tmp, rt, 0, MO_64); if (is_q) { write_vec_element(s, tcg_tmp, rt, 1, MO_64); } tcg_temp_free_i64(tcg_tmp); clear_vec_high(s, is_q, rt); } else { /* Load/store one element per register */ if (is_load) { do_vec_ld(s, rt, index, tcg_addr, scale); } else { do_vec_st(s, rt, index, tcg_addr, scale); } } tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes); rt = (rt + 1) % 32; } if (is_postidx) { int rm = extract32(insn, 16, 5); if (rm == 31) { tcg_gen_mov_i64(tcg_rn, tcg_addr); } else { tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm)); } } tcg_temp_free_i64(tcg_addr); } /* Loads and stores */ static void disas_ldst(DisasContext *s, uint32_t insn) { switch (extract32(insn, 24, 6)) { case 0x08: /* Load/store exclusive */ disas_ldst_excl(s, insn); break; case 0x18: case 0x1c: /* Load register (literal) */ disas_ld_lit(s, insn); break; case 0x28: case 0x29: case 0x2c: case 0x2d: /* Load/store pair (all forms) */ disas_ldst_pair(s, insn); break; case 0x38: case 0x39: case 0x3c: case 0x3d: /* Load/store register (all forms) */ disas_ldst_reg(s, insn); break; case 0x0c: /* AdvSIMD load/store multiple structures */ disas_ldst_multiple_struct(s, insn); break; case 0x0d: /* AdvSIMD load/store single structure */ disas_ldst_single_struct(s, insn); break; default: unallocated_encoding(s); break; } } /* PC-rel. addressing * 31 30 29 28 24 23 5 4 0 * +----+-------+-----------+-------------------+------+ * | op | immlo | 1 0 0 0 0 | immhi | Rd | * +----+-------+-----------+-------------------+------+ */ static void disas_pc_rel_adr(DisasContext *s, uint32_t insn) { unsigned int page, rd; uint64_t base; uint64_t offset; page = extract32(insn, 31, 1); /* SignExtend(immhi:immlo) -> offset */ offset = sextract64(insn, 5, 19); offset = offset << 2 | extract32(insn, 29, 2); rd = extract32(insn, 0, 5); base = s->pc - 4; if (page) { /* ADRP (page based) */ base &= ~0xfff; offset <<= 12; } tcg_gen_movi_i64(cpu_reg(s, rd), base + offset); } /* * Add/subtract (immediate) * * 31 30 29 28 24 23 22 21 10 9 5 4 0 * +--+--+--+-----------+-----+-------------+-----+-----+ * |sf|op| S| 1 0 0 0 1 |shift| imm12 | Rn | Rd | * +--+--+--+-----------+-----+-------------+-----+-----+ * * sf: 0 -> 32bit, 1 -> 64bit * op: 0 -> add , 1 -> sub * S: 1 -> set flags * shift: 00 -> LSL imm by 0, 01 -> LSL imm by 12 */ static void disas_add_sub_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); uint64_t imm = extract32(insn, 10, 12); int shift = extract32(insn, 22, 2); bool setflags = extract32(insn, 29, 1); bool sub_op = extract32(insn, 30, 1); bool is_64bit = extract32(insn, 31, 1); TCGv_i64 tcg_rn = cpu_reg_sp(s, rn); TCGv_i64 tcg_rd = setflags ? cpu_reg(s, rd) : cpu_reg_sp(s, rd); TCGv_i64 tcg_result; switch (shift) { case 0x0: break; case 0x1: imm <<= 12; break; default: unallocated_encoding(s); return; } tcg_result = tcg_temp_new_i64(); if (!setflags) { if (sub_op) { tcg_gen_subi_i64(tcg_result, tcg_rn, imm); } else { tcg_gen_addi_i64(tcg_result, tcg_rn, imm); } } else { TCGv_i64 tcg_imm = tcg_const_i64(imm); if (sub_op) { gen_sub_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); } else { gen_add_CC(is_64bit, tcg_result, tcg_rn, tcg_imm); } tcg_temp_free_i64(tcg_imm); } if (is_64bit) { tcg_gen_mov_i64(tcg_rd, tcg_result); } else { tcg_gen_ext32u_i64(tcg_rd, tcg_result); } tcg_temp_free_i64(tcg_result); } /* The input should be a value in the bottom e bits (with higher * bits zero); returns that value replicated into every element * of size e in a 64 bit integer. */ static uint64_t bitfield_replicate(uint64_t mask, unsigned int e) { assert(e != 0); while (e < 64) { mask |= mask << e; e *= 2; } return mask; } /* Return a value with the bottom len bits set (where 0 < len <= 64) */ static inline uint64_t bitmask64(unsigned int length) { assert(length > 0 && length <= 64); return ~0ULL >> (64 - length); } /* Simplified variant of pseudocode DecodeBitMasks() for the case where we * only require the wmask. Returns false if the imms/immr/immn are a reserved * value (ie should cause a guest UNDEF exception), and true if they are * valid, in which case the decoded bit pattern is written to result. */ bool logic_imm_decode_wmask(uint64_t *result, unsigned int immn, unsigned int imms, unsigned int immr) { uint64_t mask; unsigned e, levels, s, r; int len; assert(immn < 2 && imms < 64 && immr < 64); /* The bit patterns we create here are 64 bit patterns which * are vectors of identical elements of size e = 2, 4, 8, 16, 32 or * 64 bits each. Each element contains the same value: a run * of between 1 and e-1 non-zero bits, rotated within the * element by between 0 and e-1 bits. * * The element size and run length are encoded into immn (1 bit) * and imms (6 bits) as follows: * 64 bit elements: immn = 1, imms = * 32 bit elements: immn = 0, imms = 0 : * 16 bit elements: immn = 0, imms = 10 : * 8 bit elements: immn = 0, imms = 110 : * 4 bit elements: immn = 0, imms = 1110 : * 2 bit elements: immn = 0, imms = 11110 : * Notice that immn = 0, imms = 11111x is the only combination * not covered by one of the above options; this is reserved. * Further, all-ones is a reserved pattern. * * In all cases the rotation is by immr % e (and immr is 6 bits). */ /* First determine the element size */ len = 31 - clz32((immn << 6) | (~imms & 0x3f)); if (len < 1) { /* This is the immn == 0, imms == 0x11111x case */ return false; } e = 1 << len; levels = e - 1; s = imms & levels; r = immr & levels; if (s == levels) { /* mustn't be all-ones. */ return false; } /* Create the value of one element: s+1 set bits rotated * by r within the element (which is e bits wide)... */ mask = bitmask64(s + 1); if (r) { mask = (mask >> r) | (mask << (e - r)); mask &= bitmask64(e); } /* ...then replicate the element over the whole 64 bit value */ mask = bitfield_replicate(mask, e); *result = mask; return true; } /* Logical (immediate) * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 * +----+-----+-------------+---+------+------+------+------+ * | sf | opc | 1 0 0 1 0 0 | N | immr | imms | Rn | Rd | * +----+-----+-------------+---+------+------+------+------+ */ static void disas_logic_imm(DisasContext *s, uint32_t insn) { unsigned int sf, opc, is_n, immr, imms, rn, rd; TCGv_i64 tcg_rd, tcg_rn; uint64_t wmask; bool is_and = false; sf = extract32(insn, 31, 1); opc = extract32(insn, 29, 2); is_n = extract32(insn, 22, 1); immr = extract32(insn, 16, 6); imms = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); if (!sf && is_n) { unallocated_encoding(s); return; } if (opc == 0x3) { /* ANDS */ tcg_rd = cpu_reg(s, rd); } else { tcg_rd = cpu_reg_sp(s, rd); } tcg_rn = cpu_reg(s, rn); if (!logic_imm_decode_wmask(&wmask, is_n, imms, immr)) { /* some immediate field values are reserved */ unallocated_encoding(s); return; } if (!sf) { wmask &= 0xffffffff; } switch (opc) { case 0x3: /* ANDS */ case 0x0: /* AND */ tcg_gen_andi_i64(tcg_rd, tcg_rn, wmask); is_and = true; break; case 0x1: /* ORR */ tcg_gen_ori_i64(tcg_rd, tcg_rn, wmask); break; case 0x2: /* EOR */ tcg_gen_xori_i64(tcg_rd, tcg_rn, wmask); break; default: assert(FALSE); /* must handle all above */ break; } if (!sf && !is_and) { /* zero extend final result; we know we can skip this for AND * since the immediate had the high 32 bits clear. */ tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } if (opc == 3) { /* ANDS */ gen_logic_CC(sf, tcg_rd); } } /* * Move wide (immediate) * * 31 30 29 28 23 22 21 20 5 4 0 * +--+-----+-------------+-----+----------------+------+ * |sf| opc | 1 0 0 1 0 1 | hw | imm16 | Rd | * +--+-----+-------------+-----+----------------+------+ * * sf: 0 -> 32 bit, 1 -> 64 bit * opc: 00 -> N, 10 -> Z, 11 -> K * hw: shift/16 (0,16, and sf only 32, 48) */ static void disas_movw_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); uint64_t imm = extract32(insn, 5, 16); int sf = extract32(insn, 31, 1); int opc = extract32(insn, 29, 2); int pos = extract32(insn, 21, 2) << 4; TCGv_i64 tcg_rd = cpu_reg(s, rd); TCGv_i64 tcg_imm; if (!sf && (pos >= 32)) { unallocated_encoding(s); return; } switch (opc) { case 0: /* MOVN */ case 2: /* MOVZ */ imm <<= pos; if (opc == 0) { imm = ~imm; } if (!sf) { imm &= 0xffffffffu; } tcg_gen_movi_i64(tcg_rd, imm); break; case 3: /* MOVK */ tcg_imm = tcg_const_i64(imm); tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_imm, pos, 16); tcg_temp_free_i64(tcg_imm); if (!sf) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } break; default: unallocated_encoding(s); break; } } /* Bitfield * 31 30 29 28 23 22 21 16 15 10 9 5 4 0 * +----+-----+-------------+---+------+------+------+------+ * | sf | opc | 1 0 0 1 1 0 | N | immr | imms | Rn | Rd | * +----+-----+-------------+---+------+------+------+------+ */ static void disas_bitfield(DisasContext *s, uint32_t insn) { unsigned int sf, n, opc, ri, si, rn, rd, bitsize, pos, len; TCGv_i64 tcg_rd, tcg_tmp; sf = extract32(insn, 31, 1); opc = extract32(insn, 29, 2); n = extract32(insn, 22, 1); ri = extract32(insn, 16, 6); si = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); bitsize = sf ? 64 : 32; if (sf != n || ri >= bitsize || si >= bitsize || opc > 2) { unallocated_encoding(s); return; } tcg_rd = cpu_reg(s, rd); /* Suppress the zero-extend for !sf. Since RI and SI are constrained to be smaller than bitsize, we'll never reference data outside the low 32-bits anyway. */ tcg_tmp = read_cpu_reg(s, rn, 1); /* Recognize simple(r) extractions. */ if (si >= ri) { /* Wd = Wn */ len = (si - ri) + 1; if (opc == 0) { /* SBFM: ASR, SBFX, SXTB, SXTH, SXTW */ tcg_gen_sextract_i64(tcg_rd, tcg_tmp, ri, len); goto done; } else if (opc == 2) { /* UBFM: UBFX, LSR, UXTB, UXTH */ tcg_gen_extract_i64(tcg_rd, tcg_tmp, ri, len); return; } /* opc == 1, BXFIL fall through to deposit */ tcg_gen_extract_i64(tcg_tmp, tcg_tmp, ri, len); pos = 0; } else { /* Handle the ri > si case with a deposit * Wd<32+s-r,32-r> = Wn */ len = si + 1; pos = (bitsize - ri) & (bitsize - 1); } if (opc == 0 && len < ri) { /* SBFM: sign extend the destination field from len to fill the balance of the word. Let the deposit below insert all of those sign bits. */ tcg_gen_sextract_i64(tcg_tmp, tcg_tmp, 0, len); len = ri; } if (opc == 1) { /* BFM, BXFIL */ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_tmp, pos, len); } else { /* SBFM or UBFM: We start with zero, and we haven't modified any bits outside bitsize, therefore the zero-extension below is unneeded. */ tcg_gen_deposit_z_i64(tcg_rd, tcg_tmp, pos, len); return; } done: if (!sf) { /* zero extend final result */ tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } /* Extract * 31 30 29 28 23 22 21 20 16 15 10 9 5 4 0 * +----+------+-------------+---+----+------+--------+------+------+ * | sf | op21 | 1 0 0 1 1 1 | N | o0 | Rm | imms | Rn | Rd | * +----+------+-------------+---+----+------+--------+------+------+ */ static void disas_extract(DisasContext *s, uint32_t insn) { unsigned int sf, n, rm, imm, rn, rd, bitsize, op21, op0; sf = extract32(insn, 31, 1); n = extract32(insn, 22, 1); rm = extract32(insn, 16, 5); imm = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); op21 = extract32(insn, 29, 2); op0 = extract32(insn, 21, 1); bitsize = sf ? 64 : 32; if (sf != n || op21 || op0 || imm >= bitsize) { unallocated_encoding(s); } else { TCGv_i64 tcg_rd, tcg_rm, tcg_rn; tcg_rd = cpu_reg(s, rd); if (unlikely(imm == 0)) { /* tcg shl_i32/shl_i64 is undefined for 32/64 bit shifts, * so an extract from bit 0 is a special case. */ if (sf) { tcg_gen_mov_i64(tcg_rd, cpu_reg(s, rm)); } else { tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rm)); } } else if (rm == rn) { /* ROR */ tcg_rm = cpu_reg(s, rm); if (sf) { tcg_gen_rotri_i64(tcg_rd, tcg_rm, imm); } else { TCGv_i32 tmp = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(tmp, tcg_rm); tcg_gen_rotri_i32(tmp, tmp, imm); tcg_gen_extu_i32_i64(tcg_rd, tmp); tcg_temp_free_i32(tmp); } } else { tcg_rm = read_cpu_reg(s, rm, sf); tcg_rn = read_cpu_reg(s, rn, sf); tcg_gen_shri_i64(tcg_rm, tcg_rm, imm); tcg_gen_shli_i64(tcg_rn, tcg_rn, bitsize - imm); tcg_gen_or_i64(tcg_rd, tcg_rm, tcg_rn); if (!sf) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } } } /* Data processing - immediate */ static void disas_data_proc_imm(DisasContext *s, uint32_t insn) { switch (extract32(insn, 23, 6)) { case 0x20: case 0x21: /* PC-rel. addressing */ disas_pc_rel_adr(s, insn); break; case 0x22: case 0x23: /* Add/subtract (immediate) */ disas_add_sub_imm(s, insn); break; case 0x24: /* Logical (immediate) */ disas_logic_imm(s, insn); break; case 0x25: /* Move wide (immediate) */ disas_movw_imm(s, insn); break; case 0x26: /* Bitfield */ disas_bitfield(s, insn); break; case 0x27: /* Extract */ disas_extract(s, insn); break; default: unallocated_encoding(s); break; } } /* Shift a TCGv src by TCGv shift_amount, put result in dst. * Note that it is the caller's responsibility to ensure that the * shift amount is in range (ie 0..31 or 0..63) and provide the ARM * mandated semantics for out of range shifts. */ static void shift_reg(TCGv_i64 dst, TCGv_i64 src, int sf, enum a64_shift_type shift_type, TCGv_i64 shift_amount) { switch (shift_type) { case A64_SHIFT_TYPE_LSL: tcg_gen_shl_i64(dst, src, shift_amount); break; case A64_SHIFT_TYPE_LSR: tcg_gen_shr_i64(dst, src, shift_amount); break; case A64_SHIFT_TYPE_ASR: if (!sf) { tcg_gen_ext32s_i64(dst, src); } tcg_gen_sar_i64(dst, sf ? src : dst, shift_amount); break; case A64_SHIFT_TYPE_ROR: if (sf) { tcg_gen_rotr_i64(dst, src, shift_amount); } else { TCGv_i32 t0, t1; t0 = tcg_temp_new_i32(); t1 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(t0, src); tcg_gen_extrl_i64_i32(t1, shift_amount); tcg_gen_rotr_i32(t0, t0, t1); tcg_gen_extu_i32_i64(dst, t0); tcg_temp_free_i32(t0); tcg_temp_free_i32(t1); } break; default: assert(FALSE); /* all shift types should be handled */ break; } if (!sf) { /* zero extend final result */ tcg_gen_ext32u_i64(dst, dst); } } /* Shift a TCGv src by immediate, put result in dst. * The shift amount must be in range (this should always be true as the * relevant instructions will UNDEF on bad shift immediates). */ static void shift_reg_imm(TCGv_i64 dst, TCGv_i64 src, int sf, enum a64_shift_type shift_type, unsigned int shift_i) { assert(shift_i < (sf ? 64 : 32)); if (shift_i == 0) { tcg_gen_mov_i64(dst, src); } else { TCGv_i64 shift_const; shift_const = tcg_const_i64(shift_i); shift_reg(dst, src, sf, shift_type, shift_const); tcg_temp_free_i64(shift_const); } } /* Logical (shifted register) * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 * +----+-----+-----------+-------+---+------+--------+------+------+ * | sf | opc | 0 1 0 1 0 | shift | N | Rm | imm6 | Rn | Rd | * +----+-----+-----------+-------+---+------+--------+------+------+ */ static void disas_logic_reg(DisasContext *s, uint32_t insn) { TCGv_i64 tcg_rd, tcg_rn, tcg_rm; unsigned int sf, opc, shift_type, invert, rm, shift_amount, rn, rd; sf = extract32(insn, 31, 1); opc = extract32(insn, 29, 2); shift_type = extract32(insn, 22, 2); invert = extract32(insn, 21, 1); rm = extract32(insn, 16, 5); shift_amount = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); if (!sf && (shift_amount & (1 << 5))) { unallocated_encoding(s); return; } tcg_rd = cpu_reg(s, rd); if (opc == 1 && shift_amount == 0 && shift_type == 0 && rn == 31) { /* Unshifted ORR and ORN with WZR/XZR is the standard encoding for * register-register MOV and MVN, so it is worth special casing. */ tcg_rm = cpu_reg(s, rm); if (invert) { tcg_gen_not_i64(tcg_rd, tcg_rm); if (!sf) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } else { if (sf) { tcg_gen_mov_i64(tcg_rd, tcg_rm); } else { tcg_gen_ext32u_i64(tcg_rd, tcg_rm); } } return; } tcg_rm = read_cpu_reg(s, rm, sf); if (shift_amount) { shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, shift_amount); } tcg_rn = cpu_reg(s, rn); switch (opc | (invert << 2)) { case 0: /* AND */ case 3: /* ANDS */ tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm); break; case 1: /* ORR */ tcg_gen_or_i64(tcg_rd, tcg_rn, tcg_rm); break; case 2: /* EOR */ tcg_gen_xor_i64(tcg_rd, tcg_rn, tcg_rm); break; case 4: /* BIC */ case 7: /* BICS */ tcg_gen_andc_i64(tcg_rd, tcg_rn, tcg_rm); break; case 5: /* ORN */ tcg_gen_orc_i64(tcg_rd, tcg_rn, tcg_rm); break; case 6: /* EON */ tcg_gen_eqv_i64(tcg_rd, tcg_rn, tcg_rm); break; default: assert(FALSE); break; } if (!sf) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } if (opc == 3) { gen_logic_CC(sf, tcg_rd); } } /* * Add/subtract (extended register) * * 31|30|29|28 24|23 22|21|20 16|15 13|12 10|9 5|4 0| * +--+--+--+-----------+-----+--+-------+------+------+----+----+ * |sf|op| S| 0 1 0 1 1 | opt | 1| Rm |option| imm3 | Rn | Rd | * +--+--+--+-----------+-----+--+-------+------+------+----+----+ * * sf: 0 -> 32bit, 1 -> 64bit * op: 0 -> add , 1 -> sub * S: 1 -> set flags * opt: 00 * option: extension type (see DecodeRegExtend) * imm3: optional shift to Rm * * Rd = Rn + LSL(extend(Rm), amount) */ static void disas_add_sub_ext_reg(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int imm3 = extract32(insn, 10, 3); int option = extract32(insn, 13, 3); int rm = extract32(insn, 16, 5); bool setflags = extract32(insn, 29, 1); bool sub_op = extract32(insn, 30, 1); bool sf = extract32(insn, 31, 1); TCGv_i64 tcg_rm, tcg_rn; /* temps */ TCGv_i64 tcg_rd; TCGv_i64 tcg_result; if (imm3 > 4) { unallocated_encoding(s); return; } /* non-flag setting ops may use SP */ if (!setflags) { tcg_rd = cpu_reg_sp(s, rd); } else { tcg_rd = cpu_reg(s, rd); } tcg_rn = read_cpu_reg_sp(s, rn, sf); tcg_rm = read_cpu_reg(s, rm, sf); ext_and_shift_reg(tcg_rm, tcg_rm, option, imm3); tcg_result = tcg_temp_new_i64(); if (!setflags) { if (sub_op) { tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); } else { tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); } } else { if (sub_op) { gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); } else { gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); } } if (sf) { tcg_gen_mov_i64(tcg_rd, tcg_result); } else { tcg_gen_ext32u_i64(tcg_rd, tcg_result); } tcg_temp_free_i64(tcg_result); } /* * Add/subtract (shifted register) * * 31 30 29 28 24 23 22 21 20 16 15 10 9 5 4 0 * +--+--+--+-----------+-----+--+-------+---------+------+------+ * |sf|op| S| 0 1 0 1 1 |shift| 0| Rm | imm6 | Rn | Rd | * +--+--+--+-----------+-----+--+-------+---------+------+------+ * * sf: 0 -> 32bit, 1 -> 64bit * op: 0 -> add , 1 -> sub * S: 1 -> set flags * shift: 00 -> LSL, 01 -> LSR, 10 -> ASR, 11 -> RESERVED * imm6: Shift amount to apply to Rm before the add/sub */ static void disas_add_sub_reg(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int imm6 = extract32(insn, 10, 6); int rm = extract32(insn, 16, 5); int shift_type = extract32(insn, 22, 2); bool setflags = extract32(insn, 29, 1); bool sub_op = extract32(insn, 30, 1); bool sf = extract32(insn, 31, 1); TCGv_i64 tcg_rd = cpu_reg(s, rd); TCGv_i64 tcg_rn, tcg_rm; TCGv_i64 tcg_result; if ((shift_type == 3) || (!sf && (imm6 > 31))) { unallocated_encoding(s); return; } tcg_rn = read_cpu_reg(s, rn, sf); tcg_rm = read_cpu_reg(s, rm, sf); shift_reg_imm(tcg_rm, tcg_rm, sf, shift_type, imm6); tcg_result = tcg_temp_new_i64(); if (!setflags) { if (sub_op) { tcg_gen_sub_i64(tcg_result, tcg_rn, tcg_rm); } else { tcg_gen_add_i64(tcg_result, tcg_rn, tcg_rm); } } else { if (sub_op) { gen_sub_CC(sf, tcg_result, tcg_rn, tcg_rm); } else { gen_add_CC(sf, tcg_result, tcg_rn, tcg_rm); } } if (sf) { tcg_gen_mov_i64(tcg_rd, tcg_result); } else { tcg_gen_ext32u_i64(tcg_rd, tcg_result); } tcg_temp_free_i64(tcg_result); } /* Data-processing (3 source) * * 31 30 29 28 24 23 21 20 16 15 14 10 9 5 4 0 * +--+------+-----------+------+------+----+------+------+------+ * |sf| op54 | 1 1 0 1 1 | op31 | Rm | o0 | Ra | Rn | Rd | * +--+------+-----------+------+------+----+------+------+------+ */ static void disas_data_proc_3src(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int ra = extract32(insn, 10, 5); int rm = extract32(insn, 16, 5); int op_id = (extract32(insn, 29, 3) << 4) | (extract32(insn, 21, 3) << 1) | extract32(insn, 15, 1); bool sf = extract32(insn, 31, 1); bool is_sub = extract32(op_id, 0, 1); bool is_high = extract32(op_id, 2, 1); bool is_signed = false; TCGv_i64 tcg_op1; TCGv_i64 tcg_op2; TCGv_i64 tcg_tmp; /* Note that op_id is sf:op54:op31:o0 so it includes the 32/64 size flag */ switch (op_id) { case 0x42: /* SMADDL */ case 0x43: /* SMSUBL */ case 0x44: /* SMULH */ is_signed = true; break; case 0x0: /* MADD (32bit) */ case 0x1: /* MSUB (32bit) */ case 0x40: /* MADD (64bit) */ case 0x41: /* MSUB (64bit) */ case 0x4a: /* UMADDL */ case 0x4b: /* UMSUBL */ case 0x4c: /* UMULH */ break; default: unallocated_encoding(s); return; } if (is_high) { TCGv_i64 low_bits = tcg_temp_new_i64(); /* low bits discarded */ TCGv_i64 tcg_rd = cpu_reg(s, rd); TCGv_i64 tcg_rn = cpu_reg(s, rn); TCGv_i64 tcg_rm = cpu_reg(s, rm); if (is_signed) { tcg_gen_muls2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); } else { tcg_gen_mulu2_i64(low_bits, tcg_rd, tcg_rn, tcg_rm); } tcg_temp_free_i64(low_bits); return; } tcg_op1 = tcg_temp_new_i64(); tcg_op2 = tcg_temp_new_i64(); tcg_tmp = tcg_temp_new_i64(); if (op_id < 0x42) { tcg_gen_mov_i64(tcg_op1, cpu_reg(s, rn)); tcg_gen_mov_i64(tcg_op2, cpu_reg(s, rm)); } else { if (is_signed) { tcg_gen_ext32s_i64(tcg_op1, cpu_reg(s, rn)); tcg_gen_ext32s_i64(tcg_op2, cpu_reg(s, rm)); } else { tcg_gen_ext32u_i64(tcg_op1, cpu_reg(s, rn)); tcg_gen_ext32u_i64(tcg_op2, cpu_reg(s, rm)); } } if (ra == 31 && !is_sub) { /* Special-case MADD with rA == XZR; it is the standard MUL alias */ tcg_gen_mul_i64(cpu_reg(s, rd), tcg_op1, tcg_op2); } else { tcg_gen_mul_i64(tcg_tmp, tcg_op1, tcg_op2); if (is_sub) { tcg_gen_sub_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); } else { tcg_gen_add_i64(cpu_reg(s, rd), cpu_reg(s, ra), tcg_tmp); } } if (!sf) { tcg_gen_ext32u_i64(cpu_reg(s, rd), cpu_reg(s, rd)); } tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_tmp); } /* Add/subtract (with carry) * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 10 9 5 4 0 * +--+--+--+------------------------+------+---------+------+-----+ * |sf|op| S| 1 1 0 1 0 0 0 0 | rm | opcode2 | Rn | Rd | * +--+--+--+------------------------+------+---------+------+-----+ * [000000] */ static void disas_adc_sbc(DisasContext *s, uint32_t insn) { unsigned int sf, op, setflags, rm, rn, rd; TCGv_i64 tcg_y, tcg_rn, tcg_rd; if (extract32(insn, 10, 6) != 0) { unallocated_encoding(s); return; } sf = extract32(insn, 31, 1); op = extract32(insn, 30, 1); setflags = extract32(insn, 29, 1); rm = extract32(insn, 16, 5); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); tcg_rd = cpu_reg(s, rd); tcg_rn = cpu_reg(s, rn); if (op) { tcg_y = new_tmp_a64(s); tcg_gen_not_i64(tcg_y, cpu_reg(s, rm)); } else { tcg_y = cpu_reg(s, rm); } if (setflags) { gen_adc_CC(sf, tcg_rd, tcg_rn, tcg_y); } else { gen_adc(sf, tcg_rd, tcg_rn, tcg_y); } } /* Conditional compare (immediate / register) * 31 30 29 28 27 26 25 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ * |sf|op| S| 1 1 0 1 0 0 1 0 |imm5/rm | cond |i/r |o2| Rn |o3|nzcv | * +--+--+--+------------------------+--------+------+----+--+------+--+-----+ * [1] y [0] [0] */ static void disas_cc(DisasContext *s, uint32_t insn) { unsigned int sf, op, y, cond, rn, nzcv, is_imm; TCGv_i32 tcg_t0, tcg_t1, tcg_t2; TCGv_i64 tcg_tmp, tcg_y, tcg_rn; DisasCompare c; if (!extract32(insn, 29, 1)) { unallocated_encoding(s); return; } if (insn & (1 << 10 | 1 << 4)) { unallocated_encoding(s); return; } sf = extract32(insn, 31, 1); op = extract32(insn, 30, 1); is_imm = extract32(insn, 11, 1); y = extract32(insn, 16, 5); /* y = rm (reg) or imm5 (imm) */ cond = extract32(insn, 12, 4); rn = extract32(insn, 5, 5); nzcv = extract32(insn, 0, 4); /* Set T0 = !COND. */ tcg_t0 = tcg_temp_new_i32(); arm_test_cc(&c, cond); tcg_gen_setcondi_i32(tcg_invert_cond(c.cond), tcg_t0, c.value, 0); arm_free_cc(&c); /* Load the arguments for the new comparison. */ if (is_imm) { tcg_y = new_tmp_a64(s); tcg_gen_movi_i64(tcg_y, y); } else { tcg_y = cpu_reg(s, y); } tcg_rn = cpu_reg(s, rn); /* Set the flags for the new comparison. */ tcg_tmp = tcg_temp_new_i64(); if (op) { gen_sub_CC(sf, tcg_tmp, tcg_rn, tcg_y); } else { gen_add_CC(sf, tcg_tmp, tcg_rn, tcg_y); } tcg_temp_free_i64(tcg_tmp); /* If COND was false, force the flags to #nzcv. Compute two masks * to help with this: T1 = (COND ? 0 : -1), T2 = (COND ? -1 : 0). * For tcg hosts that support ANDC, we can make do with just T1. * In either case, allow the tcg optimizer to delete any unused mask. */ tcg_t1 = tcg_temp_new_i32(); tcg_t2 = tcg_temp_new_i32(); tcg_gen_neg_i32(tcg_t1, tcg_t0); tcg_gen_subi_i32(tcg_t2, tcg_t0, 1); if (nzcv & 8) { /* N */ tcg_gen_or_i32(cpu_NF, cpu_NF, tcg_t1); } else { if (TCG_TARGET_HAS_andc_i32) { tcg_gen_andc_i32(cpu_NF, cpu_NF, tcg_t1); } else { tcg_gen_and_i32(cpu_NF, cpu_NF, tcg_t2); } } if (nzcv & 4) { /* Z */ if (TCG_TARGET_HAS_andc_i32) { tcg_gen_andc_i32(cpu_ZF, cpu_ZF, tcg_t1); } else { tcg_gen_and_i32(cpu_ZF, cpu_ZF, tcg_t2); } } else { tcg_gen_or_i32(cpu_ZF, cpu_ZF, tcg_t0); } if (nzcv & 2) { /* C */ tcg_gen_or_i32(cpu_CF, cpu_CF, tcg_t0); } else { if (TCG_TARGET_HAS_andc_i32) { tcg_gen_andc_i32(cpu_CF, cpu_CF, tcg_t1); } else { tcg_gen_and_i32(cpu_CF, cpu_CF, tcg_t2); } } if (nzcv & 1) { /* V */ tcg_gen_or_i32(cpu_VF, cpu_VF, tcg_t1); } else { if (TCG_TARGET_HAS_andc_i32) { tcg_gen_andc_i32(cpu_VF, cpu_VF, tcg_t1); } else { tcg_gen_and_i32(cpu_VF, cpu_VF, tcg_t2); } } tcg_temp_free_i32(tcg_t0); tcg_temp_free_i32(tcg_t1); tcg_temp_free_i32(tcg_t2); } /* Conditional select * 31 30 29 28 21 20 16 15 12 11 10 9 5 4 0 * +----+----+---+-----------------+------+------+-----+------+------+ * | sf | op | S | 1 1 0 1 0 1 0 0 | Rm | cond | op2 | Rn | Rd | * +----+----+---+-----------------+------+------+-----+------+------+ */ static void disas_cond_select(DisasContext *s, uint32_t insn) { unsigned int sf, else_inv, rm, cond, else_inc, rn, rd; TCGv_i64 tcg_rd, zero; DisasCompare64 c; if (extract32(insn, 29, 1) || extract32(insn, 11, 1)) { /* S == 1 or op2<1> == 1 */ unallocated_encoding(s); return; } sf = extract32(insn, 31, 1); else_inv = extract32(insn, 30, 1); rm = extract32(insn, 16, 5); cond = extract32(insn, 12, 4); else_inc = extract32(insn, 10, 1); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); tcg_rd = cpu_reg(s, rd); a64_test_cc(&c, cond); zero = tcg_const_i64(0); if (rn == 31 && rm == 31 && (else_inc ^ else_inv)) { /* CSET & CSETM. */ tcg_gen_setcond_i64(tcg_invert_cond(c.cond), tcg_rd, c.value, zero); if (else_inv) { tcg_gen_neg_i64(tcg_rd, tcg_rd); } } else { TCGv_i64 t_true = cpu_reg(s, rn); TCGv_i64 t_false = read_cpu_reg(s, rm, 1); if (else_inv && else_inc) { tcg_gen_neg_i64(t_false, t_false); } else if (else_inv) { tcg_gen_not_i64(t_false, t_false); } else if (else_inc) { tcg_gen_addi_i64(t_false, t_false, 1); } tcg_gen_movcond_i64(c.cond, tcg_rd, c.value, zero, t_true, t_false); } tcg_temp_free_i64(zero); a64_free_cc(&c); if (!sf) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } static void handle_clz(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_rd, tcg_rn; tcg_rd = cpu_reg(s, rd); tcg_rn = cpu_reg(s, rn); if (sf) { tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); } else { TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); tcg_gen_clzi_i32(tcg_tmp32, tcg_tmp32, 32); tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); tcg_temp_free_i32(tcg_tmp32); } } static void handle_cls(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_rd, tcg_rn; tcg_rd = cpu_reg(s, rd); tcg_rn = cpu_reg(s, rn); if (sf) { tcg_gen_clrsb_i64(tcg_rd, tcg_rn); } else { TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); tcg_gen_clrsb_i32(tcg_tmp32, tcg_tmp32); tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); tcg_temp_free_i32(tcg_tmp32); } } static void handle_rbit(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_rd, tcg_rn; tcg_rd = cpu_reg(s, rd); tcg_rn = cpu_reg(s, rn); if (sf) { gen_helper_rbit64(tcg_rd, tcg_rn); } else { TCGv_i32 tcg_tmp32 = tcg_temp_new_i32(); tcg_gen_extrl_i64_i32(tcg_tmp32, tcg_rn); gen_helper_rbit(tcg_tmp32, tcg_tmp32); tcg_gen_extu_i32_i64(tcg_rd, tcg_tmp32); tcg_temp_free_i32(tcg_tmp32); } } /* REV with sf==1, opcode==3 ("REV64") */ static void handle_rev64(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { if (!sf) { unallocated_encoding(s); return; } tcg_gen_bswap64_i64(cpu_reg(s, rd), cpu_reg(s, rn)); } /* REV with sf==0, opcode==2 * REV32 (sf==1, opcode==2) */ static void handle_rev32(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_rd = cpu_reg(s, rd); if (sf) { TCGv_i64 tcg_tmp = tcg_temp_new_i64(); TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); /* bswap32_i64 requires zero high word */ tcg_gen_ext32u_i64(tcg_tmp, tcg_rn); tcg_gen_bswap32_i64(tcg_rd, tcg_tmp); tcg_gen_shri_i64(tcg_tmp, tcg_rn, 32); tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); tcg_gen_concat32_i64(tcg_rd, tcg_rd, tcg_tmp); tcg_temp_free_i64(tcg_tmp); } else { tcg_gen_ext32u_i64(tcg_rd, cpu_reg(s, rn)); tcg_gen_bswap32_i64(tcg_rd, tcg_rd); } } /* REV16 (opcode==1) */ static void handle_rev16(DisasContext *s, unsigned int sf, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_rd = cpu_reg(s, rd); TCGv_i64 tcg_tmp = tcg_temp_new_i64(); TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); TCGv_i64 mask = tcg_const_i64(sf ? 0x00ff00ff00ff00ffull : 0x00ff00ff); tcg_gen_shri_i64(tcg_tmp, tcg_rn, 8); tcg_gen_and_i64(tcg_rd, tcg_rn, mask); tcg_gen_and_i64(tcg_tmp, tcg_tmp, mask); tcg_gen_shli_i64(tcg_rd, tcg_rd, 8); tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_tmp); tcg_temp_free_i64(mask); tcg_temp_free_i64(tcg_tmp); } /* Data-processing (1 source) * 31 30 29 28 21 20 16 15 10 9 5 4 0 * +----+---+---+-----------------+---------+--------+------+------+ * | sf | 1 | S | 1 1 0 1 0 1 1 0 | opcode2 | opcode | Rn | Rd | * +----+---+---+-----------------+---------+--------+------+------+ */ static void disas_data_proc_1src(DisasContext *s, uint32_t insn) { unsigned int sf, opcode, rn, rd; if (extract32(insn, 29, 1) || extract32(insn, 16, 5)) { unallocated_encoding(s); return; } sf = extract32(insn, 31, 1); opcode = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); switch (opcode) { case 0: /* RBIT */ handle_rbit(s, sf, rn, rd); break; case 1: /* REV16 */ handle_rev16(s, sf, rn, rd); break; case 2: /* REV32 */ handle_rev32(s, sf, rn, rd); break; case 3: /* REV64 */ handle_rev64(s, sf, rn, rd); break; case 4: /* CLZ */ handle_clz(s, sf, rn, rd); break; case 5: /* CLS */ handle_cls(s, sf, rn, rd); break; } } static void handle_div(DisasContext *s, bool is_signed, unsigned int sf, unsigned int rm, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_n, tcg_m, tcg_rd; tcg_rd = cpu_reg(s, rd); if (!sf && is_signed) { tcg_n = new_tmp_a64(s); tcg_m = new_tmp_a64(s); tcg_gen_ext32s_i64(tcg_n, cpu_reg(s, rn)); tcg_gen_ext32s_i64(tcg_m, cpu_reg(s, rm)); } else { tcg_n = read_cpu_reg(s, rn, sf); tcg_m = read_cpu_reg(s, rm, sf); } if (is_signed) { gen_helper_sdiv64(tcg_rd, tcg_n, tcg_m); } else { gen_helper_udiv64(tcg_rd, tcg_n, tcg_m); } if (!sf) { /* zero extend final result */ tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } /* LSLV, LSRV, ASRV, RORV */ static void handle_shift_reg(DisasContext *s, enum a64_shift_type shift_type, unsigned int sf, unsigned int rm, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_shift = tcg_temp_new_i64(); TCGv_i64 tcg_rd = cpu_reg(s, rd); TCGv_i64 tcg_rn = read_cpu_reg(s, rn, sf); tcg_gen_andi_i64(tcg_shift, cpu_reg(s, rm), sf ? 63 : 31); shift_reg(tcg_rd, tcg_rn, sf, shift_type, tcg_shift); tcg_temp_free_i64(tcg_shift); } /* CRC32[BHWX], CRC32C[BHWX] */ static void handle_crc32(DisasContext *s, unsigned int sf, unsigned int sz, bool crc32c, unsigned int rm, unsigned int rn, unsigned int rd) { TCGv_i64 tcg_acc, tcg_val; TCGv_i32 tcg_bytes; if (!arm_dc_feature(s, ARM_FEATURE_CRC) || (sf == 1 && sz != 3) || (sf == 0 && sz == 3)) { unallocated_encoding(s); return; } if (sz == 3) { tcg_val = cpu_reg(s, rm); } else { uint64_t mask; switch (sz) { case 0: mask = 0xFF; break; case 1: mask = 0xFFFF; break; case 2: mask = 0xFFFFFFFF; break; default: g_assert_not_reached(); } tcg_val = new_tmp_a64(s); tcg_gen_andi_i64(tcg_val, cpu_reg(s, rm), mask); } tcg_acc = cpu_reg(s, rn); tcg_bytes = tcg_const_i32(1 << sz); if (crc32c) { gen_helper_crc32c_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); } else { gen_helper_crc32_64(cpu_reg(s, rd), tcg_acc, tcg_val, tcg_bytes); } tcg_temp_free_i32(tcg_bytes); } /* Data-processing (2 source) * 31 30 29 28 21 20 16 15 10 9 5 4 0 * +----+---+---+-----------------+------+--------+------+------+ * | sf | 0 | S | 1 1 0 1 0 1 1 0 | Rm | opcode | Rn | Rd | * +----+---+---+-----------------+------+--------+------+------+ */ static void disas_data_proc_2src(DisasContext *s, uint32_t insn) { unsigned int sf, rm, opcode, rn, rd; sf = extract32(insn, 31, 1); rm = extract32(insn, 16, 5); opcode = extract32(insn, 10, 6); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); if (extract32(insn, 29, 1)) { unallocated_encoding(s); return; } switch (opcode) { case 2: /* UDIV */ handle_div(s, false, sf, rm, rn, rd); break; case 3: /* SDIV */ handle_div(s, true, sf, rm, rn, rd); break; case 8: /* LSLV */ handle_shift_reg(s, A64_SHIFT_TYPE_LSL, sf, rm, rn, rd); break; case 9: /* LSRV */ handle_shift_reg(s, A64_SHIFT_TYPE_LSR, sf, rm, rn, rd); break; case 10: /* ASRV */ handle_shift_reg(s, A64_SHIFT_TYPE_ASR, sf, rm, rn, rd); break; case 11: /* RORV */ handle_shift_reg(s, A64_SHIFT_TYPE_ROR, sf, rm, rn, rd); break; case 16: case 17: case 18: case 19: case 20: case 21: case 22: case 23: /* CRC32 */ { int sz = extract32(opcode, 0, 2); bool crc32c = extract32(opcode, 2, 1); handle_crc32(s, sf, sz, crc32c, rm, rn, rd); break; } default: unallocated_encoding(s); break; } } /* Data processing - register */ static void disas_data_proc_reg(DisasContext *s, uint32_t insn) { switch (extract32(insn, 24, 5)) { case 0x0a: /* Logical (shifted register) */ disas_logic_reg(s, insn); break; case 0x0b: /* Add/subtract */ if (insn & (1 << 21)) { /* (extended register) */ disas_add_sub_ext_reg(s, insn); } else { disas_add_sub_reg(s, insn); } break; case 0x1b: /* Data-processing (3 source) */ disas_data_proc_3src(s, insn); break; case 0x1a: switch (extract32(insn, 21, 3)) { case 0x0: /* Add/subtract (with carry) */ disas_adc_sbc(s, insn); break; case 0x2: /* Conditional compare */ disas_cc(s, insn); /* both imm and reg forms */ break; case 0x4: /* Conditional select */ disas_cond_select(s, insn); break; case 0x6: /* Data-processing */ if (insn & (1 << 30)) { /* (1 source) */ disas_data_proc_1src(s, insn); } else { /* (2 source) */ disas_data_proc_2src(s, insn); } break; default: unallocated_encoding(s); break; } break; default: unallocated_encoding(s); break; } } static void handle_fp_compare(DisasContext *s, int size, unsigned int rn, unsigned int rm, bool cmp_with_zero, bool signal_all_nans) { TCGv_i64 tcg_flags = tcg_temp_new_i64(); TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16); if (size == MO_64) { TCGv_i64 tcg_vn, tcg_vm; tcg_vn = read_fp_dreg(s, rn); if (cmp_with_zero) { tcg_vm = tcg_const_i64(0); } else { tcg_vm = read_fp_dreg(s, rm); } if (signal_all_nans) { gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } else { gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } tcg_temp_free_i64(tcg_vn); tcg_temp_free_i64(tcg_vm); } else { TCGv_i32 tcg_vn = tcg_temp_new_i32(); TCGv_i32 tcg_vm = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_vn, rn, 0, size); if (cmp_with_zero) { tcg_gen_movi_i32(tcg_vm, 0); } else { read_vec_element_i32(s, tcg_vm, rm, 0, size); } switch (size) { case MO_32: if (signal_all_nans) { gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } else { gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } break; case MO_16: if (signal_all_nans) { gen_helper_vfp_cmpeh_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } else { gen_helper_vfp_cmph_a64(tcg_flags, tcg_vn, tcg_vm, fpst); } break; default: g_assert_not_reached(); } tcg_temp_free_i32(tcg_vn); tcg_temp_free_i32(tcg_vm); } tcg_temp_free_ptr(fpst); gen_set_nzcv(tcg_flags); tcg_temp_free_i64(tcg_flags); } /* Floating point compare * 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0 * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | op | 1 0 0 0 | Rn | op2 | * +---+---+---+-----------+------+---+------+-----+---------+------+-------+ */ static void disas_fp_compare(DisasContext *s, uint32_t insn) { unsigned int mos, type, rm, op, rn, opc, op2r; int size; mos = extract32(insn, 29, 3); type = extract32(insn, 22, 2); rm = extract32(insn, 16, 5); op = extract32(insn, 14, 2); rn = extract32(insn, 5, 5); opc = extract32(insn, 3, 2); op2r = extract32(insn, 0, 3); if (mos || op || op2r) { unallocated_encoding(s); return; } switch (type) { case 0: size = MO_32; break; case 1: size = MO_64; break; case 3: size = MO_16; if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fp_compare(s, size, rn, rm, opc & 1, opc & 2); } /* Floating point conditional compare * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 3 0 * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 0 1 | Rn | op | nzcv | * +---+---+---+-----------+------+---+------+------+-----+------+----+------+ */ static void disas_fp_ccomp(DisasContext *s, uint32_t insn) { unsigned int mos, type, rm, cond, rn, op, nzcv; TCGv_i64 tcg_flags; TCGLabel *label_continue = NULL; int size; mos = extract32(insn, 29, 3); type = extract32(insn, 22, 2); rm = extract32(insn, 16, 5); cond = extract32(insn, 12, 4); rn = extract32(insn, 5, 5); op = extract32(insn, 4, 1); nzcv = extract32(insn, 0, 4); if (mos) { unallocated_encoding(s); return; } switch (type) { case 0: size = MO_32; break; case 1: size = MO_64; break; case 3: size = MO_16; if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (cond < 0x0e) { /* not always */ TCGLabel *label_match = gen_new_label(); label_continue = gen_new_label(); arm_gen_test_cc(cond, label_match); /* nomatch: */ tcg_flags = tcg_const_i64(nzcv << 28); gen_set_nzcv(tcg_flags); tcg_temp_free_i64(tcg_flags); tcg_gen_br(label_continue); gen_set_label(label_match); } handle_fp_compare(s, size, rn, rm, false, op); if (cond < 0x0e) { gen_set_label(label_continue); } } /* Floating point conditional select * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 * +---+---+---+-----------+------+---+------+------+-----+------+------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | cond | 1 1 | Rn | Rd | * +---+---+---+-----------+------+---+------+------+-----+------+------+ */ static void disas_fp_csel(DisasContext *s, uint32_t insn) { unsigned int mos, type, rm, cond, rn, rd; TCGv_i64 t_true, t_false, t_zero; DisasCompare64 c; TCGMemOp sz; mos = extract32(insn, 29, 3); type = extract32(insn, 22, 2); rm = extract32(insn, 16, 5); cond = extract32(insn, 12, 4); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); if (mos) { unallocated_encoding(s); return; } switch (type) { case 0: sz = MO_32; break; case 1: sz = MO_64; break; case 3: sz = MO_16; if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } /* Zero extend sreg & hreg inputs to 64 bits now. */ t_true = tcg_temp_new_i64(); t_false = tcg_temp_new_i64(); read_vec_element(s, t_true, rn, 0, sz); read_vec_element(s, t_false, rm, 0, sz); a64_test_cc(&c, cond); t_zero = tcg_const_i64(0); tcg_gen_movcond_i64(c.cond, t_true, c.value, t_zero, t_true, t_false); tcg_temp_free_i64(t_zero); tcg_temp_free_i64(t_false); a64_free_cc(&c); /* Note that sregs & hregs write back zeros to the high bits, and we've already done the zero-extension. */ write_fp_dreg(s, rd, t_true); tcg_temp_free_i64(t_true); } /* Floating-point data-processing (1 source) - half precision */ static void handle_fp_1src_half(DisasContext *s, int opcode, int rd, int rn) { TCGv_ptr fpst = NULL; TCGv_i32 tcg_op = read_fp_hreg(s, rn); TCGv_i32 tcg_res = tcg_temp_new_i32(); switch (opcode) { case 0x0: /* FMOV */ tcg_gen_mov_i32(tcg_res, tcg_op); break; case 0x1: /* FABS */ tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); break; case 0x2: /* FNEG */ tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); break; case 0x3: /* FSQRT */ fpst = get_fpstatus_ptr(true); gen_helper_sqrt_f16(tcg_res, tcg_op, fpst); break; case 0x8: /* FRINTN */ case 0x9: /* FRINTP */ case 0xa: /* FRINTM */ case 0xb: /* FRINTZ */ case 0xc: /* FRINTA */ { TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); fpst = get_fpstatus_ptr(true); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); tcg_temp_free_i32(tcg_rmode); break; } case 0xe: /* FRINTX */ fpst = get_fpstatus_ptr(true); gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, fpst); break; case 0xf: /* FRINTI */ fpst = get_fpstatus_ptr(true); gen_helper_advsimd_rinth(tcg_res, tcg_op, fpst); break; default: abort(); } write_fp_sreg(s, rd, tcg_res); if (fpst) { tcg_temp_free_ptr(fpst); } tcg_temp_free_i32(tcg_op); tcg_temp_free_i32(tcg_res); } /* Floating-point data-processing (1 source) - single precision */ static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn) { TCGv_ptr fpst; TCGv_i32 tcg_op; TCGv_i32 tcg_res; fpst = get_fpstatus_ptr(false); tcg_op = read_fp_sreg(s, rn); tcg_res = tcg_temp_new_i32(); switch (opcode) { case 0x0: /* FMOV */ tcg_gen_mov_i32(tcg_res, tcg_op); break; case 0x1: /* FABS */ gen_helper_vfp_abss(tcg_res, tcg_op); break; case 0x2: /* FNEG */ gen_helper_vfp_negs(tcg_res, tcg_op); break; case 0x3: /* FSQRT */ gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); break; case 0x8: /* FRINTN */ case 0x9: /* FRINTP */ case 0xa: /* FRINTM */ case 0xb: /* FRINTZ */ case 0xc: /* FRINTA */ { TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_rints(tcg_res, tcg_op, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); tcg_temp_free_i32(tcg_rmode); break; } case 0xe: /* FRINTX */ gen_helper_rints_exact(tcg_res, tcg_op, fpst); break; case 0xf: /* FRINTI */ gen_helper_rints(tcg_res, tcg_op, fpst); break; default: abort(); } write_fp_sreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_op); tcg_temp_free_i32(tcg_res); } /* Floating-point data-processing (1 source) - double precision */ static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn) { TCGv_ptr fpst; TCGv_i64 tcg_op; TCGv_i64 tcg_res; switch (opcode) { case 0x0: /* FMOV */ gen_gvec_fn2(s, false, rd, rn, tcg_gen_gvec_mov, 0); return; } fpst = get_fpstatus_ptr(false); tcg_op = read_fp_dreg(s, rn); tcg_res = tcg_temp_new_i64(); switch (opcode) { case 0x1: /* FABS */ gen_helper_vfp_absd(tcg_res, tcg_op); break; case 0x2: /* FNEG */ gen_helper_vfp_negd(tcg_res, tcg_op); break; case 0x3: /* FSQRT */ gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env); break; case 0x8: /* FRINTN */ case 0x9: /* FRINTP */ case 0xa: /* FRINTM */ case 0xb: /* FRINTZ */ case 0xc: /* FRINTA */ { TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); gen_helper_rintd(tcg_res, tcg_op, fpst); gen_helper_set_rmode(tcg_rmode, tcg_rmode, fpst); tcg_temp_free_i32(tcg_rmode); break; } case 0xe: /* FRINTX */ gen_helper_rintd_exact(tcg_res, tcg_op, fpst); break; case 0xf: /* FRINTI */ gen_helper_rintd(tcg_res, tcg_op, fpst); break; default: abort(); } write_fp_dreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tcg_op); tcg_temp_free_i64(tcg_res); } static void handle_fp_fcvt(DisasContext *s, int opcode, int rd, int rn, int dtype, int ntype) { switch (ntype) { case 0x0: { TCGv_i32 tcg_rn = read_fp_sreg(s, rn); if (dtype == 1) { /* Single to double */ TCGv_i64 tcg_rd = tcg_temp_new_i64(); gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env); write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rd); } else { /* Single to half */ TCGv_i32 tcg_rd = tcg_temp_new_i32(); TCGv_i32 ahp = get_ahp_flag(); TCGv_ptr fpst = get_fpstatus_ptr(false); gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, fpst, ahp); /* write_fp_sreg is OK here because top half of tcg_rd is zero */ write_fp_sreg(s, rd, tcg_rd); tcg_temp_free_i32(tcg_rd); tcg_temp_free_i32(ahp); tcg_temp_free_ptr(fpst); } tcg_temp_free_i32(tcg_rn); break; } case 0x1: { TCGv_i64 tcg_rn = read_fp_dreg(s, rn); TCGv_i32 tcg_rd = tcg_temp_new_i32(); if (dtype == 0) { /* Double to single */ gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env); } else { TCGv_ptr fpst = get_fpstatus_ptr(false); TCGv_i32 ahp = get_ahp_flag(); /* Double to half */ gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, fpst, ahp); /* write_fp_sreg is OK here because top half of tcg_rd is zero */ tcg_temp_free_ptr(fpst); tcg_temp_free_i32(ahp); } write_fp_sreg(s, rd, tcg_rd); tcg_temp_free_i32(tcg_rd); tcg_temp_free_i64(tcg_rn); break; } case 0x3: { TCGv_i32 tcg_rn = read_fp_sreg(s, rn); TCGv_ptr tcg_fpst = get_fpstatus_ptr(false); TCGv_i32 tcg_ahp = get_ahp_flag(); tcg_gen_ext16u_i32(tcg_rn, tcg_rn); if (dtype == 0) { /* Half to single */ TCGv_i32 tcg_rd = tcg_temp_new_i32(); gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); write_fp_sreg(s, rd, tcg_rd); tcg_temp_free_ptr(tcg_fpst); tcg_temp_free_i32(tcg_ahp); tcg_temp_free_i32(tcg_rd); } else { /* Half to double */ TCGv_i64 tcg_rd = tcg_temp_new_i64(); gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, tcg_fpst, tcg_ahp); write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rd); } tcg_temp_free_i32(tcg_rn); break; } default: abort(); } } /* Floating point data-processing (1 source) * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0 * +---+---+---+-----------+------+---+--------+-----------+------+------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd | * +---+---+---+-----------+------+---+--------+-----------+------+------+ */ static void disas_fp_1src(DisasContext *s, uint32_t insn) { int type = extract32(insn, 22, 2); int opcode = extract32(insn, 15, 6); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); switch (opcode) { case 0x4: case 0x5: case 0x7: { /* FCVT between half, single and double precision */ int dtype = extract32(opcode, 0, 2); if (type == 2 || dtype == type) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fp_fcvt(s, opcode, rd, rn, dtype, type); break; } case 0x0 ... 0x3: case 0x8 ... 0xc: case 0xe ... 0xf: /* 32-to-32 and 64-to-64 ops */ switch (type) { case 0: if (!fp_access_check(s)) { return; } handle_fp_1src_single(s, opcode, rd, rn); break; case 1: if (!fp_access_check(s)) { return; } handle_fp_1src_double(s, opcode, rd, rn); break; case 3: if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fp_1src_half(s, opcode, rd, rn); break; default: unallocated_encoding(s); } break; default: unallocated_encoding(s); break; } } /* Floating-point data-processing (2 source) - single precision */ static void handle_fp_2src_single(DisasContext *s, int opcode, int rd, int rn, int rm) { TCGv_i32 tcg_op1; TCGv_i32 tcg_op2; TCGv_i32 tcg_res; TCGv_ptr fpst; tcg_res = tcg_temp_new_i32(); fpst = get_fpstatus_ptr(false); tcg_op1 = read_fp_sreg(s, rn); tcg_op2 = read_fp_sreg(s, rm); switch (opcode) { case 0x0: /* FMUL */ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1: /* FDIV */ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2: /* FADD */ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3: /* FSUB */ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x4: /* FMAX */ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5: /* FMIN */ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x6: /* FMAXNM */ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7: /* FMINNM */ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x8: /* FNMUL */ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); gen_helper_vfp_negs(tcg_res, tcg_res); break; } write_fp_sreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_res); } /* Floating-point data-processing (2 source) - double precision */ static void handle_fp_2src_double(DisasContext *s, int opcode, int rd, int rn, int rm) { TCGv_i64 tcg_op1; TCGv_i64 tcg_op2; TCGv_i64 tcg_res; TCGv_ptr fpst; tcg_res = tcg_temp_new_i64(); fpst = get_fpstatus_ptr(false); tcg_op1 = read_fp_dreg(s, rn); tcg_op2 = read_fp_dreg(s, rm); switch (opcode) { case 0x0: /* FMUL */ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1: /* FDIV */ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2: /* FADD */ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3: /* FSUB */ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x4: /* FMAX */ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5: /* FMIN */ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x6: /* FMAXNM */ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7: /* FMINNM */ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x8: /* FNMUL */ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); gen_helper_vfp_negd(tcg_res, tcg_res); break; } write_fp_dreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res); } /* Floating-point data-processing (2 source) - half precision */ static void handle_fp_2src_half(DisasContext *s, int opcode, int rd, int rn, int rm) { TCGv_i32 tcg_op1; TCGv_i32 tcg_op2; TCGv_i32 tcg_res; TCGv_ptr fpst; tcg_res = tcg_temp_new_i32(); fpst = get_fpstatus_ptr(true); tcg_op1 = read_fp_hreg(s, rn); tcg_op2 = read_fp_hreg(s, rm); switch (opcode) { case 0x0: /* FMUL */ gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1: /* FDIV */ gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2: /* FADD */ gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3: /* FSUB */ gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x4: /* FMAX */ gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5: /* FMIN */ gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x6: /* FMAXNM */ gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7: /* FMINNM */ gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x8: /* FNMUL */ gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); tcg_gen_xori_i32(tcg_res, tcg_res, 0x8000); break; default: g_assert_not_reached(); } write_fp_sreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_res); } /* Floating point data-processing (2 source) * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd | * +---+---+---+-----------+------+---+------+--------+-----+------+------+ */ static void disas_fp_2src(DisasContext *s, uint32_t insn) { int type = extract32(insn, 22, 2); int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int rm = extract32(insn, 16, 5); int opcode = extract32(insn, 12, 4); if (opcode > 8) { unallocated_encoding(s); return; } switch (type) { case 0: if (!fp_access_check(s)) { return; } handle_fp_2src_single(s, opcode, rd, rn, rm); break; case 1: if (!fp_access_check(s)) { return; } handle_fp_2src_double(s, opcode, rd, rn, rm); break; case 3: if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fp_2src_half(s, opcode, rd, rn, rm); break; default: unallocated_encoding(s); } } /* Floating-point data-processing (3 source) - single precision */ static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1, int rd, int rn, int rm, int ra) { TCGv_i32 tcg_op1, tcg_op2, tcg_op3; TCGv_i32 tcg_res = tcg_temp_new_i32(); TCGv_ptr fpst = get_fpstatus_ptr(false); tcg_op1 = read_fp_sreg(s, rn); tcg_op2 = read_fp_sreg(s, rm); tcg_op3 = read_fp_sreg(s, ra); /* These are fused multiply-add, and must be done as one * floating point operation with no rounding between the * multiplication and addition steps. * NB that doing the negations here as separate steps is * correct : an input NaN should come out with its sign bit * flipped if it is a negated-input. */ if (o1 == true) { gen_helper_vfp_negs(tcg_op3, tcg_op3); } if (o0 != o1) { gen_helper_vfp_negs(tcg_op1, tcg_op1); } gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); write_fp_sreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_op3); tcg_temp_free_i32(tcg_res); } /* Floating-point data-processing (3 source) - double precision */ static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1, int rd, int rn, int rm, int ra) { TCGv_i64 tcg_op1, tcg_op2, tcg_op3; TCGv_i64 tcg_res = tcg_temp_new_i64(); TCGv_ptr fpst = get_fpstatus_ptr(false); tcg_op1 = read_fp_dreg(s, rn); tcg_op2 = read_fp_dreg(s, rm); tcg_op3 = read_fp_dreg(s, ra); /* These are fused multiply-add, and must be done as one * floating point operation with no rounding between the * multiplication and addition steps. * NB that doing the negations here as separate steps is * correct : an input NaN should come out with its sign bit * flipped if it is a negated-input. */ if (o1 == true) { gen_helper_vfp_negd(tcg_op3, tcg_op3); } if (o0 != o1) { gen_helper_vfp_negd(tcg_op1, tcg_op1); } gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); write_fp_dreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_op3); tcg_temp_free_i64(tcg_res); } /* Floating-point data-processing (3 source) - half precision */ static void handle_fp_3src_half(DisasContext *s, bool o0, bool o1, int rd, int rn, int rm, int ra) { TCGv_i32 tcg_op1, tcg_op2, tcg_op3; TCGv_i32 tcg_res = tcg_temp_new_i32(); TCGv_ptr fpst = get_fpstatus_ptr(true); tcg_op1 = read_fp_hreg(s, rn); tcg_op2 = read_fp_hreg(s, rm); tcg_op3 = read_fp_hreg(s, ra); /* These are fused multiply-add, and must be done as one * floating point operation with no rounding between the * multiplication and addition steps. * NB that doing the negations here as separate steps is * correct : an input NaN should come out with its sign bit * flipped if it is a negated-input. */ if (o1 == true) { tcg_gen_xori_i32(tcg_op3, tcg_op3, 0x8000); } if (o0 != o1) { tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); } gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst); write_fp_sreg(s, rd, tcg_res); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_op3); tcg_temp_free_i32(tcg_res); } /* Floating point data-processing (3 source) * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0 * +---+---+---+-----------+------+----+------+----+------+------+------+ * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd | * +---+---+---+-----------+------+----+------+----+------+------+------+ */ static void disas_fp_3src(DisasContext *s, uint32_t insn) { int type = extract32(insn, 22, 2); int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int ra = extract32(insn, 10, 5); int rm = extract32(insn, 16, 5); bool o0 = extract32(insn, 15, 1); bool o1 = extract32(insn, 21, 1); switch (type) { case 0: if (!fp_access_check(s)) { return; } handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra); break; case 1: if (!fp_access_check(s)) { return; } handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra); break; case 3: if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fp_3src_half(s, o0, o1, rd, rn, rm, ra); break; default: unallocated_encoding(s); } } /* The imm8 encodes the sign bit, enough bits to represent an exponent in * the range 01....1xx to 10....0xx, and the most significant 4 bits of * the mantissa; see VFPExpandImm() in the v8 ARM ARM. */ uint64_t vfp_expand_imm(int size, uint8_t imm8) { uint64_t imm; switch (size) { case MO_64: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) | extract32(imm8, 0, 6); imm <<= 48; break; case MO_32: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) | (extract32(imm8, 0, 6) << 3); imm <<= 16; break; case MO_16: imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) | (extract32(imm8, 6, 1) ? 0x3000 : 0x4000) | (extract32(imm8, 0, 6) << 6); break; default: g_assert_not_reached(); } return imm; } /* Floating point immediate * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0 * +---+---+---+-----------+------+---+------------+-------+------+------+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd | * +---+---+---+-----------+------+---+------------+-------+------+------+ */ static void disas_fp_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int imm8 = extract32(insn, 13, 8); int type = extract32(insn, 22, 2); uint64_t imm; TCGv_i64 tcg_res; TCGMemOp sz; switch (type) { case 0: sz = MO_32; break; case 1: sz = MO_64; break; case 3: sz = MO_16; if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } imm = vfp_expand_imm(sz, imm8); tcg_res = tcg_const_i64(imm); write_fp_dreg(s, rd, tcg_res); tcg_temp_free_i64(tcg_res); } /* Handle floating point <=> fixed point conversions. Note that we can * also deal with fp <=> integer conversions as a special case (scale == 64) * OPTME: consider handling that special case specially or at least skipping * the call to scalbn in the helpers for zero shifts. */ static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode, bool itof, int rmode, int scale, int sf, int type) { bool is_signed = !(opcode & 1); TCGv_ptr tcg_fpstatus; TCGv_i32 tcg_shift, tcg_single; TCGv_i64 tcg_double; tcg_fpstatus = get_fpstatus_ptr(type == 3); tcg_shift = tcg_const_i32(64 - scale); if (itof) { TCGv_i64 tcg_int = cpu_reg(s, rn); if (!sf) { TCGv_i64 tcg_extend = new_tmp_a64(s); if (is_signed) { tcg_gen_ext32s_i64(tcg_extend, tcg_int); } else { tcg_gen_ext32u_i64(tcg_extend, tcg_int); } tcg_int = tcg_extend; } switch (type) { case 1: /* float64 */ tcg_double = tcg_temp_new_i64(); if (is_signed) { gen_helper_vfp_sqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_uqtod(tcg_double, tcg_int, tcg_shift, tcg_fpstatus); } write_fp_dreg(s, rd, tcg_double); tcg_temp_free_i64(tcg_double); break; case 0: /* float32 */ tcg_single = tcg_temp_new_i32(); if (is_signed) { gen_helper_vfp_sqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_uqtos(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); } write_fp_sreg(s, rd, tcg_single); tcg_temp_free_i32(tcg_single); break; case 3: /* float16 */ tcg_single = tcg_temp_new_i32(); if (is_signed) { gen_helper_vfp_sqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_uqtoh(tcg_single, tcg_int, tcg_shift, tcg_fpstatus); } write_fp_sreg(s, rd, tcg_single); tcg_temp_free_i32(tcg_single); break; default: g_assert_not_reached(); } } else { TCGv_i64 tcg_int = cpu_reg(s, rd); TCGv_i32 tcg_rmode; if (extract32(opcode, 2, 1)) { /* There are too many rounding modes to all fit into rmode, * so FCVTA[US] is a special case. */ rmode = FPROUNDING_TIEAWAY; } tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); switch (type) { case 1: /* float64 */ tcg_double = read_fp_dreg(s, rn); if (is_signed) { if (!sf) { gen_helper_vfp_tosld(tcg_int, tcg_double, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_tosqd(tcg_int, tcg_double, tcg_shift, tcg_fpstatus); } } else { if (!sf) { gen_helper_vfp_tould(tcg_int, tcg_double, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_touqd(tcg_int, tcg_double, tcg_shift, tcg_fpstatus); } } if (!sf) { tcg_gen_ext32u_i64(tcg_int, tcg_int); } tcg_temp_free_i64(tcg_double); break; case 0: /* float32 */ tcg_single = read_fp_sreg(s, rn); if (sf) { if (is_signed) { gen_helper_vfp_tosqs(tcg_int, tcg_single, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_touqs(tcg_int, tcg_single, tcg_shift, tcg_fpstatus); } } else { TCGv_i32 tcg_dest = tcg_temp_new_i32(); if (is_signed) { gen_helper_vfp_tosls(tcg_dest, tcg_single, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_touls(tcg_dest, tcg_single, tcg_shift, tcg_fpstatus); } tcg_gen_extu_i32_i64(tcg_int, tcg_dest); tcg_temp_free_i32(tcg_dest); } tcg_temp_free_i32(tcg_single); break; case 3: /* float16 */ tcg_single = read_fp_sreg(s, rn); if (sf) { if (is_signed) { gen_helper_vfp_tosqh(tcg_int, tcg_single, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_touqh(tcg_int, tcg_single, tcg_shift, tcg_fpstatus); } } else { TCGv_i32 tcg_dest = tcg_temp_new_i32(); if (is_signed) { gen_helper_vfp_toslh(tcg_dest, tcg_single, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_toulh(tcg_dest, tcg_single, tcg_shift, tcg_fpstatus); } tcg_gen_extu_i32_i64(tcg_int, tcg_dest); tcg_temp_free_i32(tcg_dest); } tcg_temp_free_i32(tcg_single); break; default: g_assert_not_reached(); } gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); tcg_temp_free_i32(tcg_rmode); } tcg_temp_free_ptr(tcg_fpstatus); tcg_temp_free_i32(tcg_shift); } /* Floating point <-> fixed point conversions * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd | * +----+---+---+-----------+------+---+-------+--------+-------+------+------+ */ static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int scale = extract32(insn, 10, 6); int opcode = extract32(insn, 16, 3); int rmode = extract32(insn, 19, 2); int type = extract32(insn, 22, 2); bool sbit = extract32(insn, 29, 1); bool sf = extract32(insn, 31, 1); bool itof; if (sbit || (!sf && scale < 32)) { unallocated_encoding(s); return; } switch (type) { case 0: /* float32 */ case 1: /* float64 */ break; case 3: /* float16 */ if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } switch ((rmode << 3) | opcode) { case 0x2: /* SCVTF */ case 0x3: /* UCVTF */ itof = true; break; case 0x18: /* FCVTZS */ case 0x19: /* FCVTZU */ itof = false; break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type); } static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof) { /* FMOV: gpr to or from float, double, or top half of quad fp reg, * without conversion. */ if (itof) { TCGv_i64 tcg_rn = cpu_reg(s, rn); TCGv_i64 tmp; switch (type) { case 0: /* 32 bit */ tmp = tcg_temp_new_i64(); tcg_gen_ext32u_i64(tmp, tcg_rn); write_fp_dreg(s, rd, tmp); tcg_temp_free_i64(tmp); break; case 1: /* 64 bit */ write_fp_dreg(s, rd, tcg_rn); break; case 2: /* 64 bit to top half. */ tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(s, rd)); clear_vec_high(s, true, rd); break; case 3: /* 16 bit */ tmp = tcg_temp_new_i64(); tcg_gen_ext16u_i64(tmp, tcg_rn); write_fp_dreg(s, rd, tmp); tcg_temp_free_i64(tmp); break; default: g_assert_not_reached(); } } else { TCGv_i64 tcg_rd = cpu_reg(s, rd); switch (type) { case 0: /* 32 bit */ tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_32)); break; case 1: /* 64 bit */ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_64)); break; case 2: /* 64 bits from top half */ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(s, rn)); break; case 3: /* 16 bit */ tcg_gen_ld16u_i64(tcg_rd, cpu_env, fp_reg_offset(s, rn, MO_16)); break; default: g_assert_not_reached(); } } } /* Floating point <-> integer conversions * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0 * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd | * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+ */ static void disas_fp_int_conv(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 16, 3); int rmode = extract32(insn, 19, 2); int type = extract32(insn, 22, 2); bool sbit = extract32(insn, 29, 1); bool sf = extract32(insn, 31, 1); if (sbit) { unallocated_encoding(s); return; } if (opcode > 5) { /* FMOV */ bool itof = opcode & 1; if (rmode >= 2) { unallocated_encoding(s); return; } switch (sf << 3 | type << 1 | rmode) { case 0x0: /* 32 bit */ case 0xa: /* 64 bit */ case 0xd: /* 64 bit to top half of quad */ break; case 0x6: /* 16-bit float, 32-bit int */ case 0xe: /* 16-bit float, 64-bit int */ if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: /* all other sf/type/rmode combinations are invalid */ unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fmov(s, rd, rn, type, itof); } else { /* actual FP conversions */ bool itof = extract32(opcode, 1, 1); if (rmode != 0 && opcode > 1) { unallocated_encoding(s); return; } switch (type) { case 0: /* float32 */ case 1: /* float64 */ break; case 3: /* float16 */ if (arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { break; } /* fallthru */ default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type); } } /* FP-specific subcases of table C3-6 (SIMD and FP data processing) * 31 30 29 28 25 24 0 * +---+---+---+---------+-----------------------------+ * | | 0 | | 1 1 1 1 | | * +---+---+---+---------+-----------------------------+ */ static void disas_data_proc_fp(DisasContext *s, uint32_t insn) { if (extract32(insn, 24, 1)) { /* Floating point data-processing (3 source) */ disas_fp_3src(s, insn); } else if (extract32(insn, 21, 1) == 0) { /* Floating point to fixed point conversions */ disas_fp_fixed_conv(s, insn); } else { switch (extract32(insn, 10, 2)) { case 1: /* Floating point conditional compare */ disas_fp_ccomp(s, insn); break; case 2: /* Floating point data-processing (2 source) */ disas_fp_2src(s, insn); break; case 3: /* Floating point conditional select */ disas_fp_csel(s, insn); break; case 0: switch (ctz32(extract32(insn, 12, 4))) { case 0: /* [15:12] == xxx1 */ /* Floating point immediate */ disas_fp_imm(s, insn); break; case 1: /* [15:12] == xx10 */ /* Floating point compare */ disas_fp_compare(s, insn); break; case 2: /* [15:12] == x100 */ /* Floating point data-processing (1 source) */ disas_fp_1src(s, insn); break; case 3: /* [15:12] == 1000 */ unallocated_encoding(s); break; default: /* [15:12] == 0000 */ /* Floating point <-> integer conversions */ disas_fp_int_conv(s, insn); break; } break; } } } static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right, int pos) { /* Extract 64 bits from the middle of two concatenated 64 bit * vector register slices left:right. The extracted bits start * at 'pos' bits into the right (least significant) side. * We return the result in tcg_right, and guarantee not to * trash tcg_left. */ TCGv_i64 tcg_tmp = tcg_temp_new_i64(); assert(pos > 0 && pos < 64); tcg_gen_shri_i64(tcg_right, tcg_right, pos); tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos); tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp); tcg_temp_free_i64(tcg_tmp); } /* EXT * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0 * +---+---+-------------+-----+---+------+---+------+---+------+------+ * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd | * +---+---+-------------+-----+---+------+---+------+---+------+------+ */ static void disas_simd_ext(DisasContext *s, uint32_t insn) { int is_q = extract32(insn, 30, 1); int op2 = extract32(insn, 22, 2); int imm4 = extract32(insn, 11, 4); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int pos = imm4 << 3; TCGv_i64 tcg_resl, tcg_resh; if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_resh = tcg_temp_new_i64(); tcg_resl = tcg_temp_new_i64(); /* Vd gets bits starting at pos bits into Vm:Vn. This is * either extracting 128 bits from a 128:128 concatenation, or * extracting 64 bits from a 64:64 concatenation. */ if (!is_q) { read_vec_element(s, tcg_resl, rn, 0, MO_64); if (pos != 0) { read_vec_element(s, tcg_resh, rm, 0, MO_64); do_ext64(s, tcg_resh, tcg_resl, pos); } tcg_gen_movi_i64(tcg_resh, 0); } else { TCGv_i64 tcg_hh; typedef struct { int reg; int elt; } EltPosns; EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} }; EltPosns *elt = eltposns; if (pos >= 64) { elt++; pos -= 64; } read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64); elt++; read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64); elt++; if (pos != 0) { do_ext64(s, tcg_resh, tcg_resl, pos); tcg_hh = tcg_temp_new_i64(); read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64); do_ext64(s, tcg_hh, tcg_resh, pos); tcg_temp_free_i64(tcg_hh); } } write_vec_element(s, tcg_resl, rd, 0, MO_64); tcg_temp_free_i64(tcg_resl); write_vec_element(s, tcg_resh, rd, 1, MO_64); tcg_temp_free_i64(tcg_resh); } /* TBL/TBX * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0 * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd | * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+ */ static void disas_simd_tb(DisasContext *s, uint32_t insn) { int op2 = extract32(insn, 22, 2); int is_q = extract32(insn, 30, 1); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int is_tblx = extract32(insn, 12, 1); int len = extract32(insn, 13, 2); TCGv_i64 tcg_resl, tcg_resh, tcg_idx; TCGv_i32 tcg_regno, tcg_numregs; if (op2 != 0) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } /* This does a table lookup: for every byte element in the input * we index into a table formed from up to four vector registers, * and then the output is the result of the lookups. Our helper * function does the lookup operation for a single 64 bit part of * the input. */ tcg_resl = tcg_temp_new_i64(); tcg_resh = tcg_temp_new_i64(); if (is_tblx) { read_vec_element(s, tcg_resl, rd, 0, MO_64); } else { tcg_gen_movi_i64(tcg_resl, 0); } if (is_tblx && is_q) { read_vec_element(s, tcg_resh, rd, 1, MO_64); } else { tcg_gen_movi_i64(tcg_resh, 0); } tcg_idx = tcg_temp_new_i64(); tcg_regno = tcg_const_i32(rn); tcg_numregs = tcg_const_i32(len + 1); read_vec_element(s, tcg_idx, rm, 0, MO_64); gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx, tcg_regno, tcg_numregs); if (is_q) { read_vec_element(s, tcg_idx, rm, 1, MO_64); gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx, tcg_regno, tcg_numregs); } tcg_temp_free_i64(tcg_idx); tcg_temp_free_i32(tcg_regno); tcg_temp_free_i32(tcg_numregs); write_vec_element(s, tcg_resl, rd, 0, MO_64); tcg_temp_free_i64(tcg_resl); write_vec_element(s, tcg_resh, rd, 1, MO_64); tcg_temp_free_i64(tcg_resh); } /* ZIP/UZP/TRN * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 * +---+---+-------------+------+---+------+---+------------------+------+ * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd | * +---+---+-------------+------+---+------+---+------------------+------+ */ static void disas_simd_zip_trn(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); /* opc field bits [1:0] indicate ZIP/UZP/TRN; * bit 2 indicates 1 vs 2 variant of the insn. */ int opcode = extract32(insn, 12, 2); bool part = extract32(insn, 14, 1); bool is_q = extract32(insn, 30, 1); int esize = 8 << size; int i, ofs; int datasize = is_q ? 128 : 64; int elements = datasize / esize; TCGv_i64 tcg_res, tcg_resl, tcg_resh; if (opcode == 0 || (size == 3 && !is_q)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_resl = tcg_const_i64(0); tcg_resh = tcg_const_i64(0); tcg_res = tcg_temp_new_i64(); for (i = 0; i < elements; i++) { switch (opcode) { case 1: /* UZP1/2 */ { int midpoint = elements / 2; if (i < midpoint) { read_vec_element(s, tcg_res, rn, 2 * i + part, size); } else { read_vec_element(s, tcg_res, rm, 2 * (i - midpoint) + part, size); } break; } case 2: /* TRN1/2 */ if (i & 1) { read_vec_element(s, tcg_res, rm, (i & ~1) + part, size); } else { read_vec_element(s, tcg_res, rn, (i & ~1) + part, size); } break; case 3: /* ZIP1/2 */ { int base = part * elements / 2; if (i & 1) { read_vec_element(s, tcg_res, rm, base + (i >> 1), size); } else { read_vec_element(s, tcg_res, rn, base + (i >> 1), size); } break; } default: g_assert_not_reached(); } ofs = i * esize; if (ofs < 64) { tcg_gen_shli_i64(tcg_res, tcg_res, ofs); tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res); } else { tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64); tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res); } } tcg_temp_free_i64(tcg_res); write_vec_element(s, tcg_resl, rd, 0, MO_64); tcg_temp_free_i64(tcg_resl); write_vec_element(s, tcg_resh, rd, 1, MO_64); tcg_temp_free_i64(tcg_resh); } /* * do_reduction_op helper * * This mirrors the Reduce() pseudocode in the ARM ARM. It is * important for correct NaN propagation that we do these * operations in exactly the order specified by the pseudocode. * * This is a recursive function, TCG temps should be freed by the * calling function once it is done with the values. */ static TCGv_i32 do_reduction_op(DisasContext *s, int fpopcode, int rn, int esize, int size, int vmap, TCGv_ptr fpst) { if (esize == size) { int element; TCGMemOp msize = esize == 16 ? MO_16 : MO_32; TCGv_i32 tcg_elem; /* We should have one register left here */ assert(ctpop8(vmap) == 1); element = ctz32(vmap); assert(element < 8); tcg_elem = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_elem, rn, element, msize); return tcg_elem; } else { int bits = size / 2; int shift = ctpop8(vmap) / 2; int vmap_lo = (vmap >> shift) & vmap; int vmap_hi = (vmap & ~vmap_lo); TCGv_i32 tcg_hi, tcg_lo, tcg_res; tcg_hi = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_hi, fpst); tcg_lo = do_reduction_op(s, fpopcode, rn, esize, bits, vmap_lo, fpst); tcg_res = tcg_temp_new_i32(); switch (fpopcode) { case 0x0c: /* fmaxnmv half-precision */ gen_helper_advsimd_maxnumh(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x0f: /* fmaxv half-precision */ gen_helper_advsimd_maxh(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x1c: /* fminnmv half-precision */ gen_helper_advsimd_minnumh(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x1f: /* fminv half-precision */ gen_helper_advsimd_minh(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x2c: /* fmaxnmv */ gen_helper_vfp_maxnums(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x2f: /* fmaxv */ gen_helper_vfp_maxs(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x3c: /* fminnmv */ gen_helper_vfp_minnums(tcg_res, tcg_lo, tcg_hi, fpst); break; case 0x3f: /* fminv */ gen_helper_vfp_mins(tcg_res, tcg_lo, tcg_hi, fpst); break; default: g_assert_not_reached(); } tcg_temp_free_i32(tcg_hi); tcg_temp_free_i32(tcg_lo); return tcg_res; } } /* AdvSIMD across lanes * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | * +---+---+---+-----------+------+-----------+--------+-----+------+------+ */ static void disas_simd_across_lanes(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 5); bool is_q = extract32(insn, 30, 1); bool is_u = extract32(insn, 29, 1); bool is_fp = false; bool is_min = false; int esize; int elements; int i; TCGv_i64 tcg_res, tcg_elt; switch (opcode) { case 0x1b: /* ADDV */ if (is_u) { unallocated_encoding(s); return; } /* fall through */ case 0x3: /* SADDLV, UADDLV */ case 0xa: /* SMAXV, UMAXV */ case 0x1a: /* SMINV, UMINV */ if (size == 3 || (size == 2 && !is_q)) { unallocated_encoding(s); return; } break; case 0xc: /* FMAXNMV, FMINNMV */ case 0xf: /* FMAXV, FMINV */ /* Bit 1 of size field encodes min vs max and the actual size * depends on the encoding of the U bit. If not set (and FP16 * enabled) then we do half-precision float instead of single * precision. */ is_min = extract32(size, 1, 1); is_fp = true; if (!is_u && arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { size = 1; } else if (!is_u || !is_q || extract32(size, 0, 1)) { unallocated_encoding(s); return; } else { size = 2; } break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } esize = 8 << size; elements = (is_q ? 128 : 64) / esize; tcg_res = tcg_temp_new_i64(); tcg_elt = tcg_temp_new_i64(); /* These instructions operate across all lanes of a vector * to produce a single result. We can guarantee that a 64 * bit intermediate is sufficient: * + for [US]ADDLV the maximum element size is 32 bits, and * the result type is 64 bits * + for FMAX*V, FMIN*V, ADDV the intermediate type is the * same as the element size, which is 32 bits at most * For the integer operations we can choose to work at 64 * or 32 bits and truncate at the end; for simplicity * we use 64 bits always. The floating point * ops do require 32 bit intermediates, though. */ if (!is_fp) { read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN)); for (i = 1; i < elements; i++) { read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN)); switch (opcode) { case 0x03: /* SADDLV / UADDLV */ case 0x1b: /* ADDV */ tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt); break; case 0x0a: /* SMAXV / UMAXV */ if (is_u) { tcg_gen_umax_i64(tcg_res, tcg_res, tcg_elt); } else { tcg_gen_smax_i64(tcg_res, tcg_res, tcg_elt); } break; case 0x1a: /* SMINV / UMINV */ if (is_u) { tcg_gen_umin_i64(tcg_res, tcg_res, tcg_elt); } else { tcg_gen_smin_i64(tcg_res, tcg_res, tcg_elt); } break; default: g_assert_not_reached(); } } } else { /* Floating point vector reduction ops which work across 32 * bit (single) or 16 bit (half-precision) intermediates. * Note that correct NaN propagation requires that we do these * operations in exactly the order specified by the pseudocode. */ TCGv_ptr fpst = get_fpstatus_ptr(size == MO_16); int fpopcode = opcode | is_min << 4 | is_u << 5; int vmap = (1 << elements) - 1; TCGv_i32 tcg_res32 = do_reduction_op(s, fpopcode, rn, esize, (is_q ? 128 : 64), vmap, fpst); tcg_gen_extu_i32_i64(tcg_res, tcg_res32); tcg_temp_free_i32(tcg_res32); tcg_temp_free_ptr(fpst); } tcg_temp_free_i64(tcg_elt); /* Now truncate the result to the width required for the final output */ if (opcode == 0x03) { /* SADDLV, UADDLV: result is 2*esize */ size++; } switch (size) { case 0: tcg_gen_ext8u_i64(tcg_res, tcg_res); break; case 1: tcg_gen_ext16u_i64(tcg_res, tcg_res); break; case 2: tcg_gen_ext32u_i64(tcg_res, tcg_res); break; case 3: break; default: g_assert_not_reached(); } write_fp_dreg(s, rd, tcg_res); tcg_temp_free_i64(tcg_res); } /* DUP (Element, Vector) * * 31 30 29 21 20 16 15 10 9 5 4 0 * +---+---+-------------------+--------+-------------+------+------+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | * +---+---+-------------------+--------+-------------+------+------+ * * size: encoded in imm5 (see ARM ARM LowestSetBit()) */ static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn, int imm5) { int size = ctz32(imm5); int index = imm5 >> (size + 1); if (size > 3 || (size == 3 && !is_q)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_gen_gvec_dup_mem(size, vec_full_reg_offset(s, rd), vec_reg_offset(s, rn, index, size), is_q ? 16 : 8, vec_full_reg_size(s)); } /* DUP (element, scalar) * 31 21 20 16 15 10 9 5 4 0 * +-----------------------+--------+-------------+------+------+ * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd | * +-----------------------+--------+-------------+------+------+ */ static void handle_simd_dupes(DisasContext *s, int rd, int rn, int imm5) { int size = ctz32(imm5); int index; TCGv_i64 tmp; if (size > 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } index = imm5 >> (size + 1); /* This instruction just extracts the specified element and * zero-extends it into the bottom of the destination register. */ tmp = tcg_temp_new_i64(); read_vec_element(s, tmp, rn, index, size); write_fp_dreg(s, rd, tmp); tcg_temp_free_i64(tmp); } /* DUP (General) * * 31 30 29 21 20 16 15 10 9 5 4 0 * +---+---+-------------------+--------+-------------+------+------+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd | * +---+---+-------------------+--------+-------------+------+------+ * * size: encoded in imm5 (see ARM ARM LowestSetBit()) */ static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn, int imm5) { int size = ctz32(imm5); uint32_t dofs, oprsz, maxsz; if (size > 3 || ((size == 3) && !is_q)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } dofs = vec_full_reg_offset(s, rd); oprsz = is_q ? 16 : 8; maxsz = vec_full_reg_size(s); tcg_gen_gvec_dup_i64(size, dofs, oprsz, maxsz, cpu_reg(s, rn)); } /* INS (Element) * * 31 21 20 16 15 14 11 10 9 5 4 0 * +-----------------------+--------+------------+---+------+------+ * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | * +-----------------------+--------+------------+---+------+------+ * * size: encoded in imm5 (see ARM ARM LowestSetBit()) * index: encoded in imm5<4:size+1> */ static void handle_simd_inse(DisasContext *s, int rd, int rn, int imm4, int imm5) { int size = ctz32(imm5); int src_index, dst_index; TCGv_i64 tmp; if (size > 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } dst_index = extract32(imm5, 1+size, 5); src_index = extract32(imm4, size, 4); tmp = tcg_temp_new_i64(); read_vec_element(s, tmp, rn, src_index, size); write_vec_element(s, tmp, rd, dst_index, size); tcg_temp_free_i64(tmp); } /* INS (General) * * 31 21 20 16 15 10 9 5 4 0 * +-----------------------+--------+-------------+------+------+ * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd | * +-----------------------+--------+-------------+------+------+ * * size: encoded in imm5 (see ARM ARM LowestSetBit()) * index: encoded in imm5<4:size+1> */ static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5) { int size = ctz32(imm5); int idx; if (size > 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } idx = extract32(imm5, 1 + size, 4 - size); write_vec_element(s, cpu_reg(s, rn), rd, idx, size); } /* * UMOV (General) * SMOV (General) * * 31 30 29 21 20 16 15 12 10 9 5 4 0 * +---+---+-------------------+--------+-------------+------+------+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd | * +---+---+-------------------+--------+-------------+------+------+ * * U: unsigned when set * size: encoded in imm5 (see ARM ARM LowestSetBit()) */ static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed, int rn, int rd, int imm5) { int size = ctz32(imm5); int element; TCGv_i64 tcg_rd; /* Check for UnallocatedEncodings */ if (is_signed) { if (size > 2 || (size == 2 && !is_q)) { unallocated_encoding(s); return; } } else { if (size > 3 || (size < 3 && is_q) || (size == 3 && !is_q)) { unallocated_encoding(s); return; } } if (!fp_access_check(s)) { return; } element = extract32(imm5, 1+size, 4); tcg_rd = cpu_reg(s, rd); read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0)); if (is_signed && !is_q) { tcg_gen_ext32u_i64(tcg_rd, tcg_rd); } } /* AdvSIMD copy * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 * +---+---+----+-----------------+------+---+------+---+------+------+ * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | * +---+---+----+-----------------+------+---+------+---+------+------+ */ static void disas_simd_copy(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int imm4 = extract32(insn, 11, 4); int op = extract32(insn, 29, 1); int is_q = extract32(insn, 30, 1); int imm5 = extract32(insn, 16, 5); if (op) { if (is_q) { /* INS (element) */ handle_simd_inse(s, rd, rn, imm4, imm5); } else { unallocated_encoding(s); } } else { switch (imm4) { case 0: /* DUP (element - vector) */ handle_simd_dupe(s, is_q, rd, rn, imm5); break; case 1: /* DUP (general) */ handle_simd_dupg(s, is_q, rd, rn, imm5); break; case 3: if (is_q) { /* INS (general) */ handle_simd_insg(s, rd, rn, imm5); } else { unallocated_encoding(s); } break; case 5: case 7: /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */ handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5); break; default: unallocated_encoding(s); break; } } } /* AdvSIMD modified immediate * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0 * +---+---+----+---------------------+-----+-------+----+---+-------+------+ * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd | * +---+---+----+---------------------+-----+-------+----+---+-------+------+ * * There are a number of operations that can be carried out here: * MOVI - move (shifted) imm into register * MVNI - move inverted (shifted) imm into register * ORR - bitwise OR of (shifted) imm with register * BIC - bitwise clear of (shifted) imm with register * With ARMv8.2 we also have: * FMOV half-precision */ static void disas_simd_mod_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int cmode = extract32(insn, 12, 4); int cmode_3_1 = extract32(cmode, 1, 3); int cmode_0 = extract32(cmode, 0, 1); int o2 = extract32(insn, 11, 1); uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5); bool is_neg = extract32(insn, 29, 1); bool is_q = extract32(insn, 30, 1); uint64_t imm = 0; if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) { /* Check for FMOV (vector, immediate) - half-precision */ if (!(arm_dc_feature(s, ARM_FEATURE_V8_FP16) && o2 && cmode == 0xf)) { unallocated_encoding(s); return; } } if (!fp_access_check(s)) { return; } /* See AdvSIMDExpandImm() in ARM ARM */ switch (cmode_3_1) { case 0: /* Replicate(Zeros(24):imm8, 2) */ case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */ case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */ case 3: /* Replicate(imm8:Zeros(24), 2) */ { int shift = cmode_3_1 * 8; imm = bitfield_replicate(abcdefgh << shift, 32); break; } case 4: /* Replicate(Zeros(8):imm8, 4) */ case 5: /* Replicate(imm8:Zeros(8), 4) */ { int shift = (cmode_3_1 & 0x1) * 8; imm = bitfield_replicate(abcdefgh << shift, 16); break; } case 6: if (cmode_0) { /* Replicate(Zeros(8):imm8:Ones(16), 2) */ imm = (abcdefgh << 16) | 0xffff; } else { /* Replicate(Zeros(16):imm8:Ones(8), 2) */ imm = (abcdefgh << 8) | 0xff; } imm = bitfield_replicate(imm, 32); break; case 7: if (!cmode_0 && !is_neg) { imm = bitfield_replicate(abcdefgh, 8); } else if (!cmode_0 && is_neg) { int i; imm = 0; for (i = 0; i < 8; i++) { if ((abcdefgh) & (1 << i)) { imm |= 0xffULL << (i * 8); } } } else if (cmode_0) { if (is_neg) { imm = (abcdefgh & 0x3f) << 48; if (abcdefgh & 0x80) { imm |= 0x8000000000000000ULL; } if (abcdefgh & 0x40) { imm |= 0x3fc0000000000000ULL; } else { imm |= 0x4000000000000000ULL; } } else { if (o2) { /* FMOV (vector, immediate) - half-precision */ imm = vfp_expand_imm(MO_16, abcdefgh); /* now duplicate across the lanes */ imm = bitfield_replicate(imm, 16); } else { imm = (abcdefgh & 0x3f) << 19; if (abcdefgh & 0x80) { imm |= 0x80000000; } if (abcdefgh & 0x40) { imm |= 0x3e000000; } else { imm |= 0x40000000; } imm |= (imm << 32); } } } break; default: fprintf(stderr, "%s: cmode_3_1: %x\n", __func__, cmode_3_1); g_assert_not_reached(); } if (cmode_3_1 != 7 && is_neg) { imm = ~imm; } if (!((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9)) { /* MOVI or MVNI, with MVNI negation handled above. */ tcg_gen_gvec_dup64i(vec_full_reg_offset(s, rd), is_q ? 16 : 8, vec_full_reg_size(s), imm); } else { /* ORR or BIC, with BIC negation to AND handled above. */ if (is_neg) { gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_andi, MO_64); } else { gen_gvec_fn2i(s, is_q, rd, rd, imm, tcg_gen_gvec_ori, MO_64); } } } /* AdvSIMD scalar copy * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0 * +-----+----+-----------------+------+---+------+---+------+------+ * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd | * +-----+----+-----------------+------+---+------+---+------+------+ */ static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int imm4 = extract32(insn, 11, 4); int imm5 = extract32(insn, 16, 5); int op = extract32(insn, 29, 1); if (op != 0 || imm4 != 0) { unallocated_encoding(s); return; } /* DUP (element, scalar) */ handle_simd_dupes(s, rd, rn, imm5); } /* AdvSIMD scalar pairwise * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +-----+---+-----------+------+-----------+--------+-----+------+------+ * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd | * +-----+---+-----------+------+-----------+--------+-----+------+------+ */ static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn) { int u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); TCGv_ptr fpst; /* For some ops (the FP ones), size[1] is part of the encoding. * For ADDP strictly it is not but size[1] is always 1 for valid * encodings. */ opcode |= (extract32(size, 1, 1) << 5); switch (opcode) { case 0x3b: /* ADDP */ if (u || size != 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } fpst = NULL; break; case 0xc: /* FMAXNMP */ case 0xd: /* FADDP */ case 0xf: /* FMAXP */ case 0x2c: /* FMINNMP */ case 0x2f: /* FMINP */ /* FP op, size[0] is 32 or 64 bit*/ if (!u) { if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } else { size = MO_16; } } else { size = extract32(size, 0, 1) ? MO_64 : MO_32; } if (!fp_access_check(s)) { return; } fpst = get_fpstatus_ptr(size == MO_16); break; default: unallocated_encoding(s); return; } if (size == MO_64) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, 0, MO_64); read_vec_element(s, tcg_op2, rn, 1, MO_64); switch (opcode) { case 0x3b: /* ADDP */ tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2); break; case 0xc: /* FMAXNMP */ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xd: /* FADDP */ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xf: /* FMAXP */ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2c: /* FMINNMP */ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2f: /* FMINP */ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } write_fp_dreg(s, rd, tcg_res); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res); } else { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op1, rn, 0, size); read_vec_element_i32(s, tcg_op2, rn, 1, size); if (size == MO_16) { switch (opcode) { case 0xc: /* FMAXNMP */ gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xd: /* FADDP */ gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xf: /* FMAXP */ gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2c: /* FMINNMP */ gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2f: /* FMINP */ gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } } else { switch (opcode) { case 0xc: /* FMAXNMP */ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xd: /* FADDP */ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xf: /* FMAXP */ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2c: /* FMINNMP */ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x2f: /* FMINP */ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } } write_fp_sreg(s, rd, tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_res); } if (fpst) { tcg_temp_free_ptr(fpst); } } /* * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate) * * This code is handles the common shifting code and is used by both * the vector and scalar code. */ static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src, TCGv_i64 tcg_rnd, bool accumulate, bool is_u, int size, int shift) { bool extended_result = false; bool round = tcg_rnd != NULL; int ext_lshift = 0; TCGv_i64 tcg_src_hi; if (round && size == 3) { extended_result = true; ext_lshift = 64 - shift; tcg_src_hi = tcg_temp_new_i64(); } else if (shift == 64) { if (!accumulate && is_u) { /* result is zero */ tcg_gen_movi_i64(tcg_res, 0); return; } } /* Deal with the rounding step */ if (round) { if (extended_result) { TCGv_i64 tcg_zero = tcg_const_i64(0); if (!is_u) { /* take care of sign extending tcg_res */ tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63); tcg_gen_add2_i64(tcg_src, tcg_src_hi, tcg_src, tcg_src_hi, tcg_rnd, tcg_zero); } else { tcg_gen_add2_i64(tcg_src, tcg_src_hi, tcg_src, tcg_zero, tcg_rnd, tcg_zero); } tcg_temp_free_i64(tcg_zero); } else { tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd); } } /* Now do the shift right */ if (round && extended_result) { /* extended case, >64 bit precision required */ if (ext_lshift == 0) { /* special case, only high bits matter */ tcg_gen_mov_i64(tcg_src, tcg_src_hi); } else { tcg_gen_shri_i64(tcg_src, tcg_src, shift); tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift); tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi); } } else { if (is_u) { if (shift == 64) { /* essentially shifting in 64 zeros */ tcg_gen_movi_i64(tcg_src, 0); } else { tcg_gen_shri_i64(tcg_src, tcg_src, shift); } } else { if (shift == 64) { /* effectively extending the sign-bit */ tcg_gen_sari_i64(tcg_src, tcg_src, 63); } else { tcg_gen_sari_i64(tcg_src, tcg_src, shift); } } } if (accumulate) { tcg_gen_add_i64(tcg_res, tcg_res, tcg_src); } else { tcg_gen_mov_i64(tcg_res, tcg_src); } if (extended_result) { tcg_temp_free_i64(tcg_src_hi); } } /* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */ static void handle_scalar_simd_shri(DisasContext *s, bool is_u, int immh, int immb, int opcode, int rn, int rd) { const int size = 3; int immhb = immh << 3 | immb; int shift = 2 * (8 << size) - immhb; bool accumulate = false; bool round = false; bool insert = false; TCGv_i64 tcg_rn; TCGv_i64 tcg_rd; TCGv_i64 tcg_round; if (!extract32(immh, 3, 1)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } switch (opcode) { case 0x02: /* SSRA / USRA (accumulate) */ accumulate = true; break; case 0x04: /* SRSHR / URSHR (rounding) */ round = true; break; case 0x06: /* SRSRA / URSRA (accum + rounding) */ accumulate = round = true; break; case 0x08: /* SRI */ insert = true; break; } if (round) { uint64_t round_const = 1ULL << (shift - 1); tcg_round = tcg_const_i64(round_const); } else { tcg_round = NULL; } tcg_rn = read_fp_dreg(s, rn); tcg_rd = (accumulate || insert) ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); if (insert) { /* shift count same as element size is valid but does nothing; * special case to avoid potential shift by 64. */ int esize = 8 << size; if (shift != esize) { tcg_gen_shri_i64(tcg_rn, tcg_rn, shift); tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, 0, esize - shift); } } else { handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, accumulate, is_u, size, shift); } write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rn); tcg_temp_free_i64(tcg_rd); if (round) { tcg_temp_free_i64(tcg_round); } } /* SHL/SLI - Scalar shift left */ static void handle_scalar_simd_shli(DisasContext *s, bool insert, int immh, int immb, int opcode, int rn, int rd) { int size = 32 - clz32(immh) - 1; int immhb = immh << 3 | immb; int shift = immhb - (8 << size); TCGv_i64 tcg_rn = new_tmp_a64(s); TCGv_i64 tcg_rd = new_tmp_a64(s); if (!extract32(immh, 3, 1)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rn = read_fp_dreg(s, rn); tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64(); if (insert) { tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, shift, 64 - shift); } else { tcg_gen_shli_i64(tcg_rd, tcg_rn, shift); } write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rn); tcg_temp_free_i64(tcg_rd); } /* SQSHRN/SQSHRUN - Saturating (signed/unsigned) shift right with * (signed/unsigned) narrowing */ static void handle_vec_simd_sqshrn(DisasContext *s, bool is_scalar, bool is_q, bool is_u_shift, bool is_u_narrow, int immh, int immb, int opcode, int rn, int rd) { int immhb = immh << 3 | immb; int size = 32 - clz32(immh) - 1; int esize = 8 << size; int shift = (2 * esize) - immhb; int elements = is_scalar ? 1 : (64 / esize); bool round = extract32(opcode, 0, 1); TCGMemOp ldop = (size + 1) | (is_u_shift ? 0 : MO_SIGN); TCGv_i64 tcg_rn, tcg_rd, tcg_round; TCGv_i32 tcg_rd_narrowed; TCGv_i64 tcg_final; static NeonGenNarrowEnvFn * const signed_narrow_fns[4][2] = { { gen_helper_neon_narrow_sat_s8, gen_helper_neon_unarrow_sat8 }, { gen_helper_neon_narrow_sat_s16, gen_helper_neon_unarrow_sat16 }, { gen_helper_neon_narrow_sat_s32, gen_helper_neon_unarrow_sat32 }, { NULL, NULL }, }; static NeonGenNarrowEnvFn * const unsigned_narrow_fns[4] = { gen_helper_neon_narrow_sat_u8, gen_helper_neon_narrow_sat_u16, gen_helper_neon_narrow_sat_u32, NULL }; NeonGenNarrowEnvFn *narrowfn; int i; assert(size < 4); if (extract32(immh, 3, 1)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (is_u_shift) { narrowfn = unsigned_narrow_fns[size]; } else { narrowfn = signed_narrow_fns[size][is_u_narrow ? 1 : 0]; } tcg_rn = tcg_temp_new_i64(); tcg_rd = tcg_temp_new_i64(); tcg_rd_narrowed = tcg_temp_new_i32(); tcg_final = tcg_const_i64(0); if (round) { uint64_t round_const = 1ULL << (shift - 1); tcg_round = tcg_const_i64(round_const); } else { tcg_round = NULL; } for (i = 0; i < elements; i++) { read_vec_element(s, tcg_rn, rn, i, ldop); handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, false, is_u_shift, size+1, shift); narrowfn(tcg_rd_narrowed, cpu_env, tcg_rd); tcg_gen_extu_i32_i64(tcg_rd, tcg_rd_narrowed); tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); } if (!is_q) { write_vec_element(s, tcg_final, rd, 0, MO_64); } else { write_vec_element(s, tcg_final, rd, 1, MO_64); } if (round) { tcg_temp_free_i64(tcg_round); } tcg_temp_free_i64(tcg_rn); tcg_temp_free_i64(tcg_rd); tcg_temp_free_i32(tcg_rd_narrowed); tcg_temp_free_i64(tcg_final); clear_vec_high(s, is_q, rd); } /* SQSHLU, UQSHL, SQSHL: saturating left shifts */ static void handle_simd_qshl(DisasContext *s, bool scalar, bool is_q, bool src_unsigned, bool dst_unsigned, int immh, int immb, int rn, int rd) { int immhb = immh << 3 | immb; int size = 32 - clz32(immh) - 1; int shift = immhb - (8 << size); int pass; assert(immh != 0); assert(!(scalar && is_q)); if (!scalar) { if (!is_q && extract32(immh, 3, 1)) { unallocated_encoding(s); return; } /* Since we use the variable-shift helpers we must * replicate the shift count into each element of * the tcg_shift value. */ switch (size) { case 0: shift |= shift << 8; /* fall through */ case 1: shift |= shift << 16; break; case 2: case 3: break; default: g_assert_not_reached(); } } if (!fp_access_check(s)) { return; } if (size == 3) { TCGv_i64 tcg_shift = tcg_const_i64(shift); static NeonGenTwo64OpEnvFn * const fns[2][2] = { { gen_helper_neon_qshl_s64, gen_helper_neon_qshlu_s64 }, { NULL, gen_helper_neon_qshl_u64 }, }; NeonGenTwo64OpEnvFn *genfn = fns[src_unsigned][dst_unsigned]; int maxpass = is_q ? 2 : 1; for (pass = 0; pass < maxpass; pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); read_vec_element(s, tcg_op, rn, pass, MO_64); genfn(tcg_op, cpu_env, tcg_op, tcg_shift); write_vec_element(s, tcg_op, rd, pass, MO_64); tcg_temp_free_i64(tcg_op); } tcg_temp_free_i64(tcg_shift); clear_vec_high(s, is_q, rd); } else { TCGv_i32 tcg_shift = tcg_const_i32(shift); static NeonGenTwoOpEnvFn * const fns[2][2][3] = { { { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_s16, gen_helper_neon_qshl_s32 }, { gen_helper_neon_qshlu_s8, gen_helper_neon_qshlu_s16, gen_helper_neon_qshlu_s32 } }, { { NULL, NULL, NULL }, { gen_helper_neon_qshl_u8, gen_helper_neon_qshl_u16, gen_helper_neon_qshl_u32 } } }; NeonGenTwoOpEnvFn *genfn = fns[src_unsigned][dst_unsigned][size]; TCGMemOp memop = scalar ? size : MO_32; int maxpass = scalar ? 1 : is_q ? 4 : 2; for (pass = 0; pass < maxpass; pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op, rn, pass, memop); genfn(tcg_op, cpu_env, tcg_op, tcg_shift); if (scalar) { switch (size) { case 0: tcg_gen_ext8u_i32(tcg_op, tcg_op); break; case 1: tcg_gen_ext16u_i32(tcg_op, tcg_op); break; case 2: break; default: g_assert_not_reached(); } write_fp_sreg(s, rd, tcg_op); } else { write_vec_element_i32(s, tcg_op, rd, pass, MO_32); } tcg_temp_free_i32(tcg_op); } tcg_temp_free_i32(tcg_shift); if (!scalar) { clear_vec_high(s, is_q, rd); } } } /* Common vector code for handling integer to FP conversion */ static void handle_simd_intfp_conv(DisasContext *s, int rd, int rn, int elements, int is_signed, int fracbits, int size) { TCGv_ptr tcg_fpst = get_fpstatus_ptr(size == MO_16); TCGv_i32 tcg_shift = NULL; TCGMemOp mop = size | (is_signed ? MO_SIGN : 0); int pass; if (fracbits || size == MO_64) { tcg_shift = tcg_const_i32(fracbits); } if (size == MO_64) { TCGv_i64 tcg_int64 = tcg_temp_new_i64(); TCGv_i64 tcg_double = tcg_temp_new_i64(); for (pass = 0; pass < elements; pass++) { read_vec_element(s, tcg_int64, rn, pass, mop); if (is_signed) { gen_helper_vfp_sqtod(tcg_double, tcg_int64, tcg_shift, tcg_fpst); } else { gen_helper_vfp_uqtod(tcg_double, tcg_int64, tcg_shift, tcg_fpst); } if (elements == 1) { write_fp_dreg(s, rd, tcg_double); } else { write_vec_element(s, tcg_double, rd, pass, MO_64); } } tcg_temp_free_i64(tcg_int64); tcg_temp_free_i64(tcg_double); } else { TCGv_i32 tcg_int32 = tcg_temp_new_i32(); TCGv_i32 tcg_float = tcg_temp_new_i32(); for (pass = 0; pass < elements; pass++) { read_vec_element_i32(s, tcg_int32, rn, pass, mop); switch (size) { case MO_32: if (fracbits) { if (is_signed) { gen_helper_vfp_sltos(tcg_float, tcg_int32, tcg_shift, tcg_fpst); } else { gen_helper_vfp_ultos(tcg_float, tcg_int32, tcg_shift, tcg_fpst); } } else { if (is_signed) { gen_helper_vfp_sitos(tcg_float, tcg_int32, tcg_fpst); } else { gen_helper_vfp_uitos(tcg_float, tcg_int32, tcg_fpst); } } break; case MO_16: if (fracbits) { if (is_signed) { gen_helper_vfp_sltoh(tcg_float, tcg_int32, tcg_shift, tcg_fpst); } else { gen_helper_vfp_ultoh(tcg_float, tcg_int32, tcg_shift, tcg_fpst); } } else { if (is_signed) { gen_helper_vfp_sitoh(tcg_float, tcg_int32, tcg_fpst); } else { gen_helper_vfp_uitoh(tcg_float, tcg_int32, tcg_fpst); } } break; default: g_assert_not_reached(); } if (elements == 1) { write_fp_sreg(s, rd, tcg_float); } else { write_vec_element_i32(s, tcg_float, rd, pass, size); } } tcg_temp_free_i32(tcg_int32); tcg_temp_free_i32(tcg_float); } tcg_temp_free_ptr(tcg_fpst); if (tcg_shift) { tcg_temp_free_i32(tcg_shift); } clear_vec_high(s, elements << size == 16, rd); } /* UCVTF/SCVTF - Integer to FP conversion */ static void handle_simd_shift_intfp_conv(DisasContext *s, bool is_scalar, bool is_q, bool is_u, int immh, int immb, int opcode, int rn, int rd) { int size, elements, fracbits; int immhb = immh << 3 | immb; if (immh & 8) { size = MO_64; if (!is_scalar && !is_q) { unallocated_encoding(s); return; } } else if (immh & 4) { size = MO_32; } else if (immh & 2) { size = MO_16; if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } } else { /* immh == 0 would be a failure of the decode logic */ g_assert(immh == 1); unallocated_encoding(s); return; } if (is_scalar) { elements = 1; } else { elements = (8 << is_q) >> size; } fracbits = (16 << size) - immhb; if (!fp_access_check(s)) { return; } handle_simd_intfp_conv(s, rd, rn, elements, !is_u, fracbits, size); } /* FCVTZS, FVCVTZU - FP to fixedpoint conversion */ static void handle_simd_shift_fpint_conv(DisasContext *s, bool is_scalar, bool is_q, bool is_u, int immh, int immb, int rn, int rd) { int immhb = immh << 3 | immb; int pass, size, fracbits; TCGv_ptr tcg_fpstatus; TCGv_i32 tcg_rmode, tcg_shift; if (immh & 0x8) { size = MO_64; if (!is_scalar && !is_q) { unallocated_encoding(s); return; } } else if (immh & 0x4) { size = MO_32; } else if (immh & 0x2) { size = MO_16; if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } } else { /* Should have split out AdvSIMD modified immediate earlier. */ assert(immh == 1); unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } assert(!(is_scalar && is_q)); tcg_rmode = tcg_const_i32(arm_rmode_to_sf(FPROUNDING_ZERO)); tcg_fpstatus = get_fpstatus_ptr(size == MO_16); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); fracbits = (16 << size) - immhb; tcg_shift = tcg_const_i32(fracbits); if (size == MO_64) { int maxpass = is_scalar ? 1 : 2; for (pass = 0; pass < maxpass; pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); read_vec_element(s, tcg_op, rn, pass, MO_64); if (is_u) { gen_helper_vfp_touqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); } else { gen_helper_vfp_tosqd(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); } write_vec_element(s, tcg_op, rd, pass, MO_64); tcg_temp_free_i64(tcg_op); } clear_vec_high(s, is_q, rd); } else { void (*fn)(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr); int maxpass = is_scalar ? 1 : ((8 << is_q) >> size); switch (size) { case MO_16: if (is_u) { fn = gen_helper_vfp_touhh; } else { fn = gen_helper_vfp_toshh; } break; case MO_32: if (is_u) { fn = gen_helper_vfp_touls; } else { fn = gen_helper_vfp_tosls; } break; default: g_assert_not_reached(); } for (pass = 0; pass < maxpass; pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op, rn, pass, size); fn(tcg_op, tcg_op, tcg_shift, tcg_fpstatus); if (is_scalar) { write_fp_sreg(s, rd, tcg_op); } else { write_vec_element_i32(s, tcg_op, rd, pass, size); } tcg_temp_free_i32(tcg_op); } if (!is_scalar) { clear_vec_high(s, is_q, rd); } } tcg_temp_free_ptr(tcg_fpstatus); tcg_temp_free_i32(tcg_shift); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); tcg_temp_free_i32(tcg_rmode); } /* AdvSIMD scalar shift by immediate * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 * +-----+---+-------------+------+------+--------+---+------+------+ * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | * +-----+---+-------------+------+------+--------+---+------+------+ * * This is the scalar version so it works on a fixed sized registers */ static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 5); int immb = extract32(insn, 16, 3); int immh = extract32(insn, 19, 4); bool is_u = extract32(insn, 29, 1); if (immh == 0) { unallocated_encoding(s); return; } switch (opcode) { case 0x08: /* SRI */ if (!is_u) { unallocated_encoding(s); return; } /* fall through */ case 0x00: /* SSHR / USHR */ case 0x02: /* SSRA / USRA */ case 0x04: /* SRSHR / URSHR */ case 0x06: /* SRSRA / URSRA */ handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd); break; case 0x0a: /* SHL / SLI */ handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd); break; case 0x1c: /* SCVTF, UCVTF */ handle_simd_shift_intfp_conv(s, true, false, is_u, immh, immb, opcode, rn, rd); break; case 0x10: /* SQSHRUN, SQSHRUN2 */ case 0x11: /* SQRSHRUN, SQRSHRUN2 */ if (!is_u) { unallocated_encoding(s); return; } handle_vec_simd_sqshrn(s, true, false, false, true, immh, immb, opcode, rn, rd); break; case 0x12: /* SQSHRN, SQSHRN2, UQSHRN */ case 0x13: /* SQRSHRN, SQRSHRN2, UQRSHRN, UQRSHRN2 */ handle_vec_simd_sqshrn(s, true, false, is_u, is_u, immh, immb, opcode, rn, rd); break; case 0xc: /* SQSHLU */ if (!is_u) { unallocated_encoding(s); return; } handle_simd_qshl(s, true, false, false, true, immh, immb, rn, rd); break; case 0xe: /* SQSHL, UQSHL */ handle_simd_qshl(s, true, false, is_u, is_u, immh, immb, rn, rd); break; case 0x1f: /* FCVTZS, FCVTZU */ handle_simd_shift_fpint_conv(s, true, false, is_u, immh, immb, rn, rd); break; default: unallocated_encoding(s); break; } } /* AdvSIMD scalar three different * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 * +-----+---+-----------+------+---+------+--------+-----+------+------+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | * +-----+---+-----------+------+---+------+--------+-----+------+------+ */ static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn) { bool is_u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 4); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); if (is_u) { unallocated_encoding(s); return; } switch (opcode) { case 0x9: /* SQDMLAL, SQDMLAL2 */ case 0xb: /* SQDMLSL, SQDMLSL2 */ case 0xd: /* SQDMULL, SQDMULL2 */ if (size == 0 || size == 3) { unallocated_encoding(s); return; } break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (size == 2) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN); read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN); tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2); gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res); switch (opcode) { case 0xd: /* SQDMULL, SQDMULL2 */ break; case 0xb: /* SQDMLSL, SQDMLSL2 */ tcg_gen_neg_i64(tcg_res, tcg_res); /* fall through */ case 0x9: /* SQDMLAL, SQDMLAL2 */ read_vec_element(s, tcg_op1, rd, 0, MO_64); gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_op1); break; default: g_assert_not_reached(); } write_fp_dreg(s, rd, tcg_res); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res); } else { TCGv_i32 tcg_op1 = read_fp_hreg(s, rn); TCGv_i32 tcg_op2 = read_fp_hreg(s, rm); TCGv_i64 tcg_res = tcg_temp_new_i64(); gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2); gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res); switch (opcode) { case 0xd: /* SQDMULL, SQDMULL2 */ break; case 0xb: /* SQDMLSL, SQDMLSL2 */ gen_helper_neon_negl_u32(tcg_res, tcg_res); /* fall through */ case 0x9: /* SQDMLAL, SQDMLAL2 */ { TCGv_i64 tcg_op3 = tcg_temp_new_i64(); read_vec_element(s, tcg_op3, rd, 0, MO_32); gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_op3); tcg_temp_free_i64(tcg_op3); break; } default: g_assert_not_reached(); } tcg_gen_ext32u_i64(tcg_res, tcg_res); write_fp_dreg(s, rd, tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i64(tcg_res); } } /* CMTST : test is "if (X & Y != 0)". */ static void gen_cmtst_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_and_i32(d, a, b); tcg_gen_setcondi_i32(TCG_COND_NE, d, d, 0); tcg_gen_neg_i32(d, d); } static void gen_cmtst_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_and_i64(d, a, b); tcg_gen_setcondi_i64(TCG_COND_NE, d, d, 0); tcg_gen_neg_i64(d, d); } static void gen_cmtst_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_and_vec(vece, d, a, b); tcg_gen_dupi_vec(vece, a, 0); tcg_gen_cmp_vec(TCG_COND_NE, vece, d, d, a); } static void handle_3same_64(DisasContext *s, int opcode, bool u, TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm) { /* Handle 64x64->64 opcodes which are shared between the scalar * and vector 3-same groups. We cover every opcode where size == 3 * is valid in either the three-reg-same (integer, not pairwise) * or scalar-three-reg-same groups. */ TCGCond cond; switch (opcode) { case 0x1: /* SQADD */ if (u) { gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } else { gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } break; case 0x5: /* SQSUB */ if (u) { gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } else { gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } break; case 0x6: /* CMGT, CMHI */ /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0. * We implement this using setcond (test) and then negating. */ cond = u ? TCG_COND_GTU : TCG_COND_GT; do_cmop: tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm); tcg_gen_neg_i64(tcg_rd, tcg_rd); break; case 0x7: /* CMGE, CMHS */ cond = u ? TCG_COND_GEU : TCG_COND_GE; goto do_cmop; case 0x11: /* CMTST, CMEQ */ if (u) { cond = TCG_COND_EQ; goto do_cmop; } gen_cmtst_i64(tcg_rd, tcg_rn, tcg_rm); break; case 0x8: /* SSHL, USHL */ if (u) { gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm); } else { gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm); } break; case 0x9: /* SQSHL, UQSHL */ if (u) { gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } else { gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } break; case 0xa: /* SRSHL, URSHL */ if (u) { gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm); } else { gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm); } break; case 0xb: /* SQRSHL, UQRSHL */ if (u) { gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } else { gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm); } break; case 0x10: /* ADD, SUB */ if (u) { tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm); } else { tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm); } break; default: g_assert_not_reached(); } } /* Handle the 3-same-operands float operations; shared by the scalar * and vector encodings. The caller must filter out any encodings * not allocated for the encoding it is dealing with. */ static void handle_3same_float(DisasContext *s, int size, int elements, int fpopcode, int rd, int rn, int rm) { int pass; TCGv_ptr fpst = get_fpstatus_ptr(false); for (pass = 0; pass < elements; pass++) { if (size) { /* Double */ TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); switch (fpopcode) { case 0x39: /* FMLS */ /* As usual for ARM, separate negation for fused multiply-add */ gen_helper_vfp_negd(tcg_op1, tcg_op1); /* fall through */ case 0x19: /* FMLA */ read_vec_element(s, tcg_res, rd, pass, MO_64); gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_res, fpst); break; case 0x18: /* FMAXNM */ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1a: /* FADD */ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1b: /* FMULX */ gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1c: /* FCMEQ */ gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1e: /* FMAX */ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1f: /* FRECPS */ gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x38: /* FMINNM */ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3a: /* FSUB */ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3e: /* FMIN */ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3f: /* FRSQRTS */ gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5b: /* FMUL */ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5c: /* FCMGE */ gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5d: /* FACGE */ gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5f: /* FDIV */ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7a: /* FABD */ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst); gen_helper_vfp_absd(tcg_res, tcg_res); break; case 0x7c: /* FCMGT */ gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7d: /* FACGT */ gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } write_vec_element(s, tcg_res, rd, pass, MO_64); tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } else { /* Single */ TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); switch (fpopcode) { case 0x39: /* FMLS */ /* As usual for ARM, separate negation for fused multiply-add */ gen_helper_vfp_negs(tcg_op1, tcg_op1); /* fall through */ case 0x19: /* FMLA */ read_vec_element_i32(s, tcg_res, rd, pass, MO_32); gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_res, fpst); break; case 0x1a: /* FADD */ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1b: /* FMULX */ gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1c: /* FCMEQ */ gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1e: /* FMAX */ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1f: /* FRECPS */ gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x18: /* FMAXNM */ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x38: /* FMINNM */ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3a: /* FSUB */ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3e: /* FMIN */ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3f: /* FRSQRTS */ gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5b: /* FMUL */ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5c: /* FCMGE */ gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5d: /* FACGE */ gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x5f: /* FDIV */ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7a: /* FABD */ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst); gen_helper_vfp_abss(tcg_res, tcg_res); break; case 0x7c: /* FCMGT */ gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7d: /* FACGT */ gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } if (elements == 1) { /* scalar single so clear high part */ TCGv_i64 tcg_tmp = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(tcg_tmp, tcg_res); write_vec_element(s, tcg_tmp, rd, pass, MO_64); tcg_temp_free_i64(tcg_tmp); } else { write_vec_element_i32(s, tcg_res, rd, pass, MO_32); } tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } } tcg_temp_free_ptr(fpst); clear_vec_high(s, elements * (size ? 8 : 4) > 8, rd); } /* AdvSIMD scalar three same * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 * +-----+---+-----------+------+---+------+--------+---+------+------+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | * +-----+---+-----------+------+---+------+--------+---+------+------+ */ static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 5); int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); bool u = extract32(insn, 29, 1); TCGv_i64 tcg_rd; if (opcode >= 0x18) { /* Floating point: U, size[1] and opcode indicate operation */ int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6); switch (fpopcode) { case 0x1b: /* FMULX */ case 0x1f: /* FRECPS */ case 0x3f: /* FRSQRTS */ case 0x5d: /* FACGE */ case 0x7d: /* FACGT */ case 0x1c: /* FCMEQ */ case 0x5c: /* FCMGE */ case 0x7c: /* FCMGT */ case 0x7a: /* FABD */ break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm); return; } switch (opcode) { case 0x1: /* SQADD, UQADD */ case 0x5: /* SQSUB, UQSUB */ case 0x9: /* SQSHL, UQSHL */ case 0xb: /* SQRSHL, UQRSHL */ break; case 0x8: /* SSHL, USHL */ case 0xa: /* SRSHL, URSHL */ case 0x6: /* CMGT, CMHI */ case 0x7: /* CMGE, CMHS */ case 0x11: /* CMTST, CMEQ */ case 0x10: /* ADD, SUB (vector) */ if (size != 3) { unallocated_encoding(s); return; } break; case 0x16: /* SQDMULH, SQRDMULH (vector) */ if (size != 1 && size != 2) { unallocated_encoding(s); return; } break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd = tcg_temp_new_i64(); if (size == 3) { TCGv_i64 tcg_rn = read_fp_dreg(s, rn); TCGv_i64 tcg_rm = read_fp_dreg(s, rm); handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm); tcg_temp_free_i64(tcg_rn); tcg_temp_free_i64(tcg_rm); } else { /* Do a single operation on the lowest element in the vector. * We use the standard Neon helpers and rely on 0 OP 0 == 0 with * no side effects for all these operations. * OPTME: special-purpose helpers would avoid doing some * unnecessary work in the helper for the 8 and 16 bit cases. */ NeonGenTwoOpEnvFn *genenvfn; TCGv_i32 tcg_rn = tcg_temp_new_i32(); TCGv_i32 tcg_rm = tcg_temp_new_i32(); TCGv_i32 tcg_rd32 = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_rn, rn, 0, size); read_vec_element_i32(s, tcg_rm, rm, 0, size); switch (opcode) { case 0x1: /* SQADD, UQADD */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, }; genenvfn = fns[size][u]; break; } case 0x5: /* SQSUB, UQSUB */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, }; genenvfn = fns[size][u]; break; } case 0x9: /* SQSHL, UQSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0xb: /* SQRSHL, UQRSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0x16: /* SQDMULH, SQRDMULH */ { static NeonGenTwoOpEnvFn * const fns[2][2] = { { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, }; assert(size == 1 || size == 2); genenvfn = fns[size - 1][u]; break; } default: g_assert_not_reached(); } genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm); tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32); tcg_temp_free_i32(tcg_rd32); tcg_temp_free_i32(tcg_rn); tcg_temp_free_i32(tcg_rm); } write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rd); } /* AdvSIMD scalar three same FP16 * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ * | 0 1 | U | 1 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | * +-----+---+-----------+---+-----+------+-----+--------+---+----+----+ * v: 0101 1110 0100 0000 0000 0100 0000 0000 => 5e400400 * m: 1101 1111 0110 0000 1100 0100 0000 0000 => df60c400 */ static void disas_simd_scalar_three_reg_same_fp16(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 3); int rm = extract32(insn, 16, 5); bool u = extract32(insn, 29, 1); bool a = extract32(insn, 23, 1); int fpopcode = opcode | (a << 3) | (u << 4); TCGv_ptr fpst; TCGv_i32 tcg_op1; TCGv_i32 tcg_op2; TCGv_i32 tcg_res; switch (fpopcode) { case 0x03: /* FMULX */ case 0x04: /* FCMEQ (reg) */ case 0x07: /* FRECPS */ case 0x0f: /* FRSQRTS */ case 0x14: /* FCMGE (reg) */ case 0x15: /* FACGE */ case 0x1a: /* FABD */ case 0x1c: /* FCMGT (reg) */ case 0x1d: /* FACGT */ break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); } if (!fp_access_check(s)) { return; } fpst = get_fpstatus_ptr(true); tcg_op1 = read_fp_hreg(s, rn); tcg_op2 = read_fp_hreg(s, rm); tcg_res = tcg_temp_new_i32(); switch (fpopcode) { case 0x03: /* FMULX */ gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x04: /* FCMEQ (reg) */ gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x07: /* FRECPS */ gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x0f: /* FRSQRTS */ gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x14: /* FCMGE (reg) */ gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x15: /* FACGE */ gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1a: /* FABD */ gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); break; case 0x1c: /* FCMGT (reg) */ gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1d: /* FACGT */ gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } write_fp_sreg(s, rd, tcg_res); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_ptr(fpst); } /* AdvSIMD scalar three same extra * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 * +-----+---+-----------+------+---+------+---+--------+---+----+----+ * | 0 1 | U | 1 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | * +-----+---+-----------+------+---+------+---+--------+---+----+----+ */ static void disas_simd_scalar_three_reg_same_extra(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 4); int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); bool u = extract32(insn, 29, 1); TCGv_i32 ele1, ele2, ele3; TCGv_i64 res; int feature; switch (u * 16 + opcode) { case 0x10: /* SQRDMLAH (vector) */ case 0x11: /* SQRDMLSH (vector) */ if (size != 1 && size != 2) { unallocated_encoding(s); return; } feature = ARM_FEATURE_V8_RDM; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } /* Do a single operation on the lowest element in the vector. * We use the standard Neon helpers and rely on 0 OP 0 == 0 * with no side effects for all these operations. * OPTME: special-purpose helpers would avoid doing some * unnecessary work in the helper for the 16 bit cases. */ ele1 = tcg_temp_new_i32(); ele2 = tcg_temp_new_i32(); ele3 = tcg_temp_new_i32(); read_vec_element_i32(s, ele1, rn, 0, size); read_vec_element_i32(s, ele2, rm, 0, size); read_vec_element_i32(s, ele3, rd, 0, size); switch (opcode) { case 0x0: /* SQRDMLAH */ if (size == 1) { gen_helper_neon_qrdmlah_s16(ele3, cpu_env, ele1, ele2, ele3); } else { gen_helper_neon_qrdmlah_s32(ele3, cpu_env, ele1, ele2, ele3); } break; case 0x1: /* SQRDMLSH */ if (size == 1) { gen_helper_neon_qrdmlsh_s16(ele3, cpu_env, ele1, ele2, ele3); } else { gen_helper_neon_qrdmlsh_s32(ele3, cpu_env, ele1, ele2, ele3); } break; default: g_assert_not_reached(); } tcg_temp_free_i32(ele1); tcg_temp_free_i32(ele2); res = tcg_temp_new_i64(); tcg_gen_extu_i32_i64(res, ele3); tcg_temp_free_i32(ele3); write_fp_dreg(s, rd, res); tcg_temp_free_i64(res); } static void handle_2misc_64(DisasContext *s, int opcode, bool u, TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i32 tcg_rmode, TCGv_ptr tcg_fpstatus) { /* Handle 64->64 opcodes which are shared between the scalar and * vector 2-reg-misc groups. We cover every integer opcode where size == 3 * is valid in either group and also the double-precision fp ops. * The caller only need provide tcg_rmode and tcg_fpstatus if the op * requires them. */ TCGCond cond; switch (opcode) { case 0x4: /* CLS, CLZ */ if (u) { tcg_gen_clzi_i64(tcg_rd, tcg_rn, 64); } else { tcg_gen_clrsb_i64(tcg_rd, tcg_rn); } break; case 0x5: /* NOT */ /* This opcode is shared with CNT and RBIT but we have earlier * enforced that size == 3 if and only if this is the NOT insn. */ tcg_gen_not_i64(tcg_rd, tcg_rn); break; case 0x7: /* SQABS, SQNEG */ if (u) { gen_helper_neon_qneg_s64(tcg_rd, cpu_env, tcg_rn); } else { gen_helper_neon_qabs_s64(tcg_rd, cpu_env, tcg_rn); } break; case 0xa: /* CMLT */ /* 64 bit integer comparison against zero, result is * test ? (2^64 - 1) : 0. We implement via setcond(!test) and * subtracting 1. */ cond = TCG_COND_LT; do_cmop: tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0); tcg_gen_neg_i64(tcg_rd, tcg_rd); break; case 0x8: /* CMGT, CMGE */ cond = u ? TCG_COND_GE : TCG_COND_GT; goto do_cmop; case 0x9: /* CMEQ, CMLE */ cond = u ? TCG_COND_LE : TCG_COND_EQ; goto do_cmop; case 0xb: /* ABS, NEG */ if (u) { tcg_gen_neg_i64(tcg_rd, tcg_rn); } else { TCGv_i64 tcg_zero = tcg_const_i64(0); tcg_gen_neg_i64(tcg_rd, tcg_rn); tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero, tcg_rn, tcg_rd); tcg_temp_free_i64(tcg_zero); } break; case 0x2f: /* FABS */ gen_helper_vfp_absd(tcg_rd, tcg_rn); break; case 0x6f: /* FNEG */ gen_helper_vfp_negd(tcg_rd, tcg_rn); break; case 0x7f: /* FSQRT */ gen_helper_vfp_sqrtd(tcg_rd, tcg_rn, cpu_env); break; case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x1c: /* FCVTAS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_tosqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x5c: /* FCVTAU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_touqd(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } case 0x18: /* FRINTN */ case 0x19: /* FRINTM */ case 0x38: /* FRINTP */ case 0x39: /* FRINTZ */ case 0x58: /* FRINTA */ case 0x79: /* FRINTI */ gen_helper_rintd(tcg_rd, tcg_rn, tcg_fpstatus); break; case 0x59: /* FRINTX */ gen_helper_rintd_exact(tcg_rd, tcg_rn, tcg_fpstatus); break; default: g_assert_not_reached(); } } static void handle_2misc_fcmp_zero(DisasContext *s, int opcode, bool is_scalar, bool is_u, bool is_q, int size, int rn, int rd) { bool is_double = (size == MO_64); TCGv_ptr fpst; if (!fp_access_check(s)) { return; } fpst = get_fpstatus_ptr(size == MO_16); if (is_double) { TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_zero = tcg_const_i64(0); TCGv_i64 tcg_res = tcg_temp_new_i64(); NeonGenTwoDoubleOPFn *genfn; bool swap = false; int pass; switch (opcode) { case 0x2e: /* FCMLT (zero) */ swap = true; /* fallthrough */ case 0x2c: /* FCMGT (zero) */ genfn = gen_helper_neon_cgt_f64; break; case 0x2d: /* FCMEQ (zero) */ genfn = gen_helper_neon_ceq_f64; break; case 0x6d: /* FCMLE (zero) */ swap = true; /* fall through */ case 0x6c: /* FCMGE (zero) */ genfn = gen_helper_neon_cge_f64; break; default: g_assert_not_reached(); } for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { read_vec_element(s, tcg_op, rn, pass, MO_64); if (swap) { genfn(tcg_res, tcg_zero, tcg_op, fpst); } else { genfn(tcg_res, tcg_op, tcg_zero, fpst); } write_vec_element(s, tcg_res, rd, pass, MO_64); } tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_zero); tcg_temp_free_i64(tcg_op); clear_vec_high(s, !is_scalar, rd); } else { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_zero = tcg_const_i32(0); TCGv_i32 tcg_res = tcg_temp_new_i32(); NeonGenTwoSingleOPFn *genfn; bool swap = false; int pass, maxpasses; if (size == MO_16) { switch (opcode) { case 0x2e: /* FCMLT (zero) */ swap = true; /* fall through */ case 0x2c: /* FCMGT (zero) */ genfn = gen_helper_advsimd_cgt_f16; break; case 0x2d: /* FCMEQ (zero) */ genfn = gen_helper_advsimd_ceq_f16; break; case 0x6d: /* FCMLE (zero) */ swap = true; /* fall through */ case 0x6c: /* FCMGE (zero) */ genfn = gen_helper_advsimd_cge_f16; break; default: g_assert_not_reached(); } } else { switch (opcode) { case 0x2e: /* FCMLT (zero) */ swap = true; /* fall through */ case 0x2c: /* FCMGT (zero) */ genfn = gen_helper_neon_cgt_f32; break; case 0x2d: /* FCMEQ (zero) */ genfn = gen_helper_neon_ceq_f32; break; case 0x6d: /* FCMLE (zero) */ swap = true; /* fall through */ case 0x6c: /* FCMGE (zero) */ genfn = gen_helper_neon_cge_f32; break; default: g_assert_not_reached(); } } if (is_scalar) { maxpasses = 1; } else { int vector_size = 8 << is_q; maxpasses = vector_size >> size; } for (pass = 0; pass < maxpasses; pass++) { read_vec_element_i32(s, tcg_op, rn, pass, size); if (swap) { genfn(tcg_res, tcg_zero, tcg_op, fpst); } else { genfn(tcg_res, tcg_op, tcg_zero, fpst); } if (is_scalar) { write_fp_sreg(s, rd, tcg_res); } else { write_vec_element_i32(s, tcg_res, rd, pass, size); } } tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_zero); tcg_temp_free_i32(tcg_op); if (!is_scalar) { clear_vec_high(s, is_q, rd); } } tcg_temp_free_ptr(fpst); } static void handle_2misc_reciprocal(DisasContext *s, int opcode, bool is_scalar, bool is_u, bool is_q, int size, int rn, int rd) { bool is_double = (size == 3); TCGv_ptr fpst = get_fpstatus_ptr(false); if (is_double) { TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); int pass; for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { read_vec_element(s, tcg_op, rn, pass, MO_64); switch (opcode) { case 0x3d: /* FRECPE */ gen_helper_recpe_f64(tcg_res, tcg_op, fpst); break; case 0x3f: /* FRECPX */ gen_helper_frecpx_f64(tcg_res, tcg_op, fpst); break; case 0x7d: /* FRSQRTE */ gen_helper_rsqrte_f64(tcg_res, tcg_op, fpst); break; default: g_assert_not_reached(); } write_vec_element(s, tcg_res, rd, pass, MO_64); } tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_op); clear_vec_high(s, !is_scalar, rd); } else { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); int pass, maxpasses; if (is_scalar) { maxpasses = 1; } else { maxpasses = is_q ? 4 : 2; } for (pass = 0; pass < maxpasses; pass++) { read_vec_element_i32(s, tcg_op, rn, pass, MO_32); switch (opcode) { case 0x3c: /* URECPE */ gen_helper_recpe_u32(tcg_res, tcg_op, fpst); break; case 0x3d: /* FRECPE */ gen_helper_recpe_f32(tcg_res, tcg_op, fpst); break; case 0x3f: /* FRECPX */ gen_helper_frecpx_f32(tcg_res, tcg_op, fpst); break; case 0x7d: /* FRSQRTE */ gen_helper_rsqrte_f32(tcg_res, tcg_op, fpst); break; default: g_assert_not_reached(); } if (is_scalar) { write_fp_sreg(s, rd, tcg_res); } else { write_vec_element_i32(s, tcg_res, rd, pass, MO_32); } } tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op); if (!is_scalar) { clear_vec_high(s, is_q, rd); } } tcg_temp_free_ptr(fpst); } static void handle_2misc_narrow(DisasContext *s, bool scalar, int opcode, bool u, bool is_q, int size, int rn, int rd) { /* Handle 2-reg-misc ops which are narrowing (so each 2*size element * in the source becomes a size element in the destination). */ int pass; TCGv_i32 tcg_res[2]; int destelt = is_q ? 2 : 0; int passes = scalar ? 1 : 2; if (scalar) { tcg_res[1] = tcg_const_i32(0); } for (pass = 0; pass < passes; pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); NeonGenNarrowFn *genfn = NULL; NeonGenNarrowEnvFn *genenvfn = NULL; if (scalar) { read_vec_element(s, tcg_op, rn, pass, size + 1); } else { read_vec_element(s, tcg_op, rn, pass, MO_64); } tcg_res[pass] = tcg_temp_new_i32(); switch (opcode) { case 0x12: /* XTN, SQXTUN */ { static NeonGenNarrowFn * const xtnfns[3] = { gen_helper_neon_narrow_u8, gen_helper_neon_narrow_u16, tcg_gen_extrl_i64_i32, }; static NeonGenNarrowEnvFn * const sqxtunfns[3] = { gen_helper_neon_unarrow_sat8, gen_helper_neon_unarrow_sat16, gen_helper_neon_unarrow_sat32, }; if (u) { genenvfn = sqxtunfns[size]; } else { genfn = xtnfns[size]; } break; } case 0x14: /* SQXTN, UQXTN */ { static NeonGenNarrowEnvFn * const fns[3][2] = { { gen_helper_neon_narrow_sat_s8, gen_helper_neon_narrow_sat_u8 }, { gen_helper_neon_narrow_sat_s16, gen_helper_neon_narrow_sat_u16 }, { gen_helper_neon_narrow_sat_s32, gen_helper_neon_narrow_sat_u32 }, }; genenvfn = fns[size][u]; break; } case 0x16: /* FCVTN, FCVTN2 */ /* 32 bit to 16 bit or 64 bit to 32 bit float conversion */ if (size == 2) { gen_helper_vfp_fcvtsd(tcg_res[pass], tcg_op, cpu_env); } else { TCGv_i32 tcg_lo = tcg_temp_new_i32(); TCGv_i32 tcg_hi = tcg_temp_new_i32(); TCGv_ptr fpst = get_fpstatus_ptr(false); TCGv_i32 ahp = get_ahp_flag(); tcg_gen_extr_i64_i32(tcg_lo, tcg_hi, tcg_op); gen_helper_vfp_fcvt_f32_to_f16(tcg_lo, tcg_lo, fpst, ahp); gen_helper_vfp_fcvt_f32_to_f16(tcg_hi, tcg_hi, fpst, ahp); tcg_gen_deposit_i32(tcg_res[pass], tcg_lo, tcg_hi, 16, 16); tcg_temp_free_i32(tcg_lo); tcg_temp_free_i32(tcg_hi); tcg_temp_free_ptr(fpst); tcg_temp_free_i32(ahp); } break; case 0x56: /* FCVTXN, FCVTXN2 */ /* 64 bit to 32 bit float conversion * with von Neumann rounding (round to odd) */ assert(size == 2); gen_helper_fcvtx_f64_to_f32(tcg_res[pass], tcg_op, cpu_env); break; default: g_assert_not_reached(); } if (genfn) { genfn(tcg_res[pass], tcg_op); } else if (genenvfn) { genenvfn(tcg_res[pass], cpu_env, tcg_op); } tcg_temp_free_i64(tcg_op); } for (pass = 0; pass < 2; pass++) { write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32); tcg_temp_free_i32(tcg_res[pass]); } clear_vec_high(s, is_q, rd); } /* Remaining saturating accumulating ops */ static void handle_2misc_satacc(DisasContext *s, bool is_scalar, bool is_u, bool is_q, int size, int rn, int rd) { bool is_double = (size == 3); if (is_double) { TCGv_i64 tcg_rn = tcg_temp_new_i64(); TCGv_i64 tcg_rd = tcg_temp_new_i64(); int pass; for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { read_vec_element(s, tcg_rn, rn, pass, MO_64); read_vec_element(s, tcg_rd, rd, pass, MO_64); if (is_u) { /* USQADD */ gen_helper_neon_uqadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rd); } else { /* SUQADD */ gen_helper_neon_sqadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rd); } write_vec_element(s, tcg_rd, rd, pass, MO_64); } tcg_temp_free_i64(tcg_rd); tcg_temp_free_i64(tcg_rn); clear_vec_high(s, !is_scalar, rd); } else { TCGv_i32 tcg_rn = tcg_temp_new_i32(); TCGv_i32 tcg_rd = tcg_temp_new_i32(); int pass, maxpasses; if (is_scalar) { maxpasses = 1; } else { maxpasses = is_q ? 4 : 2; } for (pass = 0; pass < maxpasses; pass++) { if (is_scalar) { read_vec_element_i32(s, tcg_rn, rn, pass, size); read_vec_element_i32(s, tcg_rd, rd, pass, size); } else { read_vec_element_i32(s, tcg_rn, rn, pass, MO_32); read_vec_element_i32(s, tcg_rd, rd, pass, MO_32); } if (is_u) { /* USQADD */ switch (size) { case 0: gen_helper_neon_uqadd_s8(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; case 1: gen_helper_neon_uqadd_s16(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; case 2: gen_helper_neon_uqadd_s32(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; default: g_assert_not_reached(); } } else { /* SUQADD */ switch (size) { case 0: gen_helper_neon_sqadd_u8(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; case 1: gen_helper_neon_sqadd_u16(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; case 2: gen_helper_neon_sqadd_u32(tcg_rd, cpu_env, tcg_rn, tcg_rd); break; default: g_assert_not_reached(); } } if (is_scalar) { TCGv_i64 tcg_zero = tcg_const_i64(0); write_vec_element(s, tcg_zero, rd, 0, MO_64); tcg_temp_free_i64(tcg_zero); } write_vec_element_i32(s, tcg_rd, rd, pass, MO_32); } tcg_temp_free_i32(tcg_rd); tcg_temp_free_i32(tcg_rn); clear_vec_high(s, is_q, rd); } } /* AdvSIMD scalar two reg misc * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +-----+---+-----------+------+-----------+--------+-----+------+------+ * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | * +-----+---+-----------+------+-----------+--------+-----+------+------+ */ static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 12, 5); int size = extract32(insn, 22, 2); bool u = extract32(insn, 29, 1); bool is_fcvt = false; int rmode; TCGv_i32 tcg_rmode; TCGv_ptr tcg_fpstatus; switch (opcode) { case 0x3: /* USQADD / SUQADD*/ if (!fp_access_check(s)) { return; } handle_2misc_satacc(s, true, u, false, size, rn, rd); return; case 0x7: /* SQABS / SQNEG */ break; case 0xa: /* CMLT */ if (u) { unallocated_encoding(s); return; } /* fall through */ case 0x8: /* CMGT, CMGE */ case 0x9: /* CMEQ, CMLE */ case 0xb: /* ABS, NEG */ if (size != 3) { unallocated_encoding(s); return; } break; case 0x12: /* SQXTUN */ if (!u) { unallocated_encoding(s); return; } /* fall through */ case 0x14: /* SQXTN, UQXTN */ if (size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_narrow(s, true, opcode, u, false, size, rn, rd); return; case 0xc ... 0xf: case 0x16 ... 0x1d: case 0x1f: /* Floating point: U, size[1] and opcode indicate operation; * size[0] indicates single or double precision. */ opcode |= (extract32(size, 1, 1) << 5) | (u << 6); size = extract32(size, 0, 1) ? 3 : 2; switch (opcode) { case 0x2c: /* FCMGT (zero) */ case 0x2d: /* FCMEQ (zero) */ case 0x2e: /* FCMLT (zero) */ case 0x6c: /* FCMGE (zero) */ case 0x6d: /* FCMLE (zero) */ handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd); return; case 0x1d: /* SCVTF */ case 0x5d: /* UCVTF */ { bool is_signed = (opcode == 0x1d); if (!fp_access_check(s)) { return; } handle_simd_intfp_conv(s, rd, rn, 1, is_signed, 0, size); return; } case 0x3d: /* FRECPE */ case 0x3f: /* FRECPX */ case 0x7d: /* FRSQRTE */ if (!fp_access_check(s)) { return; } handle_2misc_reciprocal(s, opcode, true, u, true, size, rn, rd); return; case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ is_fcvt = true; rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); break; case 0x1c: /* FCVTAS */ case 0x5c: /* FCVTAU */ /* TIEAWAY doesn't fit in the usual rounding mode encoding */ is_fcvt = true; rmode = FPROUNDING_TIEAWAY; break; case 0x56: /* FCVTXN, FCVTXN2 */ if (size == 2) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_narrow(s, true, opcode, u, false, size - 1, rn, rd); return; default: unallocated_encoding(s); return; } break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (is_fcvt) { tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); tcg_fpstatus = get_fpstatus_ptr(false); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); } else { tcg_rmode = NULL; tcg_fpstatus = NULL; } if (size == 3) { TCGv_i64 tcg_rn = read_fp_dreg(s, rn); TCGv_i64 tcg_rd = tcg_temp_new_i64(); handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rmode, tcg_fpstatus); write_fp_dreg(s, rd, tcg_rd); tcg_temp_free_i64(tcg_rd); tcg_temp_free_i64(tcg_rn); } else { TCGv_i32 tcg_rn = tcg_temp_new_i32(); TCGv_i32 tcg_rd = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_rn, rn, 0, size); switch (opcode) { case 0x7: /* SQABS, SQNEG */ { NeonGenOneOpEnvFn *genfn; static NeonGenOneOpEnvFn * const fns[3][2] = { { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, { gen_helper_neon_qabs_s32, gen_helper_neon_qneg_s32 }, }; genfn = fns[size][u]; genfn(tcg_rd, cpu_env, tcg_rn); break; } case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x1c: /* FCVTAS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_tosls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x5c: /* FCVTAU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_touls(tcg_rd, tcg_rn, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } default: g_assert_not_reached(); } write_fp_sreg(s, rd, tcg_rd); tcg_temp_free_i32(tcg_rd); tcg_temp_free_i32(tcg_rn); } if (is_fcvt) { gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); tcg_temp_free_i32(tcg_rmode); tcg_temp_free_ptr(tcg_fpstatus); } } static void gen_ssra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_sar8i_i64(a, a, shift); tcg_gen_vec_add8_i64(d, d, a); } static void gen_ssra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_sar16i_i64(a, a, shift); tcg_gen_vec_add16_i64(d, d, a); } static void gen_ssra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_sari_i32(a, a, shift); tcg_gen_add_i32(d, d, a); } static void gen_ssra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_sari_i64(a, a, shift); tcg_gen_add_i64(d, d, a); } static void gen_ssra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { tcg_gen_sari_vec(vece, a, a, sh); tcg_gen_add_vec(vece, d, d, a); } static void gen_usra8_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_shr8i_i64(a, a, shift); tcg_gen_vec_add8_i64(d, d, a); } static void gen_usra16_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_vec_shr16i_i64(a, a, shift); tcg_gen_vec_add16_i64(d, d, a); } static void gen_usra32_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_shri_i32(a, a, shift); tcg_gen_add_i32(d, d, a); } static void gen_usra64_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_shri_i64(a, a, shift); tcg_gen_add_i64(d, d, a); } static void gen_usra_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { tcg_gen_shri_vec(vece, a, a, sh); tcg_gen_add_vec(vece, d, d, a); } static void gen_shr8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_8, 0xff >> shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); tcg_temp_free_i64(t); } static void gen_shr16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_16, 0xffff >> shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shri_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); tcg_temp_free_i64(t); } static void gen_shr32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_shri_i32(a, a, shift); tcg_gen_deposit_i32(d, d, a, 0, 32 - shift); } static void gen_shr64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_shri_i64(a, a, shift); tcg_gen_deposit_i64(d, d, a, 0, 64 - shift); } static void gen_shr_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { uint64_t mask = (2ull << ((8 << vece) - 1)) - 1; TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec m = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, m, mask ^ (mask >> sh)); tcg_gen_shri_vec(vece, t, a, sh); tcg_gen_and_vec(vece, d, d, m); tcg_gen_or_vec(vece, d, d, t); tcg_temp_free_vec(t); tcg_temp_free_vec(m); } /* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */ static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u, int immh, int immb, int opcode, int rn, int rd) { static const GVecGen2i ssra_op[4] = { { .fni8 = gen_ssra8_i64, .fniv = gen_ssra_vec, .load_dest = true, .opc = INDEX_op_sari_vec, .vece = MO_8 }, { .fni8 = gen_ssra16_i64, .fniv = gen_ssra_vec, .load_dest = true, .opc = INDEX_op_sari_vec, .vece = MO_16 }, { .fni4 = gen_ssra32_i32, .fniv = gen_ssra_vec, .load_dest = true, .opc = INDEX_op_sari_vec, .vece = MO_32 }, { .fni8 = gen_ssra64_i64, .fniv = gen_ssra_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opc = INDEX_op_sari_vec, .vece = MO_64 }, }; static const GVecGen2i usra_op[4] = { { .fni8 = gen_usra8_i64, .fniv = gen_usra_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_8, }, { .fni8 = gen_usra16_i64, .fniv = gen_usra_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_16, }, { .fni4 = gen_usra32_i32, .fniv = gen_usra_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_32, }, { .fni8 = gen_usra64_i64, .fniv = gen_usra_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_64, }, }; static const GVecGen2i sri_op[4] = { { .fni8 = gen_shr8_ins_i64, .fniv = gen_shr_ins_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_8 }, { .fni8 = gen_shr16_ins_i64, .fniv = gen_shr_ins_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_16 }, { .fni4 = gen_shr32_ins_i32, .fniv = gen_shr_ins_vec, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_32 }, { .fni8 = gen_shr64_ins_i64, .fniv = gen_shr_ins_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .opc = INDEX_op_shri_vec, .vece = MO_64 }, }; int size = 32 - clz32(immh) - 1; int immhb = immh << 3 | immb; int shift = 2 * (8 << size) - immhb; bool accumulate = false; int dsize = is_q ? 128 : 64; int esize = 8 << size; int elements = dsize/esize; TCGMemOp memop = size | (is_u ? 0 : MO_SIGN); TCGv_i64 tcg_rn = new_tmp_a64(s); TCGv_i64 tcg_rd = new_tmp_a64(s); TCGv_i64 tcg_round; uint64_t round_const; int i; if (extract32(immh, 3, 1) && !is_q) { unallocated_encoding(s); return; } tcg_debug_assert(size <= 3); if (!fp_access_check(s)) { return; } switch (opcode) { case 0x02: /* SSRA / USRA (accumulate) */ if (is_u) { /* Shift count same as element size produces zero to add. */ if (shift == 8 << size) { goto done; } gen_gvec_op2i(s, is_q, rd, rn, shift, &usra_op[size]); } else { /* Shift count same as element size produces all sign to add. */ if (shift == 8 << size) { shift -= 1; } gen_gvec_op2i(s, is_q, rd, rn, shift, &ssra_op[size]); } return; case 0x08: /* SRI */ /* Shift count same as element size is valid but does nothing. */ if (shift == 8 << size) { goto done; } gen_gvec_op2i(s, is_q, rd, rn, shift, &sri_op[size]); return; case 0x00: /* SSHR / USHR */ if (is_u) { if (shift == 8 << size) { /* Shift count the same size as element size produces zero. */ tcg_gen_gvec_dup8i(vec_full_reg_offset(s, rd), is_q ? 16 : 8, vec_full_reg_size(s), 0); } else { gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shri, size); } } else { /* Shift count the same size as element size produces all sign. */ if (shift == 8 << size) { shift -= 1; } gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_sari, size); } return; case 0x04: /* SRSHR / URSHR (rounding) */ break; case 0x06: /* SRSRA / URSRA (accum + rounding) */ accumulate = true; break; default: g_assert_not_reached(); } round_const = 1ULL << (shift - 1); tcg_round = tcg_const_i64(round_const); for (i = 0; i < elements; i++) { read_vec_element(s, tcg_rn, rn, i, memop); if (accumulate) { read_vec_element(s, tcg_rd, rd, i, memop); } handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, accumulate, is_u, size, shift); write_vec_element(s, tcg_rd, rd, i, size); } tcg_temp_free_i64(tcg_round); done: clear_vec_high(s, is_q, rd); } static void gen_shl8_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_8, 0xff << shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shli_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); tcg_temp_free_i64(t); } static void gen_shl16_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { uint64_t mask = dup_const(MO_16, 0xffff << shift); TCGv_i64 t = tcg_temp_new_i64(); tcg_gen_shli_i64(t, a, shift); tcg_gen_andi_i64(t, t, mask); tcg_gen_andi_i64(d, d, ~mask); tcg_gen_or_i64(d, d, t); tcg_temp_free_i64(t); } static void gen_shl32_ins_i32(TCGv_i32 d, TCGv_i32 a, int32_t shift) { tcg_gen_deposit_i32(d, d, a, shift, 32 - shift); } static void gen_shl64_ins_i64(TCGv_i64 d, TCGv_i64 a, int64_t shift) { tcg_gen_deposit_i64(d, d, a, shift, 64 - shift); } static void gen_shl_ins_vec(unsigned vece, TCGv_vec d, TCGv_vec a, int64_t sh) { uint64_t mask = (1ull << sh) - 1; TCGv_vec t = tcg_temp_new_vec_matching(d); TCGv_vec m = tcg_temp_new_vec_matching(d); tcg_gen_dupi_vec(vece, m, mask); tcg_gen_shli_vec(vece, t, a, sh); tcg_gen_and_vec(vece, d, d, m); tcg_gen_or_vec(vece, d, d, t); tcg_temp_free_vec(t); tcg_temp_free_vec(m); } /* SHL/SLI - Vector shift left */ static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert, int immh, int immb, int opcode, int rn, int rd) { static const GVecGen2i shi_op[4] = { { .fni8 = gen_shl8_ins_i64, .fniv = gen_shl_ins_vec, .opc = INDEX_op_shli_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_8 }, { .fni8 = gen_shl16_ins_i64, .fniv = gen_shl_ins_vec, .opc = INDEX_op_shli_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_shl32_ins_i32, .fniv = gen_shl_ins_vec, .opc = INDEX_op_shli_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_shl64_ins_i64, .fniv = gen_shl_ins_vec, .opc = INDEX_op_shli_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_64 }, }; int size = 32 - clz32(immh) - 1; int immhb = immh << 3 | immb; int shift = immhb - (8 << size); if (extract32(immh, 3, 1) && !is_q) { unallocated_encoding(s); return; } if (size > 3 && !is_q) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (insert) { gen_gvec_op2i(s, is_q, rd, rn, shift, &shi_op[size]); } else { gen_gvec_fn2i(s, is_q, rd, rn, shift, tcg_gen_gvec_shli, size); } } /* USHLL/SHLL - Vector shift left with widening */ static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u, int immh, int immb, int opcode, int rn, int rd) { int size = 32 - clz32(immh) - 1; int immhb = immh << 3 | immb; int shift = immhb - (8 << size); int dsize = 64; int esize = 8 << size; int elements = dsize/esize; TCGv_i64 tcg_rn = new_tmp_a64(s); TCGv_i64 tcg_rd = new_tmp_a64(s); int i; if (size >= 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } /* For the LL variants the store is larger than the load, * so if rd == rn we would overwrite parts of our input. * So load everything right now and use shifts in the main loop. */ read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64); for (i = 0; i < elements; i++) { tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize); ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0); tcg_gen_shli_i64(tcg_rd, tcg_rd, shift); write_vec_element(s, tcg_rd, rd, i, size + 1); } } /* SHRN/RSHRN - Shift right with narrowing (and potential rounding) */ static void handle_vec_simd_shrn(DisasContext *s, bool is_q, int immh, int immb, int opcode, int rn, int rd) { int immhb = immh << 3 | immb; int size = 32 - clz32(immh) - 1; int dsize = 64; int esize = 8 << size; int elements = dsize/esize; int shift = (2 * esize) - immhb; bool round = extract32(opcode, 0, 1); TCGv_i64 tcg_rn, tcg_rd, tcg_final; TCGv_i64 tcg_round; int i; if (extract32(immh, 3, 1)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rn = tcg_temp_new_i64(); tcg_rd = tcg_temp_new_i64(); tcg_final = tcg_temp_new_i64(); read_vec_element(s, tcg_final, rd, is_q ? 1 : 0, MO_64); if (round) { uint64_t round_const = 1ULL << (shift - 1); tcg_round = tcg_const_i64(round_const); } else { tcg_round = NULL; } for (i = 0; i < elements; i++) { read_vec_element(s, tcg_rn, rn, i, size+1); handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round, false, true, size+1, shift); tcg_gen_deposit_i64(tcg_final, tcg_final, tcg_rd, esize * i, esize); } if (!is_q) { write_vec_element(s, tcg_final, rd, 0, MO_64); } else { write_vec_element(s, tcg_final, rd, 1, MO_64); } if (round) { tcg_temp_free_i64(tcg_round); } tcg_temp_free_i64(tcg_rn); tcg_temp_free_i64(tcg_rd); tcg_temp_free_i64(tcg_final); clear_vec_high(s, is_q, rd); } /* AdvSIMD shift by immediate * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0 * +---+---+---+-------------+------+------+--------+---+------+------+ * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd | * +---+---+---+-------------+------+------+--------+---+------+------+ */ static void disas_simd_shift_imm(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 5); int immb = extract32(insn, 16, 3); int immh = extract32(insn, 19, 4); bool is_u = extract32(insn, 29, 1); bool is_q = extract32(insn, 30, 1); switch (opcode) { case 0x08: /* SRI */ if (!is_u) { unallocated_encoding(s); return; } /* fall through */ case 0x00: /* SSHR / USHR */ case 0x02: /* SSRA / USRA (accumulate) */ case 0x04: /* SRSHR / URSHR (rounding) */ case 0x06: /* SRSRA / URSRA (accum + rounding) */ handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd); break; case 0x0a: /* SHL / SLI */ handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd); break; case 0x10: /* SHRN */ case 0x11: /* RSHRN / SQRSHRUN */ if (is_u) { handle_vec_simd_sqshrn(s, false, is_q, false, true, immh, immb, opcode, rn, rd); } else { handle_vec_simd_shrn(s, is_q, immh, immb, opcode, rn, rd); } break; case 0x12: /* SQSHRN / UQSHRN */ case 0x13: /* SQRSHRN / UQRSHRN */ handle_vec_simd_sqshrn(s, false, is_q, is_u, is_u, immh, immb, opcode, rn, rd); break; case 0x14: /* SSHLL / USHLL */ handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd); break; case 0x1c: /* SCVTF / UCVTF */ handle_simd_shift_intfp_conv(s, false, is_q, is_u, immh, immb, opcode, rn, rd); break; case 0xc: /* SQSHLU */ if (!is_u) { unallocated_encoding(s); return; } handle_simd_qshl(s, false, is_q, false, true, immh, immb, rn, rd); break; case 0xe: /* SQSHL, UQSHL */ handle_simd_qshl(s, false, is_q, is_u, is_u, immh, immb, rn, rd); break; case 0x1f: /* FCVTZS/ FCVTZU */ handle_simd_shift_fpint_conv(s, false, is_q, is_u, immh, immb, rn, rd); return; default: unallocated_encoding(s); return; } } /* Generate code to do a "long" addition or subtraction, ie one done in * TCGv_i64 on vector lanes twice the width specified by size. */ static void gen_neon_addl(int size, bool is_sub, TCGv_i64 tcg_res, TCGv_i64 tcg_op1, TCGv_i64 tcg_op2) { static NeonGenTwo64OpFn * const fns[3][2] = { { gen_helper_neon_addl_u16, gen_helper_neon_subl_u16 }, { gen_helper_neon_addl_u32, gen_helper_neon_subl_u32 }, { tcg_gen_add_i64, tcg_gen_sub_i64 }, }; NeonGenTwo64OpFn *genfn; assert(size < 3); genfn = fns[size][is_sub]; genfn(tcg_res, tcg_op1, tcg_op2); } static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size, int opcode, int rd, int rn, int rm) { /* 3-reg-different widening insns: 64 x 64 -> 128 */ TCGv_i64 tcg_res[2]; int pass, accop; tcg_res[0] = tcg_temp_new_i64(); tcg_res[1] = tcg_temp_new_i64(); /* Does this op do an adding accumulate, a subtracting accumulate, * or no accumulate at all? */ switch (opcode) { case 5: case 8: case 9: accop = 1; break; case 10: case 11: accop = -1; break; default: accop = 0; break; } if (accop != 0) { read_vec_element(s, tcg_res[0], rd, 0, MO_64); read_vec_element(s, tcg_res[1], rd, 1, MO_64); } /* size == 2 means two 32x32->64 operations; this is worth special * casing because we can generally handle it inline. */ if (size == 2) { for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_passres; TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN); int elt = pass + is_q * 2; read_vec_element(s, tcg_op1, rn, elt, memop); read_vec_element(s, tcg_op2, rm, elt, memop); if (accop == 0) { tcg_passres = tcg_res[pass]; } else { tcg_passres = tcg_temp_new_i64(); } switch (opcode) { case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ tcg_gen_add_i64(tcg_passres, tcg_op1, tcg_op2); break; case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ tcg_gen_sub_i64(tcg_passres, tcg_op1, tcg_op2); break; case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ { TCGv_i64 tcg_tmp1 = tcg_temp_new_i64(); TCGv_i64 tcg_tmp2 = tcg_temp_new_i64(); tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2); tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1); tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE, tcg_passres, tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2); tcg_temp_free_i64(tcg_tmp1); tcg_temp_free_i64(tcg_tmp2); break; } case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); break; case 9: /* SQDMLAL, SQDMLAL2 */ case 11: /* SQDMLSL, SQDMLSL2 */ case 13: /* SQDMULL, SQDMULL2 */ tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2); gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, tcg_passres, tcg_passres); break; default: g_assert_not_reached(); } if (opcode == 9 || opcode == 11) { /* saturating accumulate ops */ if (accop < 0) { tcg_gen_neg_i64(tcg_passres, tcg_passres); } gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, tcg_res[pass], tcg_passres); } else if (accop > 0) { tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); } else if (accop < 0) { tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); } if (accop != 0) { tcg_temp_free_i64(tcg_passres); } tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } } else { /* size 0 or 1, generally helper functions */ for (pass = 0; pass < 2; pass++) { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i64 tcg_passres; int elt = pass + is_q * 2; read_vec_element_i32(s, tcg_op1, rn, elt, MO_32); read_vec_element_i32(s, tcg_op2, rm, elt, MO_32); if (accop == 0) { tcg_passres = tcg_res[pass]; } else { tcg_passres = tcg_temp_new_i64(); } switch (opcode) { case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ { TCGv_i64 tcg_op2_64 = tcg_temp_new_i64(); static NeonGenWidenFn * const widenfns[2][2] = { { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, }; NeonGenWidenFn *widenfn = widenfns[size][is_u]; widenfn(tcg_op2_64, tcg_op2); widenfn(tcg_passres, tcg_op1); gen_neon_addl(size, (opcode == 2), tcg_passres, tcg_passres, tcg_op2_64); tcg_temp_free_i64(tcg_op2_64); break; } case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ if (size == 0) { if (is_u) { gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2); } else { gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2); } } else { if (is_u) { gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2); } else { gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2); } } break; case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */ if (size == 0) { if (is_u) { gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2); } else { gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2); } } else { if (is_u) { gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2); } else { gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); } } break; case 9: /* SQDMLAL, SQDMLAL2 */ case 11: /* SQDMLSL, SQDMLSL2 */ case 13: /* SQDMULL, SQDMULL2 */ assert(size == 1); gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2); gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, tcg_passres, tcg_passres); break; case 14: /* PMULL */ assert(size == 0); gen_helper_neon_mull_p8(tcg_passres, tcg_op1, tcg_op2); break; default: g_assert_not_reached(); } tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); if (accop != 0) { if (opcode == 9 || opcode == 11) { /* saturating accumulate ops */ if (accop < 0) { gen_helper_neon_negl_u32(tcg_passres, tcg_passres); } gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, tcg_res[pass], tcg_passres); } else { gen_neon_addl(size, (accop < 0), tcg_res[pass], tcg_res[pass], tcg_passres); } tcg_temp_free_i64(tcg_passres); } } } write_vec_element(s, tcg_res[0], rd, 0, MO_64); write_vec_element(s, tcg_res[1], rd, 1, MO_64); tcg_temp_free_i64(tcg_res[0]); tcg_temp_free_i64(tcg_res[1]); } static void handle_3rd_wide(DisasContext *s, int is_q, int is_u, int size, int opcode, int rd, int rn, int rm) { TCGv_i64 tcg_res[2]; int part = is_q ? 2 : 0; int pass; for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i64 tcg_op2_wide = tcg_temp_new_i64(); static NeonGenWidenFn * const widenfns[3][2] = { { gen_helper_neon_widen_s8, gen_helper_neon_widen_u8 }, { gen_helper_neon_widen_s16, gen_helper_neon_widen_u16 }, { tcg_gen_ext_i32_i64, tcg_gen_extu_i32_i64 }, }; NeonGenWidenFn *widenfn = widenfns[size][is_u]; read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element_i32(s, tcg_op2, rm, part + pass, MO_32); widenfn(tcg_op2_wide, tcg_op2); tcg_temp_free_i32(tcg_op2); tcg_res[pass] = tcg_temp_new_i64(); gen_neon_addl(size, (opcode == 3), tcg_res[pass], tcg_op1, tcg_op2_wide); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2_wide); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } static void do_narrow_round_high_u32(TCGv_i32 res, TCGv_i64 in) { tcg_gen_addi_i64(in, in, 1U << 31); tcg_gen_extrh_i64_i32(res, in); } static void handle_3rd_narrowing(DisasContext *s, int is_q, int is_u, int size, int opcode, int rd, int rn, int rm) { TCGv_i32 tcg_res[2]; int part = is_q ? 2 : 0; int pass; for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_wideres = tcg_temp_new_i64(); static NeonGenNarrowFn * const narrowfns[3][2] = { { gen_helper_neon_narrow_high_u8, gen_helper_neon_narrow_round_high_u8 }, { gen_helper_neon_narrow_high_u16, gen_helper_neon_narrow_round_high_u16 }, { tcg_gen_extrh_i64_i32, do_narrow_round_high_u32 }, }; NeonGenNarrowFn *gennarrow = narrowfns[size][is_u]; read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); gen_neon_addl(size, (opcode == 6), tcg_wideres, tcg_op1, tcg_op2); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_res[pass] = tcg_temp_new_i32(); gennarrow(tcg_res[pass], tcg_wideres); tcg_temp_free_i64(tcg_wideres); } for (pass = 0; pass < 2; pass++) { write_vec_element_i32(s, tcg_res[pass], rd, pass + part, MO_32); tcg_temp_free_i32(tcg_res[pass]); } clear_vec_high(s, is_q, rd); } static void handle_pmull_64(DisasContext *s, int is_q, int rd, int rn, int rm) { /* PMULL of 64 x 64 -> 128 is an odd special case because it * is the only three-reg-diff instruction which produces a * 128-bit wide result from a single operation. However since * it's possible to calculate the two halves more or less * separately we just use two helper calls. */ TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, is_q, MO_64); read_vec_element(s, tcg_op2, rm, is_q, MO_64); gen_helper_neon_pmull_64_lo(tcg_res, tcg_op1, tcg_op2); write_vec_element(s, tcg_res, rd, 0, MO_64); gen_helper_neon_pmull_64_hi(tcg_res, tcg_op1, tcg_op2); write_vec_element(s, tcg_res, rd, 1, MO_64); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res); } /* AdvSIMD three different * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0 * +---+---+---+-----------+------+---+------+--------+-----+------+------+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd | * +---+---+---+-----------+------+---+------+--------+-----+------+------+ */ static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn) { /* Instructions in this group fall into three basic classes * (in each case with the operation working on each element in * the input vectors): * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra * 128 bit input) * (2) wide 64 x 128 -> 128 * (3) narrowing 128 x 128 -> 64 * Here we do initial decode, catch unallocated cases and * dispatch to separate functions for each class. */ int is_q = extract32(insn, 30, 1); int is_u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 4); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); switch (opcode) { case 1: /* SADDW, SADDW2, UADDW, UADDW2 */ case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */ /* 64 x 128 -> 128 */ if (size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_3rd_wide(s, is_q, is_u, size, opcode, rd, rn, rm); break; case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */ case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */ /* 128 x 128 -> 64 */ if (size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_3rd_narrowing(s, is_q, is_u, size, opcode, rd, rn, rm); break; case 14: /* PMULL, PMULL2 */ if (is_u || size == 1 || size == 2) { unallocated_encoding(s); return; } if (size == 3) { if (!arm_dc_feature(s, ARM_FEATURE_V8_PMULL)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_pmull_64(s, is_q, rd, rn, rm); return; } goto is_widening; case 9: /* SQDMLAL, SQDMLAL2 */ case 11: /* SQDMLSL, SQDMLSL2 */ case 13: /* SQDMULL, SQDMULL2 */ if (is_u || size == 0) { unallocated_encoding(s); return; } /* fall through */ case 0: /* SADDL, SADDL2, UADDL, UADDL2 */ case 2: /* SSUBL, SSUBL2, USUBL, USUBL2 */ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ case 12: /* SMULL, SMULL2, UMULL, UMULL2 */ /* 64 x 64 -> 128 */ if (size == 3) { unallocated_encoding(s); return; } is_widening: if (!fp_access_check(s)) { return; } handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm); break; default: /* opcode 15 not allocated */ unallocated_encoding(s); break; } } static void gen_bsl_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { tcg_gen_xor_i64(rn, rn, rm); tcg_gen_and_i64(rn, rn, rd); tcg_gen_xor_i64(rd, rm, rn); } static void gen_bit_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { tcg_gen_xor_i64(rn, rn, rd); tcg_gen_and_i64(rn, rn, rm); tcg_gen_xor_i64(rd, rd, rn); } static void gen_bif_i64(TCGv_i64 rd, TCGv_i64 rn, TCGv_i64 rm) { tcg_gen_xor_i64(rn, rn, rd); tcg_gen_andc_i64(rn, rn, rm); tcg_gen_xor_i64(rd, rd, rn); } static void gen_bsl_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) { tcg_gen_xor_vec(vece, rn, rn, rm); tcg_gen_and_vec(vece, rn, rn, rd); tcg_gen_xor_vec(vece, rd, rm, rn); } static void gen_bit_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) { tcg_gen_xor_vec(vece, rn, rn, rd); tcg_gen_and_vec(vece, rn, rn, rm); tcg_gen_xor_vec(vece, rd, rd, rn); } static void gen_bif_vec(unsigned vece, TCGv_vec rd, TCGv_vec rn, TCGv_vec rm) { tcg_gen_xor_vec(vece, rn, rn, rd); tcg_gen_andc_vec(vece, rn, rn, rm); tcg_gen_xor_vec(vece, rd, rd, rn); } /* Logic op (opcode == 3) subgroup of C3.6.16. */ static void disas_simd_3same_logic(DisasContext *s, uint32_t insn) { static const GVecGen3 bsl_op = { .fni8 = gen_bsl_i64, .fniv = gen_bsl_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true }; static const GVecGen3 bit_op = { .fni8 = gen_bit_i64, .fniv = gen_bit_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true }; static const GVecGen3 bif_op = { .fni8 = gen_bif_i64, .fniv = gen_bif_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true }; int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); bool is_u = extract32(insn, 29, 1); bool is_q = extract32(insn, 30, 1); if (!fp_access_check(s)) { return; } switch (size + 4 * is_u) { case 0: /* AND */ gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_and, 0); return; case 1: /* BIC */ gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_andc, 0); return; case 2: /* ORR */ if (rn == rm) { /* MOV */ gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_mov, 0); } else { gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_or, 0); } return; case 3: /* ORN */ gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_orc, 0); return; case 4: /* EOR */ gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_xor, 0); return; case 5: /* BSL bitwise select */ gen_gvec_op3(s, is_q, rd, rn, rm, &bsl_op); return; case 6: /* BIT, bitwise insert if true */ gen_gvec_op3(s, is_q, rd, rn, rm, &bit_op); return; case 7: /* BIF, bitwise insert if false */ gen_gvec_op3(s, is_q, rd, rn, rm, &bif_op); return; default: g_assert_not_reached(); } } /* Pairwise op subgroup of C3.6.16. * * This is called directly or via the handle_3same_float for float pairwise * operations where the opcode and size are calculated differently. */ static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode, int size, int rn, int rm, int rd) { TCGv_ptr fpst; int pass; /* Floating point operations need fpst */ if (opcode >= 0x58) { fpst = get_fpstatus_ptr(false); } else { fpst = NULL; } if (!fp_access_check(s)) { return; } /* These operations work on the concatenated rm:rn, with each pair of * adjacent elements being operated on to produce an element in the result. */ if (size == 3) { TCGv_i64 tcg_res[2]; for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); int passreg = (pass == 0) ? rn : rm; read_vec_element(s, tcg_op1, passreg, 0, MO_64); read_vec_element(s, tcg_op2, passreg, 1, MO_64); tcg_res[pass] = tcg_temp_new_i64(); switch (opcode) { case 0x17: /* ADDP */ tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); break; case 0x58: /* FMAXNMP */ gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x5a: /* FADDP */ gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x5e: /* FMAXP */ gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x78: /* FMINNMP */ gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x7e: /* FMINP */ gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } else { int maxpass = is_q ? 4 : 2; TCGv_i32 tcg_res[4]; for (pass = 0; pass < maxpass; pass++) { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); NeonGenTwoOpFn *genfn = NULL; int passreg = pass < (maxpass / 2) ? rn : rm; int passelt = (is_q && (pass & 1)) ? 2 : 0; read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32); read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32); tcg_res[pass] = tcg_temp_new_i32(); switch (opcode) { case 0x17: /* ADDP */ { static NeonGenTwoOpFn * const fns[3] = { gen_helper_neon_padd_u8, gen_helper_neon_padd_u16, tcg_gen_add_i32, }; genfn = fns[size]; break; } case 0x14: /* SMAXP, UMAXP */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 }, { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 }, { tcg_gen_smax_i32, tcg_gen_umax_i32 }, }; genfn = fns[size][u]; break; } case 0x15: /* SMINP, UMINP */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 }, { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 }, { tcg_gen_smin_i32, tcg_gen_umin_i32 }, }; genfn = fns[size][u]; break; } /* The FP operations are all on single floats (32 bit) */ case 0x58: /* FMAXNMP */ gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x5a: /* FADDP */ gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x5e: /* FMAXP */ gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x78: /* FMINNMP */ gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x7e: /* FMINP */ gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } /* FP ops called directly, otherwise call now */ if (genfn) { genfn(tcg_res[pass], tcg_op1, tcg_op2); } tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } for (pass = 0; pass < maxpass; pass++) { write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); tcg_temp_free_i32(tcg_res[pass]); } clear_vec_high(s, is_q, rd); } if (fpst) { tcg_temp_free_ptr(fpst); } } /* Floating point op subgroup of C3.6.16. */ static void disas_simd_3same_float(DisasContext *s, uint32_t insn) { /* For floating point ops, the U, size[1] and opcode bits * together indicate the operation. size[0] indicates single * or double. */ int fpopcode = extract32(insn, 11, 5) | (extract32(insn, 23, 1) << 5) | (extract32(insn, 29, 1) << 6); int is_q = extract32(insn, 30, 1); int size = extract32(insn, 22, 1); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int datasize = is_q ? 128 : 64; int esize = 32 << size; int elements = datasize / esize; if (size == 1 && !is_q) { unallocated_encoding(s); return; } switch (fpopcode) { case 0x58: /* FMAXNMP */ case 0x5a: /* FADDP */ case 0x5e: /* FMAXP */ case 0x78: /* FMINNMP */ case 0x7e: /* FMINP */ if (size && !is_q) { unallocated_encoding(s); return; } handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32, rn, rm, rd); return; case 0x1b: /* FMULX */ case 0x1f: /* FRECPS */ case 0x3f: /* FRSQRTS */ case 0x5d: /* FACGE */ case 0x7d: /* FACGT */ case 0x19: /* FMLA */ case 0x39: /* FMLS */ case 0x18: /* FMAXNM */ case 0x1a: /* FADD */ case 0x1c: /* FCMEQ */ case 0x1e: /* FMAX */ case 0x38: /* FMINNM */ case 0x3a: /* FSUB */ case 0x3e: /* FMIN */ case 0x5b: /* FMUL */ case 0x5c: /* FCMGE */ case 0x5f: /* FDIV */ case 0x7a: /* FABD */ case 0x7c: /* FCMGT */ if (!fp_access_check(s)) { return; } handle_3same_float(s, size, elements, fpopcode, rd, rn, rm); return; default: unallocated_encoding(s); return; } } static void gen_mla8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u8(a, a, b); gen_helper_neon_add_u8(d, d, a); } static void gen_mla16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u16(a, a, b); gen_helper_neon_add_u16(d, d, a); } static void gen_mla32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_mul_i32(a, a, b); tcg_gen_add_i32(d, d, a); } static void gen_mla64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_mul_i64(a, a, b); tcg_gen_add_i64(d, d, a); } static void gen_mla_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_mul_vec(vece, a, a, b); tcg_gen_add_vec(vece, d, d, a); } static void gen_mls8_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u8(a, a, b); gen_helper_neon_sub_u8(d, d, a); } static void gen_mls16_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { gen_helper_neon_mul_u16(a, a, b); gen_helper_neon_sub_u16(d, d, a); } static void gen_mls32_i32(TCGv_i32 d, TCGv_i32 a, TCGv_i32 b) { tcg_gen_mul_i32(a, a, b); tcg_gen_sub_i32(d, d, a); } static void gen_mls64_i64(TCGv_i64 d, TCGv_i64 a, TCGv_i64 b) { tcg_gen_mul_i64(a, a, b); tcg_gen_sub_i64(d, d, a); } static void gen_mls_vec(unsigned vece, TCGv_vec d, TCGv_vec a, TCGv_vec b) { tcg_gen_mul_vec(vece, a, a, b); tcg_gen_sub_vec(vece, d, d, a); } /* Integer op subgroup of C3.6.16. */ static void disas_simd_3same_int(DisasContext *s, uint32_t insn) { static const GVecGen3 cmtst_op[4] = { { .fni4 = gen_helper_neon_tst_u8, .fniv = gen_cmtst_vec, .vece = MO_8 }, { .fni4 = gen_helper_neon_tst_u16, .fniv = gen_cmtst_vec, .vece = MO_16 }, { .fni4 = gen_cmtst_i32, .fniv = gen_cmtst_vec, .vece = MO_32 }, { .fni8 = gen_cmtst_i64, .fniv = gen_cmtst_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .vece = MO_64 }, }; static const GVecGen3 mla_op[4] = { { .fni4 = gen_mla8_i32, .fniv = gen_mla_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_8 }, { .fni4 = gen_mla16_i32, .fniv = gen_mla_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_mla32_i32, .fniv = gen_mla_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_mla64_i64, .fniv = gen_mla_vec, .opc = INDEX_op_mul_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_64 }, }; static const GVecGen3 mls_op[4] = { { .fni4 = gen_mls8_i32, .fniv = gen_mls_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_8 }, { .fni4 = gen_mls16_i32, .fniv = gen_mls_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_16 }, { .fni4 = gen_mls32_i32, .fniv = gen_mls_vec, .opc = INDEX_op_mul_vec, .load_dest = true, .vece = MO_32 }, { .fni8 = gen_mls64_i64, .fniv = gen_mls_vec, .opc = INDEX_op_mul_vec, .prefer_i64 = TCG_TARGET_REG_BITS == 64, .load_dest = true, .vece = MO_64 }, }; int is_q = extract32(insn, 30, 1); int u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int opcode = extract32(insn, 11, 5); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int pass; TCGCond cond; switch (opcode) { case 0x13: /* MUL, PMUL */ if (u && size != 0) { unallocated_encoding(s); return; } /* fall through */ case 0x0: /* SHADD, UHADD */ case 0x2: /* SRHADD, URHADD */ case 0x4: /* SHSUB, UHSUB */ case 0xc: /* SMAX, UMAX */ case 0xd: /* SMIN, UMIN */ case 0xe: /* SABD, UABD */ case 0xf: /* SABA, UABA */ case 0x12: /* MLA, MLS */ if (size == 3) { unallocated_encoding(s); return; } break; case 0x16: /* SQDMULH, SQRDMULH */ if (size == 0 || size == 3) { unallocated_encoding(s); return; } break; default: if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; } if (!fp_access_check(s)) { return; } switch (opcode) { case 0x10: /* ADD, SUB */ if (u) { gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_sub, size); } else { gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_add, size); } return; case 0x13: /* MUL, PMUL */ if (!u) { /* MUL */ gen_gvec_fn3(s, is_q, rd, rn, rm, tcg_gen_gvec_mul, size); return; } break; case 0x12: /* MLA, MLS */ if (u) { gen_gvec_op3(s, is_q, rd, rn, rm, &mls_op[size]); } else { gen_gvec_op3(s, is_q, rd, rn, rm, &mla_op[size]); } return; case 0x11: if (!u) { /* CMTST */ gen_gvec_op3(s, is_q, rd, rn, rm, &cmtst_op[size]); return; } /* else CMEQ */ cond = TCG_COND_EQ; goto do_gvec_cmp; case 0x06: /* CMGT, CMHI */ cond = u ? TCG_COND_GTU : TCG_COND_GT; goto do_gvec_cmp; case 0x07: /* CMGE, CMHS */ cond = u ? TCG_COND_GEU : TCG_COND_GE; do_gvec_cmp: tcg_gen_gvec_cmp(cond, size, vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), is_q ? 16 : 8, vec_full_reg_size(s)); return; } if (size == 3) { assert(is_q); for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2); write_vec_element(s, tcg_res, rd, pass, MO_64); tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } } else { for (pass = 0; pass < (is_q ? 4 : 2); pass++) { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); NeonGenTwoOpFn *genfn = NULL; NeonGenTwoOpEnvFn *genenvfn = NULL; read_vec_element_i32(s, tcg_op1, rn, pass, MO_32); read_vec_element_i32(s, tcg_op2, rm, pass, MO_32); switch (opcode) { case 0x0: /* SHADD, UHADD */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 }, { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 }, { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 }, }; genfn = fns[size][u]; break; } case 0x1: /* SQADD, UQADD */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 }, { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 }, { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 }, }; genenvfn = fns[size][u]; break; } case 0x2: /* SRHADD, URHADD */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 }, { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 }, { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 }, }; genfn = fns[size][u]; break; } case 0x4: /* SHSUB, UHSUB */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 }, { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 }, { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 }, }; genfn = fns[size][u]; break; } case 0x5: /* SQSUB, UQSUB */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 }, { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 }, { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 }, }; genenvfn = fns[size][u]; break; } case 0x8: /* SSHL, USHL */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 }, { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 }, { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 }, }; genfn = fns[size][u]; break; } case 0x9: /* SQSHL, UQSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 }, { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 }, { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0xa: /* SRSHL, URSHL */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 }, { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 }, { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 }, }; genfn = fns[size][u]; break; } case 0xb: /* SQRSHL, UQRSHL */ { static NeonGenTwoOpEnvFn * const fns[3][2] = { { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 }, { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 }, { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 }, }; genenvfn = fns[size][u]; break; } case 0xc: /* SMAX, UMAX */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_max_s8, gen_helper_neon_max_u8 }, { gen_helper_neon_max_s16, gen_helper_neon_max_u16 }, { tcg_gen_smax_i32, tcg_gen_umax_i32 }, }; genfn = fns[size][u]; break; } case 0xd: /* SMIN, UMIN */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_min_s8, gen_helper_neon_min_u8 }, { gen_helper_neon_min_s16, gen_helper_neon_min_u16 }, { tcg_gen_smin_i32, tcg_gen_umin_i32 }, }; genfn = fns[size][u]; break; } case 0xe: /* SABD, UABD */ case 0xf: /* SABA, UABA */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 }, { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 }, { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 }, }; genfn = fns[size][u]; break; } case 0x13: /* MUL, PMUL */ assert(u); /* PMUL */ assert(size == 0); genfn = gen_helper_neon_mul_p8; break; case 0x16: /* SQDMULH, SQRDMULH */ { static NeonGenTwoOpEnvFn * const fns[2][2] = { { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 }, { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 }, }; assert(size == 1 || size == 2); genenvfn = fns[size - 1][u]; break; } default: g_assert_not_reached(); } if (genenvfn) { genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2); } else { genfn(tcg_res, tcg_op1, tcg_op2); } if (opcode == 0xf) { /* SABA, UABA: accumulating ops */ static NeonGenTwoOpFn * const fns[3] = { gen_helper_neon_add_u8, gen_helper_neon_add_u16, tcg_gen_add_i32, }; read_vec_element_i32(s, tcg_op1, rd, pass, MO_32); fns[size](tcg_res, tcg_op1, tcg_res); } write_vec_element_i32(s, tcg_res, rd, pass, MO_32); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } } clear_vec_high(s, is_q, rd); } /* AdvSIMD three same * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0 * +---+---+---+-----------+------+---+------+--------+---+------+------+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd | * +---+---+---+-----------+------+---+------+--------+---+------+------+ */ static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn) { int opcode = extract32(insn, 11, 5); switch (opcode) { case 0x3: /* logic ops */ disas_simd_3same_logic(s, insn); break; case 0x17: /* ADDP */ case 0x14: /* SMAXP, UMAXP */ case 0x15: /* SMINP, UMINP */ { /* Pairwise operations */ int is_q = extract32(insn, 30, 1); int u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); if (opcode == 0x17) { if (u || (size == 3 && !is_q)) { unallocated_encoding(s); return; } } else { if (size == 3) { unallocated_encoding(s); return; } } handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd); break; } case 0x18 ... 0x31: /* floating point ops, sz[1] and U are part of opcode */ disas_simd_3same_float(s, insn); break; default: disas_simd_3same_int(s, insn); break; } } /* * Advanced SIMD three same (ARMv8.2 FP16 variants) * * 31 30 29 28 24 23 22 21 20 16 15 14 13 11 10 9 5 4 0 * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ * | 0 | Q | U | 0 1 1 1 0 | a | 1 0 | Rm | 0 0 | opcode | 1 | Rn | Rd | * +---+---+---+-----------+---------+------+-----+--------+---+------+------+ * * This includes FMULX, FCMEQ (register), FRECPS, FRSQRTS, FCMGE * (register), FACGE, FABD, FCMGT (register) and FACGT. * */ static void disas_simd_three_reg_same_fp16(DisasContext *s, uint32_t insn) { int opcode, fpopcode; int is_q, u, a, rm, rn, rd; int datasize, elements; int pass; TCGv_ptr fpst; bool pairwise = false; if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } /* For these floating point ops, the U, a and opcode bits * together indicate the operation. */ opcode = extract32(insn, 11, 3); u = extract32(insn, 29, 1); a = extract32(insn, 23, 1); is_q = extract32(insn, 30, 1); rm = extract32(insn, 16, 5); rn = extract32(insn, 5, 5); rd = extract32(insn, 0, 5); fpopcode = opcode | (a << 3) | (u << 4); datasize = is_q ? 128 : 64; elements = datasize / 16; switch (fpopcode) { case 0x10: /* FMAXNMP */ case 0x12: /* FADDP */ case 0x16: /* FMAXP */ case 0x18: /* FMINNMP */ case 0x1e: /* FMINP */ pairwise = true; break; } fpst = get_fpstatus_ptr(true); if (pairwise) { int maxpass = is_q ? 8 : 4; TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res[8]; for (pass = 0; pass < maxpass; pass++) { int passreg = pass < (maxpass / 2) ? rn : rm; int passelt = (pass << 1) & (maxpass - 1); read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_16); read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_16); tcg_res[pass] = tcg_temp_new_i32(); switch (fpopcode) { case 0x10: /* FMAXNMP */ gen_helper_advsimd_maxnumh(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x12: /* FADDP */ gen_helper_advsimd_addh(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x16: /* FMAXP */ gen_helper_advsimd_maxh(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x18: /* FMINNMP */ gen_helper_advsimd_minnumh(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; case 0x1e: /* FMINP */ gen_helper_advsimd_minh(tcg_res[pass], tcg_op1, tcg_op2, fpst); break; default: g_assert_not_reached(); } } for (pass = 0; pass < maxpass; pass++) { write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_16); tcg_temp_free_i32(tcg_res[pass]); } tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } else { for (pass = 0; pass < elements; pass++) { TCGv_i32 tcg_op1 = tcg_temp_new_i32(); TCGv_i32 tcg_op2 = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op1, rn, pass, MO_16); read_vec_element_i32(s, tcg_op2, rm, pass, MO_16); switch (fpopcode) { case 0x0: /* FMAXNM */ gen_helper_advsimd_maxnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1: /* FMLA */ read_vec_element_i32(s, tcg_res, rd, pass, MO_16); gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, fpst); break; case 0x2: /* FADD */ gen_helper_advsimd_addh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x3: /* FMULX */ gen_helper_advsimd_mulxh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x4: /* FCMEQ */ gen_helper_advsimd_ceq_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x6: /* FMAX */ gen_helper_advsimd_maxh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x7: /* FRECPS */ gen_helper_recpsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x8: /* FMINNM */ gen_helper_advsimd_minnumh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x9: /* FMLS */ /* As usual for ARM, separate negation for fused multiply-add */ tcg_gen_xori_i32(tcg_op1, tcg_op1, 0x8000); read_vec_element_i32(s, tcg_res, rd, pass, MO_16); gen_helper_advsimd_muladdh(tcg_res, tcg_op1, tcg_op2, tcg_res, fpst); break; case 0xa: /* FSUB */ gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xe: /* FMIN */ gen_helper_advsimd_minh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0xf: /* FRSQRTS */ gen_helper_rsqrtsf_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x13: /* FMUL */ gen_helper_advsimd_mulh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x14: /* FCMGE */ gen_helper_advsimd_cge_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x15: /* FACGE */ gen_helper_advsimd_acge_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x17: /* FDIV */ gen_helper_advsimd_divh(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1a: /* FABD */ gen_helper_advsimd_subh(tcg_res, tcg_op1, tcg_op2, fpst); tcg_gen_andi_i32(tcg_res, tcg_res, 0x7fff); break; case 0x1c: /* FCMGT */ gen_helper_advsimd_cgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; case 0x1d: /* FACGT */ gen_helper_advsimd_acgt_f16(tcg_res, tcg_op1, tcg_op2, fpst); break; default: fprintf(stderr, "%s: insn %#04x, fpop %#2x @ %#" PRIx64 "\n", __func__, insn, fpopcode, s->pc); g_assert_not_reached(); } write_vec_element_i32(s, tcg_res, rd, pass, MO_16); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); } } tcg_temp_free_ptr(fpst); clear_vec_high(s, is_q, rd); } /* AdvSIMD three same extra * 31 30 29 28 24 23 22 21 20 16 15 14 11 10 9 5 4 0 * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ * | 0 | Q | U | 0 1 1 1 0 | size | 0 | Rm | 1 | opcode | 1 | Rn | Rd | * +---+---+---+-----------+------+---+------+---+--------+---+----+----+ */ static void disas_simd_three_reg_same_extra(DisasContext *s, uint32_t insn) { int rd = extract32(insn, 0, 5); int rn = extract32(insn, 5, 5); int opcode = extract32(insn, 11, 4); int rm = extract32(insn, 16, 5); int size = extract32(insn, 22, 2); bool u = extract32(insn, 29, 1); bool is_q = extract32(insn, 30, 1); int feature, rot; switch (u * 16 + opcode) { case 0x10: /* SQRDMLAH (vector) */ case 0x11: /* SQRDMLSH (vector) */ if (size != 1 && size != 2) { unallocated_encoding(s); return; } feature = ARM_FEATURE_V8_RDM; break; case 0x02: /* SDOT (vector) */ case 0x12: /* UDOT (vector) */ if (size != MO_32) { unallocated_encoding(s); return; } feature = ARM_FEATURE_V8_DOTPROD; break; case 0x18: /* FCMLA, #0 */ case 0x19: /* FCMLA, #90 */ case 0x1a: /* FCMLA, #180 */ case 0x1b: /* FCMLA, #270 */ case 0x1c: /* FCADD, #90 */ case 0x1e: /* FCADD, #270 */ if (size == 0 || (size == 1 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) || (size == 3 && !is_q)) { unallocated_encoding(s); return; } feature = ARM_FEATURE_V8_FCMA; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } switch (opcode) { case 0x0: /* SQRDMLAH (vector) */ switch (size) { case 1: gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s16); break; case 2: gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlah_s32); break; default: g_assert_not_reached(); } return; case 0x1: /* SQRDMLSH (vector) */ switch (size) { case 1: gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s16); break; case 2: gen_gvec_op3_env(s, is_q, rd, rn, rm, gen_helper_gvec_qrdmlsh_s32); break; default: g_assert_not_reached(); } return; case 0x2: /* SDOT / UDOT */ gen_gvec_op3_ool(s, is_q, rd, rn, rm, 0, u ? gen_helper_gvec_udot_b : gen_helper_gvec_sdot_b); return; case 0x8: /* FCMLA, #0 */ case 0x9: /* FCMLA, #90 */ case 0xa: /* FCMLA, #180 */ case 0xb: /* FCMLA, #270 */ rot = extract32(opcode, 0, 2); switch (size) { case 1: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, true, rot, gen_helper_gvec_fcmlah); break; case 2: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot, gen_helper_gvec_fcmlas); break; case 3: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, false, rot, gen_helper_gvec_fcmlad); break; default: g_assert_not_reached(); } return; case 0xc: /* FCADD, #90 */ case 0xe: /* FCADD, #270 */ rot = extract32(opcode, 1, 1); switch (size) { case 1: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, gen_helper_gvec_fcaddh); break; case 2: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, gen_helper_gvec_fcadds); break; case 3: gen_gvec_op3_fpst(s, is_q, rd, rn, rm, size == 1, rot, gen_helper_gvec_fcaddd); break; default: g_assert_not_reached(); } return; default: g_assert_not_reached(); } } static void handle_2misc_widening(DisasContext *s, int opcode, bool is_q, int size, int rn, int rd) { /* Handle 2-reg-misc ops which are widening (so each size element * in the source becomes a 2*size element in the destination. * The only instruction like this is FCVTL. */ int pass; if (size == 3) { /* 32 -> 64 bit fp conversion */ TCGv_i64 tcg_res[2]; int srcelt = is_q ? 2 : 0; for (pass = 0; pass < 2; pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); tcg_res[pass] = tcg_temp_new_i64(); read_vec_element_i32(s, tcg_op, rn, srcelt + pass, MO_32); gen_helper_vfp_fcvtds(tcg_res[pass], tcg_op, cpu_env); tcg_temp_free_i32(tcg_op); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } else { /* 16 -> 32 bit fp conversion */ int srcelt = is_q ? 4 : 0; TCGv_i32 tcg_res[4]; TCGv_ptr fpst = get_fpstatus_ptr(false); TCGv_i32 ahp = get_ahp_flag(); for (pass = 0; pass < 4; pass++) { tcg_res[pass] = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_res[pass], rn, srcelt + pass, MO_16); gen_helper_vfp_fcvt_f16_to_f32(tcg_res[pass], tcg_res[pass], fpst, ahp); } for (pass = 0; pass < 4; pass++) { write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32); tcg_temp_free_i32(tcg_res[pass]); } tcg_temp_free_ptr(fpst); tcg_temp_free_i32(ahp); } } static void handle_rev(DisasContext *s, int opcode, bool u, bool is_q, int size, int rn, int rd) { int op = (opcode << 1) | u; int opsz = op + size; int grp_size = 3 - opsz; int dsize = is_q ? 128 : 64; int i; if (opsz >= 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (size == 0) { /* Special case bytes, use bswap op on each group of elements */ int groups = dsize / (8 << grp_size); for (i = 0; i < groups; i++) { TCGv_i64 tcg_tmp = tcg_temp_new_i64(); read_vec_element(s, tcg_tmp, rn, i, grp_size); switch (grp_size) { case MO_16: tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp); break; case MO_32: tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp); break; case MO_64: tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp); break; default: g_assert_not_reached(); } write_vec_element(s, tcg_tmp, rd, i, grp_size); tcg_temp_free_i64(tcg_tmp); } clear_vec_high(s, is_q, rd); } else { int revmask = (1 << grp_size) - 1; int esize = 8 << size; int elements = dsize / esize; TCGv_i64 tcg_rn = tcg_temp_new_i64(); TCGv_i64 tcg_rd = tcg_const_i64(0); TCGv_i64 tcg_rd_hi = tcg_const_i64(0); for (i = 0; i < elements; i++) { int e_rev = (i & 0xf) ^ revmask; int off = e_rev * esize; read_vec_element(s, tcg_rn, rn, i, size); if (off >= 64) { tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi, tcg_rn, off - 64, esize); } else { tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize); } } write_vec_element(s, tcg_rd, rd, 0, MO_64); write_vec_element(s, tcg_rd_hi, rd, 1, MO_64); tcg_temp_free_i64(tcg_rd_hi); tcg_temp_free_i64(tcg_rd); tcg_temp_free_i64(tcg_rn); } } static void handle_2misc_pairwise(DisasContext *s, int opcode, bool u, bool is_q, int size, int rn, int rd) { /* Implement the pairwise operations from 2-misc: * SADDLP, UADDLP, SADALP, UADALP. * These all add pairs of elements in the input to produce a * double-width result element in the output (possibly accumulating). */ bool accum = (opcode == 0x6); int maxpass = is_q ? 2 : 1; int pass; TCGv_i64 tcg_res[2]; if (size == 2) { /* 32 + 32 -> 64 op */ TCGMemOp memop = size + (u ? 0 : MO_SIGN); for (pass = 0; pass < maxpass; pass++) { TCGv_i64 tcg_op1 = tcg_temp_new_i64(); TCGv_i64 tcg_op2 = tcg_temp_new_i64(); tcg_res[pass] = tcg_temp_new_i64(); read_vec_element(s, tcg_op1, rn, pass * 2, memop); read_vec_element(s, tcg_op2, rn, pass * 2 + 1, memop); tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2); if (accum) { read_vec_element(s, tcg_op1, rd, pass, MO_64); tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_op1); } tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); } } else { for (pass = 0; pass < maxpass; pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); NeonGenOneOpFn *genfn; static NeonGenOneOpFn * const fns[2][2] = { { gen_helper_neon_addlp_s8, gen_helper_neon_addlp_u8 }, { gen_helper_neon_addlp_s16, gen_helper_neon_addlp_u16 }, }; genfn = fns[size][u]; tcg_res[pass] = tcg_temp_new_i64(); read_vec_element(s, tcg_op, rn, pass, MO_64); genfn(tcg_res[pass], tcg_op); if (accum) { read_vec_element(s, tcg_op, rd, pass, MO_64); if (size == 0) { gen_helper_neon_addl_u16(tcg_res[pass], tcg_res[pass], tcg_op); } else { gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], tcg_op); } } tcg_temp_free_i64(tcg_op); } } if (!is_q) { tcg_res[1] = tcg_const_i64(0); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } static void handle_shll(DisasContext *s, bool is_q, int size, int rn, int rd) { /* Implement SHLL and SHLL2 */ int pass; int part = is_q ? 2 : 0; TCGv_i64 tcg_res[2]; for (pass = 0; pass < 2; pass++) { static NeonGenWidenFn * const widenfns[3] = { gen_helper_neon_widen_u8, gen_helper_neon_widen_u16, tcg_gen_extu_i32_i64, }; NeonGenWidenFn *widenfn = widenfns[size]; TCGv_i32 tcg_op = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op, rn, part + pass, MO_32); tcg_res[pass] = tcg_temp_new_i64(); widenfn(tcg_res[pass], tcg_op); tcg_gen_shli_i64(tcg_res[pass], tcg_res[pass], 8 << size); tcg_temp_free_i32(tcg_op); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } /* AdvSIMD two reg misc * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0 * +---+---+---+-----------+------+-----------+--------+-----+------+------+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd | * +---+---+---+-----------+------+-----------+--------+-----+------+------+ */ static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn) { int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 5); bool u = extract32(insn, 29, 1); bool is_q = extract32(insn, 30, 1); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); bool need_fpstatus = false; bool need_rmode = false; int rmode = -1; TCGv_i32 tcg_rmode; TCGv_ptr tcg_fpstatus; switch (opcode) { case 0x0: /* REV64, REV32 */ case 0x1: /* REV16 */ handle_rev(s, opcode, u, is_q, size, rn, rd); return; case 0x5: /* CNT, NOT, RBIT */ if (u && size == 0) { /* NOT */ break; } else if (u && size == 1) { /* RBIT */ break; } else if (!u && size == 0) { /* CNT */ break; } unallocated_encoding(s); return; case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */ case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */ if (size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_narrow(s, false, opcode, u, is_q, size, rn, rd); return; case 0x4: /* CLS, CLZ */ if (size == 3) { unallocated_encoding(s); return; } break; case 0x2: /* SADDLP, UADDLP */ case 0x6: /* SADALP, UADALP */ if (size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_pairwise(s, opcode, u, is_q, size, rn, rd); return; case 0x13: /* SHLL, SHLL2 */ if (u == 0 || size == 3) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_shll(s, is_q, size, rn, rd); return; case 0xa: /* CMLT */ if (u == 1) { unallocated_encoding(s); return; } /* fall through */ case 0x8: /* CMGT, CMGE */ case 0x9: /* CMEQ, CMLE */ case 0xb: /* ABS, NEG */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x3: /* SUQADD, USQADD */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_satacc(s, false, u, is_q, size, rn, rd); return; case 0x7: /* SQABS, SQNEG */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0xc ... 0xf: case 0x16 ... 0x1d: case 0x1f: { /* Floating point: U, size[1] and opcode indicate operation; * size[0] indicates single or double precision. */ int is_double = extract32(size, 0, 1); opcode |= (extract32(size, 1, 1) << 5) | (u << 6); size = is_double ? 3 : 2; switch (opcode) { case 0x2f: /* FABS */ case 0x6f: /* FNEG */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x1d: /* SCVTF */ case 0x5d: /* UCVTF */ { bool is_signed = (opcode == 0x1d) ? true : false; int elements = is_double ? 2 : is_q ? 4 : 2; if (is_double && !is_q) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_simd_intfp_conv(s, rd, rn, elements, is_signed, 0, size); return; } case 0x2c: /* FCMGT (zero) */ case 0x2d: /* FCMEQ (zero) */ case 0x2e: /* FCMLT (zero) */ case 0x6c: /* FCMGE (zero) */ case 0x6d: /* FCMLE (zero) */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd); return; case 0x7f: /* FSQRT */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ need_fpstatus = true; need_rmode = true; rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x5c: /* FCVTAU */ case 0x1c: /* FCVTAS */ need_fpstatus = true; need_rmode = true; rmode = FPROUNDING_TIEAWAY; if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x3c: /* URECPE */ if (size == 3) { unallocated_encoding(s); return; } /* fall through */ case 0x3d: /* FRECPE */ case 0x7d: /* FRSQRTE */ if (size == 3 && !is_q) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } handle_2misc_reciprocal(s, opcode, false, u, is_q, size, rn, rd); return; case 0x56: /* FCVTXN, FCVTXN2 */ if (size == 2) { unallocated_encoding(s); return; } /* fall through */ case 0x16: /* FCVTN, FCVTN2 */ /* handle_2misc_narrow does a 2*size -> size operation, but these * instructions encode the source size rather than dest size. */ if (!fp_access_check(s)) { return; } handle_2misc_narrow(s, false, opcode, 0, is_q, size - 1, rn, rd); return; case 0x17: /* FCVTL, FCVTL2 */ if (!fp_access_check(s)) { return; } handle_2misc_widening(s, opcode, is_q, size, rn, rd); return; case 0x18: /* FRINTN */ case 0x19: /* FRINTM */ case 0x38: /* FRINTP */ case 0x39: /* FRINTZ */ need_rmode = true; rmode = extract32(opcode, 5, 1) | (extract32(opcode, 0, 1) << 1); /* fall through */ case 0x59: /* FRINTX */ case 0x79: /* FRINTI */ need_fpstatus = true; if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x58: /* FRINTA */ need_rmode = true; rmode = FPROUNDING_TIEAWAY; need_fpstatus = true; if (size == 3 && !is_q) { unallocated_encoding(s); return; } break; case 0x7c: /* URSQRTE */ if (size == 3) { unallocated_encoding(s); return; } need_fpstatus = true; break; default: unallocated_encoding(s); return; } break; } default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (need_fpstatus || need_rmode) { tcg_fpstatus = get_fpstatus_ptr(false); } else { tcg_fpstatus = NULL; } if (need_rmode) { tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); } else { tcg_rmode = NULL; } switch (opcode) { case 0x5: if (u && size == 0) { /* NOT */ gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_not, 0); return; } break; case 0xb: if (u) { /* NEG */ gen_gvec_fn2(s, is_q, rd, rn, tcg_gen_gvec_neg, size); return; } break; } if (size == 3) { /* All 64-bit element operations can be shared with scalar 2misc */ int pass; /* Coverity claims (size == 3 && !is_q) has been eliminated * from all paths leading to here. */ tcg_debug_assert(is_q); for (pass = 0; pass < 2; pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op, rn, pass, MO_64); handle_2misc_64(s, opcode, u, tcg_res, tcg_op, tcg_rmode, tcg_fpstatus); write_vec_element(s, tcg_res, rd, pass, MO_64); tcg_temp_free_i64(tcg_res); tcg_temp_free_i64(tcg_op); } } else { int pass; for (pass = 0; pass < (is_q ? 4 : 2); pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); TCGCond cond; read_vec_element_i32(s, tcg_op, rn, pass, MO_32); if (size == 2) { /* Special cases for 32 bit elements */ switch (opcode) { case 0xa: /* CMLT */ /* 32 bit integer comparison against zero, result is * test ? (2^32 - 1) : 0. We implement via setcond(test) * and inverting. */ cond = TCG_COND_LT; do_cmop: tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0); tcg_gen_neg_i32(tcg_res, tcg_res); break; case 0x8: /* CMGT, CMGE */ cond = u ? TCG_COND_GE : TCG_COND_GT; goto do_cmop; case 0x9: /* CMEQ, CMLE */ cond = u ? TCG_COND_LE : TCG_COND_EQ; goto do_cmop; case 0x4: /* CLS */ if (u) { tcg_gen_clzi_i32(tcg_res, tcg_op, 32); } else { tcg_gen_clrsb_i32(tcg_res, tcg_op); } break; case 0x7: /* SQABS, SQNEG */ if (u) { gen_helper_neon_qneg_s32(tcg_res, cpu_env, tcg_op); } else { gen_helper_neon_qabs_s32(tcg_res, cpu_env, tcg_op); } break; case 0xb: /* ABS, NEG */ if (u) { tcg_gen_neg_i32(tcg_res, tcg_op); } else { TCGv_i32 tcg_zero = tcg_const_i32(0); tcg_gen_neg_i32(tcg_res, tcg_op); tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op, tcg_zero, tcg_op, tcg_res); tcg_temp_free_i32(tcg_zero); } break; case 0x2f: /* FABS */ gen_helper_vfp_abss(tcg_res, tcg_op); break; case 0x6f: /* FNEG */ gen_helper_vfp_negs(tcg_res, tcg_op); break; case 0x7f: /* FSQRT */ gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env); break; case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x1c: /* FCVTAS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_tosls(tcg_res, tcg_op, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x5c: /* FCVTAU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ { TCGv_i32 tcg_shift = tcg_const_i32(0); gen_helper_vfp_touls(tcg_res, tcg_op, tcg_shift, tcg_fpstatus); tcg_temp_free_i32(tcg_shift); break; } case 0x18: /* FRINTN */ case 0x19: /* FRINTM */ case 0x38: /* FRINTP */ case 0x39: /* FRINTZ */ case 0x58: /* FRINTA */ case 0x79: /* FRINTI */ gen_helper_rints(tcg_res, tcg_op, tcg_fpstatus); break; case 0x59: /* FRINTX */ gen_helper_rints_exact(tcg_res, tcg_op, tcg_fpstatus); break; case 0x7c: /* URSQRTE */ gen_helper_rsqrte_u32(tcg_res, tcg_op, tcg_fpstatus); break; default: g_assert_not_reached(); } } else { /* Use helpers for 8 and 16 bit elements */ switch (opcode) { case 0x5: /* CNT, RBIT */ /* For these two insns size is part of the opcode specifier * (handled earlier); they always operate on byte elements. */ if (u) { gen_helper_neon_rbit_u8(tcg_res, tcg_op); } else { gen_helper_neon_cnt_u8(tcg_res, tcg_op); } break; case 0x7: /* SQABS, SQNEG */ { NeonGenOneOpEnvFn *genfn; static NeonGenOneOpEnvFn * const fns[2][2] = { { gen_helper_neon_qabs_s8, gen_helper_neon_qneg_s8 }, { gen_helper_neon_qabs_s16, gen_helper_neon_qneg_s16 }, }; genfn = fns[size][u]; genfn(tcg_res, cpu_env, tcg_op); break; } case 0x8: /* CMGT, CMGE */ case 0x9: /* CMEQ, CMLE */ case 0xa: /* CMLT */ { static NeonGenTwoOpFn * const fns[3][2] = { { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 }, { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 }, { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 }, }; NeonGenTwoOpFn *genfn; int comp; bool reverse; TCGv_i32 tcg_zero = tcg_const_i32(0); /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */ comp = (opcode - 0x8) * 2 + u; /* ...but LE, LT are implemented as reverse GE, GT */ reverse = (comp > 2); if (reverse) { comp = 4 - comp; } genfn = fns[comp][size]; if (reverse) { genfn(tcg_res, tcg_zero, tcg_op); } else { genfn(tcg_res, tcg_op, tcg_zero); } tcg_temp_free_i32(tcg_zero); break; } case 0xb: /* ABS, NEG */ if (u) { TCGv_i32 tcg_zero = tcg_const_i32(0); if (size) { gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op); } else { gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op); } tcg_temp_free_i32(tcg_zero); } else { if (size) { gen_helper_neon_abs_s16(tcg_res, tcg_op); } else { gen_helper_neon_abs_s8(tcg_res, tcg_op); } } break; case 0x4: /* CLS, CLZ */ if (u) { if (size == 0) { gen_helper_neon_clz_u8(tcg_res, tcg_op); } else { gen_helper_neon_clz_u16(tcg_res, tcg_op); } } else { if (size == 0) { gen_helper_neon_cls_s8(tcg_res, tcg_op); } else { gen_helper_neon_cls_s16(tcg_res, tcg_op); } } break; default: g_assert_not_reached(); } } write_vec_element_i32(s, tcg_res, rd, pass, MO_32); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op); } } clear_vec_high(s, is_q, rd); if (need_rmode) { gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); tcg_temp_free_i32(tcg_rmode); } if (need_fpstatus) { tcg_temp_free_ptr(tcg_fpstatus); } } /* AdvSIMD [scalar] two register miscellaneous (FP16) * * 31 30 29 28 27 24 23 22 21 17 16 12 11 10 9 5 4 0 * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ * | 0 | Q | U | S | 1 1 1 0 | a | 1 1 1 1 0 0 | opcode | 1 0 | Rn | Rd | * +---+---+---+---+---------+---+-------------+--------+-----+------+------+ * mask: 1000 1111 0111 1110 0000 1100 0000 0000 0x8f7e 0c00 * val: 0000 1110 0111 1000 0000 1000 0000 0000 0x0e78 0800 * * This actually covers two groups where scalar access is governed by * bit 28. A bunch of the instructions (float to integral) only exist * in the vector form and are un-allocated for the scalar decode. Also * in the scalar decode Q is always 1. */ static void disas_simd_two_reg_misc_fp16(DisasContext *s, uint32_t insn) { int fpop, opcode, a, u; int rn, rd; bool is_q; bool is_scalar; bool only_in_vector = false; int pass; TCGv_i32 tcg_rmode = NULL; TCGv_ptr tcg_fpstatus = NULL; bool need_rmode = false; bool need_fpst = true; int rmode; if (!arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } rd = extract32(insn, 0, 5); rn = extract32(insn, 5, 5); a = extract32(insn, 23, 1); u = extract32(insn, 29, 1); is_scalar = extract32(insn, 28, 1); is_q = extract32(insn, 30, 1); opcode = extract32(insn, 12, 5); fpop = deposit32(opcode, 5, 1, a); fpop = deposit32(fpop, 6, 1, u); rd = extract32(insn, 0, 5); rn = extract32(insn, 5, 5); switch (fpop) { case 0x1d: /* SCVTF */ case 0x5d: /* UCVTF */ { int elements; if (is_scalar) { elements = 1; } else { elements = (is_q ? 8 : 4); } if (!fp_access_check(s)) { return; } handle_simd_intfp_conv(s, rd, rn, elements, !u, 0, MO_16); return; } break; case 0x2c: /* FCMGT (zero) */ case 0x2d: /* FCMEQ (zero) */ case 0x2e: /* FCMLT (zero) */ case 0x6c: /* FCMGE (zero) */ case 0x6d: /* FCMLE (zero) */ handle_2misc_fcmp_zero(s, fpop, is_scalar, 0, is_q, MO_16, rn, rd); return; case 0x3d: /* FRECPE */ case 0x3f: /* FRECPX */ break; case 0x18: /* FRINTN */ need_rmode = true; only_in_vector = true; rmode = FPROUNDING_TIEEVEN; break; case 0x19: /* FRINTM */ need_rmode = true; only_in_vector = true; rmode = FPROUNDING_NEGINF; break; case 0x38: /* FRINTP */ need_rmode = true; only_in_vector = true; rmode = FPROUNDING_POSINF; break; case 0x39: /* FRINTZ */ need_rmode = true; only_in_vector = true; rmode = FPROUNDING_ZERO; break; case 0x58: /* FRINTA */ need_rmode = true; only_in_vector = true; rmode = FPROUNDING_TIEAWAY; break; case 0x59: /* FRINTX */ case 0x79: /* FRINTI */ only_in_vector = true; /* current rounding mode */ break; case 0x1a: /* FCVTNS */ need_rmode = true; rmode = FPROUNDING_TIEEVEN; break; case 0x1b: /* FCVTMS */ need_rmode = true; rmode = FPROUNDING_NEGINF; break; case 0x1c: /* FCVTAS */ need_rmode = true; rmode = FPROUNDING_TIEAWAY; break; case 0x3a: /* FCVTPS */ need_rmode = true; rmode = FPROUNDING_POSINF; break; case 0x3b: /* FCVTZS */ need_rmode = true; rmode = FPROUNDING_ZERO; break; case 0x5a: /* FCVTNU */ need_rmode = true; rmode = FPROUNDING_TIEEVEN; break; case 0x5b: /* FCVTMU */ need_rmode = true; rmode = FPROUNDING_NEGINF; break; case 0x5c: /* FCVTAU */ need_rmode = true; rmode = FPROUNDING_TIEAWAY; break; case 0x7a: /* FCVTPU */ need_rmode = true; rmode = FPROUNDING_POSINF; break; case 0x7b: /* FCVTZU */ need_rmode = true; rmode = FPROUNDING_ZERO; break; case 0x2f: /* FABS */ case 0x6f: /* FNEG */ need_fpst = false; break; case 0x7d: /* FRSQRTE */ case 0x7f: /* FSQRT (vector) */ break; default: fprintf(stderr, "%s: insn %#04x fpop %#2x\n", __func__, insn, fpop); g_assert_not_reached(); } /* Check additional constraints for the scalar encoding */ if (is_scalar) { if (!is_q) { unallocated_encoding(s); return; } /* FRINTxx is only in the vector form */ if (only_in_vector) { unallocated_encoding(s); return; } } if (!fp_access_check(s)) { return; } if (need_rmode || need_fpst) { tcg_fpstatus = get_fpstatus_ptr(true); } if (need_rmode) { tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode)); gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); } if (is_scalar) { TCGv_i32 tcg_op = read_fp_hreg(s, rn); TCGv_i32 tcg_res = tcg_temp_new_i32(); switch (fpop) { case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x1c: /* FCVTAS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); break; case 0x3d: /* FRECPE */ gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); break; case 0x3f: /* FRECPX */ gen_helper_frecpx_f16(tcg_res, tcg_op, tcg_fpstatus); break; case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x5c: /* FCVTAU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); break; case 0x6f: /* FNEG */ tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); break; case 0x7d: /* FRSQRTE */ gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); break; default: g_assert_not_reached(); } /* limit any sign extension going on */ tcg_gen_andi_i32(tcg_res, tcg_res, 0xffff); write_fp_sreg(s, rd, tcg_res); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op); } else { for (pass = 0; pass < (is_q ? 8 : 4); pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op, rn, pass, MO_16); switch (fpop) { case 0x1a: /* FCVTNS */ case 0x1b: /* FCVTMS */ case 0x1c: /* FCVTAS */ case 0x3a: /* FCVTPS */ case 0x3b: /* FCVTZS */ gen_helper_advsimd_f16tosinth(tcg_res, tcg_op, tcg_fpstatus); break; case 0x3d: /* FRECPE */ gen_helper_recpe_f16(tcg_res, tcg_op, tcg_fpstatus); break; case 0x5a: /* FCVTNU */ case 0x5b: /* FCVTMU */ case 0x5c: /* FCVTAU */ case 0x7a: /* FCVTPU */ case 0x7b: /* FCVTZU */ gen_helper_advsimd_f16touinth(tcg_res, tcg_op, tcg_fpstatus); break; case 0x18: /* FRINTN */ case 0x19: /* FRINTM */ case 0x38: /* FRINTP */ case 0x39: /* FRINTZ */ case 0x58: /* FRINTA */ case 0x79: /* FRINTI */ gen_helper_advsimd_rinth(tcg_res, tcg_op, tcg_fpstatus); break; case 0x59: /* FRINTX */ gen_helper_advsimd_rinth_exact(tcg_res, tcg_op, tcg_fpstatus); break; case 0x2f: /* FABS */ tcg_gen_andi_i32(tcg_res, tcg_op, 0x7fff); break; case 0x6f: /* FNEG */ tcg_gen_xori_i32(tcg_res, tcg_op, 0x8000); break; case 0x7d: /* FRSQRTE */ gen_helper_rsqrte_f16(tcg_res, tcg_op, tcg_fpstatus); break; case 0x7f: /* FSQRT */ gen_helper_sqrt_f16(tcg_res, tcg_op, tcg_fpstatus); break; default: g_assert_not_reached(); } write_vec_element_i32(s, tcg_res, rd, pass, MO_16); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_op); } clear_vec_high(s, is_q, rd); } if (tcg_rmode) { gen_helper_set_rmode(tcg_rmode, tcg_rmode, tcg_fpstatus); tcg_temp_free_i32(tcg_rmode); } if (tcg_fpstatus) { tcg_temp_free_ptr(tcg_fpstatus); } } /* AdvSIMD scalar x indexed element * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+ * AdvSIMD vector x indexed element * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0 * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd | * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+ */ static void disas_simd_indexed(DisasContext *s, uint32_t insn) { /* This encoding has two kinds of instruction: * normal, where we perform elt x idxelt => elt for each * element in the vector * long, where we perform elt x idxelt and generate a result of * double the width of the input element * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs). */ bool is_scalar = extract32(insn, 28, 1); bool is_q = extract32(insn, 30, 1); bool u = extract32(insn, 29, 1); int size = extract32(insn, 22, 2); int l = extract32(insn, 21, 1); int m = extract32(insn, 20, 1); /* Note that the Rm field here is only 4 bits, not 5 as it usually is */ int rm = extract32(insn, 16, 4); int opcode = extract32(insn, 12, 4); int h = extract32(insn, 11, 1); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); bool is_long = false; int is_fp = 0; bool is_fp16 = false; int index; TCGv_ptr fpst; switch (16 * u + opcode) { case 0x08: /* MUL */ case 0x10: /* MLA */ case 0x14: /* MLS */ if (is_scalar) { unallocated_encoding(s); return; } break; case 0x02: /* SMLAL, SMLAL2 */ case 0x12: /* UMLAL, UMLAL2 */ case 0x06: /* SMLSL, SMLSL2 */ case 0x16: /* UMLSL, UMLSL2 */ case 0x0a: /* SMULL, SMULL2 */ case 0x1a: /* UMULL, UMULL2 */ if (is_scalar) { unallocated_encoding(s); return; } is_long = true; break; case 0x03: /* SQDMLAL, SQDMLAL2 */ case 0x07: /* SQDMLSL, SQDMLSL2 */ case 0x0b: /* SQDMULL, SQDMULL2 */ is_long = true; break; case 0x0c: /* SQDMULH */ case 0x0d: /* SQRDMULH */ break; case 0x01: /* FMLA */ case 0x05: /* FMLS */ case 0x09: /* FMUL */ case 0x19: /* FMULX */ is_fp = 1; break; case 0x1d: /* SQRDMLAH */ case 0x1f: /* SQRDMLSH */ if (!arm_dc_feature(s, ARM_FEATURE_V8_RDM)) { unallocated_encoding(s); return; } break; case 0x0e: /* SDOT */ case 0x1e: /* UDOT */ if (size != MO_32 || !arm_dc_feature(s, ARM_FEATURE_V8_DOTPROD)) { unallocated_encoding(s); return; } break; case 0x11: /* FCMLA #0 */ case 0x13: /* FCMLA #90 */ case 0x15: /* FCMLA #180 */ case 0x17: /* FCMLA #270 */ if (!arm_dc_feature(s, ARM_FEATURE_V8_FCMA)) { unallocated_encoding(s); return; } is_fp = 2; break; default: unallocated_encoding(s); return; } switch (is_fp) { case 1: /* normal fp */ /* convert insn encoded size to TCGMemOp size */ switch (size) { case 0: /* half-precision */ size = MO_16; is_fp16 = true; break; case MO_32: /* single precision */ case MO_64: /* double precision */ break; default: unallocated_encoding(s); return; } break; case 2: /* complex fp */ /* Each indexable element is a complex pair. */ size <<= 1; switch (size) { case MO_32: if (h && !is_q) { unallocated_encoding(s); return; } is_fp16 = true; break; case MO_64: break; default: unallocated_encoding(s); return; } break; default: /* integer */ switch (size) { case MO_8: case MO_64: unallocated_encoding(s); return; } break; } if (is_fp16 && !arm_dc_feature(s, ARM_FEATURE_V8_FP16)) { unallocated_encoding(s); return; } /* Given TCGMemOp size, adjust register and indexing. */ switch (size) { case MO_16: index = h << 2 | l << 1 | m; break; case MO_32: index = h << 1 | l; rm |= m << 4; break; case MO_64: if (l || !is_q) { unallocated_encoding(s); return; } index = h; rm |= m << 4; break; default: g_assert_not_reached(); } if (!fp_access_check(s)) { return; } if (is_fp) { fpst = get_fpstatus_ptr(is_fp16); } else { fpst = NULL; } switch (16 * u + opcode) { case 0x0e: /* SDOT */ case 0x1e: /* UDOT */ gen_gvec_op3_ool(s, is_q, rd, rn, rm, index, u ? gen_helper_gvec_udot_idx_b : gen_helper_gvec_sdot_idx_b); return; case 0x11: /* FCMLA #0 */ case 0x13: /* FCMLA #90 */ case 0x15: /* FCMLA #180 */ case 0x17: /* FCMLA #270 */ { int rot = extract32(insn, 13, 2); int data = (index << 2) | rot; tcg_gen_gvec_3_ptr(vec_full_reg_offset(s, rd), vec_full_reg_offset(s, rn), vec_full_reg_offset(s, rm), fpst, is_q ? 16 : 8, vec_full_reg_size(s), data, size == MO_64 ? gen_helper_gvec_fcmlas_idx : gen_helper_gvec_fcmlah_idx); tcg_temp_free_ptr(fpst); } return; } if (size == 3) { TCGv_i64 tcg_idx = tcg_temp_new_i64(); int pass; assert(is_fp && is_q && !is_long); read_vec_element(s, tcg_idx, rm, index, MO_64); for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_res = tcg_temp_new_i64(); read_vec_element(s, tcg_op, rn, pass, MO_64); switch (16 * u + opcode) { case 0x05: /* FMLS */ /* As usual for ARM, separate negation for fused multiply-add */ gen_helper_vfp_negd(tcg_op, tcg_op); /* fall through */ case 0x01: /* FMLA */ read_vec_element(s, tcg_res, rd, pass, MO_64); gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); break; case 0x09: /* FMUL */ gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst); break; case 0x19: /* FMULX */ gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst); break; default: g_assert_not_reached(); } write_vec_element(s, tcg_res, rd, pass, MO_64); tcg_temp_free_i64(tcg_op); tcg_temp_free_i64(tcg_res); } tcg_temp_free_i64(tcg_idx); clear_vec_high(s, !is_scalar, rd); } else if (!is_long) { /* 32 bit floating point, or 16 or 32 bit integer. * For the 16 bit scalar case we use the usual Neon helpers and * rely on the fact that 0 op 0 == 0 with no side effects. */ TCGv_i32 tcg_idx = tcg_temp_new_i32(); int pass, maxpasses; if (is_scalar) { maxpasses = 1; } else { maxpasses = is_q ? 4 : 2; } read_vec_element_i32(s, tcg_idx, rm, index, size); if (size == 1 && !is_scalar) { /* The simplest way to handle the 16x16 indexed ops is to duplicate * the index into both halves of the 32 bit tcg_idx and then use * the usual Neon helpers. */ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); } for (pass = 0; pass < maxpasses; pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i32 tcg_res = tcg_temp_new_i32(); read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32); switch (16 * u + opcode) { case 0x08: /* MUL */ case 0x10: /* MLA */ case 0x14: /* MLS */ { static NeonGenTwoOpFn * const fns[2][2] = { { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 }, { tcg_gen_add_i32, tcg_gen_sub_i32 }, }; NeonGenTwoOpFn *genfn; bool is_sub = opcode == 0x4; if (size == 1) { gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx); } else { tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx); } if (opcode == 0x8) { break; } read_vec_element_i32(s, tcg_op, rd, pass, MO_32); genfn = fns[size - 1][is_sub]; genfn(tcg_res, tcg_op, tcg_res); break; } case 0x05: /* FMLS */ case 0x01: /* FMLA */ read_vec_element_i32(s, tcg_res, rd, pass, is_scalar ? size : MO_32); switch (size) { case 1: if (opcode == 0x5) { /* As usual for ARM, separate negation for fused * multiply-add */ tcg_gen_xori_i32(tcg_op, tcg_op, 0x80008000); } if (is_scalar) { gen_helper_advsimd_muladdh(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); } else { gen_helper_advsimd_muladd2h(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); } break; case 2: if (opcode == 0x5) { /* As usual for ARM, separate negation for * fused multiply-add */ tcg_gen_xori_i32(tcg_op, tcg_op, 0x80000000); } gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst); break; default: g_assert_not_reached(); } break; case 0x09: /* FMUL */ switch (size) { case 1: if (is_scalar) { gen_helper_advsimd_mulh(tcg_res, tcg_op, tcg_idx, fpst); } else { gen_helper_advsimd_mul2h(tcg_res, tcg_op, tcg_idx, fpst); } break; case 2: gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst); break; default: g_assert_not_reached(); } break; case 0x19: /* FMULX */ switch (size) { case 1: if (is_scalar) { gen_helper_advsimd_mulxh(tcg_res, tcg_op, tcg_idx, fpst); } else { gen_helper_advsimd_mulx2h(tcg_res, tcg_op, tcg_idx, fpst); } break; case 2: gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst); break; default: g_assert_not_reached(); } break; case 0x0c: /* SQDMULH */ if (size == 1) { gen_helper_neon_qdmulh_s16(tcg_res, cpu_env, tcg_op, tcg_idx); } else { gen_helper_neon_qdmulh_s32(tcg_res, cpu_env, tcg_op, tcg_idx); } break; case 0x0d: /* SQRDMULH */ if (size == 1) { gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env, tcg_op, tcg_idx); } else { gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env, tcg_op, tcg_idx); } break; case 0x1d: /* SQRDMLAH */ read_vec_element_i32(s, tcg_res, rd, pass, is_scalar ? size : MO_32); if (size == 1) { gen_helper_neon_qrdmlah_s16(tcg_res, cpu_env, tcg_op, tcg_idx, tcg_res); } else { gen_helper_neon_qrdmlah_s32(tcg_res, cpu_env, tcg_op, tcg_idx, tcg_res); } break; case 0x1f: /* SQRDMLSH */ read_vec_element_i32(s, tcg_res, rd, pass, is_scalar ? size : MO_32); if (size == 1) { gen_helper_neon_qrdmlsh_s16(tcg_res, cpu_env, tcg_op, tcg_idx, tcg_res); } else { gen_helper_neon_qrdmlsh_s32(tcg_res, cpu_env, tcg_op, tcg_idx, tcg_res); } break; default: g_assert_not_reached(); } if (is_scalar) { write_fp_sreg(s, rd, tcg_res); } else { write_vec_element_i32(s, tcg_res, rd, pass, MO_32); } tcg_temp_free_i32(tcg_op); tcg_temp_free_i32(tcg_res); } tcg_temp_free_i32(tcg_idx); clear_vec_high(s, is_q, rd); } else { /* long ops: 16x16->32 or 32x32->64 */ TCGv_i64 tcg_res[2]; int pass; bool satop = extract32(opcode, 0, 1); TCGMemOp memop = MO_32; if (satop || !u) { memop |= MO_SIGN; } if (size == 2) { TCGv_i64 tcg_idx = tcg_temp_new_i64(); read_vec_element(s, tcg_idx, rm, index, memop); for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { TCGv_i64 tcg_op = tcg_temp_new_i64(); TCGv_i64 tcg_passres; int passelt; if (is_scalar) { passelt = 0; } else { passelt = pass + (is_q * 2); } read_vec_element(s, tcg_op, rn, passelt, memop); tcg_res[pass] = tcg_temp_new_i64(); if (opcode == 0xa || opcode == 0xb) { /* Non-accumulating ops */ tcg_passres = tcg_res[pass]; } else { tcg_passres = tcg_temp_new_i64(); } tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx); tcg_temp_free_i64(tcg_op); if (satop) { /* saturating, doubling */ gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env, tcg_passres, tcg_passres); } if (opcode == 0xa || opcode == 0xb) { continue; } /* Accumulating op: handle accumulate step */ read_vec_element(s, tcg_res[pass], rd, pass, MO_64); switch (opcode) { case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres); break; case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres); break; case 0x7: /* SQDMLSL, SQDMLSL2 */ tcg_gen_neg_i64(tcg_passres, tcg_passres); /* fall through */ case 0x3: /* SQDMLAL, SQDMLAL2 */ gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env, tcg_res[pass], tcg_passres); break; default: g_assert_not_reached(); } tcg_temp_free_i64(tcg_passres); } tcg_temp_free_i64(tcg_idx); clear_vec_high(s, !is_scalar, rd); } else { TCGv_i32 tcg_idx = tcg_temp_new_i32(); assert(size == 1); read_vec_element_i32(s, tcg_idx, rm, index, size); if (!is_scalar) { /* The simplest way to handle the 16x16 indexed ops is to * duplicate the index into both halves of the 32 bit tcg_idx * and then use the usual Neon helpers. */ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16); } for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) { TCGv_i32 tcg_op = tcg_temp_new_i32(); TCGv_i64 tcg_passres; if (is_scalar) { read_vec_element_i32(s, tcg_op, rn, pass, size); } else { read_vec_element_i32(s, tcg_op, rn, pass + (is_q * 2), MO_32); } tcg_res[pass] = tcg_temp_new_i64(); if (opcode == 0xa || opcode == 0xb) { /* Non-accumulating ops */ tcg_passres = tcg_res[pass]; } else { tcg_passres = tcg_temp_new_i64(); } if (memop & MO_SIGN) { gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx); } else { gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx); } if (satop) { gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env, tcg_passres, tcg_passres); } tcg_temp_free_i32(tcg_op); if (opcode == 0xa || opcode == 0xb) { continue; } /* Accumulating op: handle accumulate step */ read_vec_element(s, tcg_res[pass], rd, pass, MO_64); switch (opcode) { case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */ gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass], tcg_passres); break; case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */ gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass], tcg_passres); break; case 0x7: /* SQDMLSL, SQDMLSL2 */ gen_helper_neon_negl_u32(tcg_passres, tcg_passres); /* fall through */ case 0x3: /* SQDMLAL, SQDMLAL2 */ gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env, tcg_res[pass], tcg_passres); break; default: g_assert_not_reached(); } tcg_temp_free_i64(tcg_passres); } tcg_temp_free_i32(tcg_idx); if (is_scalar) { tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]); } } if (is_scalar) { tcg_res[1] = tcg_const_i64(0); } for (pass = 0; pass < 2; pass++) { write_vec_element(s, tcg_res[pass], rd, pass, MO_64); tcg_temp_free_i64(tcg_res[pass]); } } if (fpst) { tcg_temp_free_ptr(fpst); } } /* Crypto AES * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 * +-----------------+------+-----------+--------+-----+------+------+ * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | * +-----------------+------+-----------+--------+-----+------+------+ */ static void disas_crypto_aes(DisasContext *s, uint32_t insn) { int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int decrypt; TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; TCGv_i32 tcg_decrypt; CryptoThreeOpIntFn *genfn; if (!arm_dc_feature(s, ARM_FEATURE_V8_AES) || size != 0) { unallocated_encoding(s); return; } switch (opcode) { case 0x4: /* AESE */ decrypt = 0; genfn = gen_helper_crypto_aese; break; case 0x6: /* AESMC */ decrypt = 0; genfn = gen_helper_crypto_aesmc; break; case 0x5: /* AESD */ decrypt = 1; genfn = gen_helper_crypto_aese; break; case 0x7: /* AESIMC */ decrypt = 1; genfn = gen_helper_crypto_aesmc; break; default: unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); tcg_decrypt = tcg_const_i32(decrypt); genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_decrypt); tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); tcg_temp_free_i32(tcg_decrypt); } /* Crypto three-reg SHA * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0 * +-----------------+------+---+------+---+--------+-----+------+------+ * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd | * +-----------------+------+---+------+---+--------+-----+------+------+ */ static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn) { int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 3); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); CryptoThreeOpFn *genfn; TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; int feature = ARM_FEATURE_V8_SHA256; if (size != 0) { unallocated_encoding(s); return; } switch (opcode) { case 0: /* SHA1C */ case 1: /* SHA1P */ case 2: /* SHA1M */ case 3: /* SHA1SU0 */ genfn = NULL; feature = ARM_FEATURE_V8_SHA1; break; case 4: /* SHA256H */ genfn = gen_helper_crypto_sha256h; break; case 5: /* SHA256H2 */ genfn = gen_helper_crypto_sha256h2; break; case 6: /* SHA256SU1 */ genfn = gen_helper_crypto_sha256su1; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); tcg_rm_ptr = vec_full_reg_ptr(s, rm); if (genfn) { genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr); } else { TCGv_i32 tcg_opcode = tcg_const_i32(opcode); gen_helper_crypto_sha1_3reg(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_opcode); tcg_temp_free_i32(tcg_opcode); } tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); tcg_temp_free_ptr(tcg_rm_ptr); } /* Crypto two-reg SHA * 31 24 23 22 21 17 16 12 11 10 9 5 4 0 * +-----------------+------+-----------+--------+-----+------+------+ * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd | * +-----------------+------+-----------+--------+-----+------+------+ */ static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn) { int size = extract32(insn, 22, 2); int opcode = extract32(insn, 12, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); CryptoTwoOpFn *genfn; int feature; TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; if (size != 0) { unallocated_encoding(s); return; } switch (opcode) { case 0: /* SHA1H */ feature = ARM_FEATURE_V8_SHA1; genfn = gen_helper_crypto_sha1h; break; case 1: /* SHA1SU1 */ feature = ARM_FEATURE_V8_SHA1; genfn = gen_helper_crypto_sha1su1; break; case 2: /* SHA256SU0 */ feature = ARM_FEATURE_V8_SHA256; genfn = gen_helper_crypto_sha256su0; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); genfn(tcg_rd_ptr, tcg_rn_ptr); tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); } /* Crypto three-reg SHA512 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 * +-----------------------+------+---+---+-----+--------+------+------+ * | 1 1 0 0 1 1 1 0 0 1 1 | Rm | 1 | O | 0 0 | opcode | Rn | Rd | * +-----------------------+------+---+---+-----+--------+------+------+ */ static void disas_crypto_three_reg_sha512(DisasContext *s, uint32_t insn) { int opcode = extract32(insn, 10, 2); int o = extract32(insn, 14, 1); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int feature; CryptoThreeOpFn *genfn; if (o == 0) { switch (opcode) { case 0: /* SHA512H */ feature = ARM_FEATURE_V8_SHA512; genfn = gen_helper_crypto_sha512h; break; case 1: /* SHA512H2 */ feature = ARM_FEATURE_V8_SHA512; genfn = gen_helper_crypto_sha512h2; break; case 2: /* SHA512SU1 */ feature = ARM_FEATURE_V8_SHA512; genfn = gen_helper_crypto_sha512su1; break; case 3: /* RAX1 */ feature = ARM_FEATURE_V8_SHA3; genfn = NULL; break; } } else { switch (opcode) { case 0: /* SM3PARTW1 */ feature = ARM_FEATURE_V8_SM3; genfn = gen_helper_crypto_sm3partw1; break; case 1: /* SM3PARTW2 */ feature = ARM_FEATURE_V8_SM3; genfn = gen_helper_crypto_sm3partw2; break; case 2: /* SM4EKEY */ feature = ARM_FEATURE_V8_SM4; genfn = gen_helper_crypto_sm4ekey; break; default: unallocated_encoding(s); return; } } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (genfn) { TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); tcg_rm_ptr = vec_full_reg_ptr(s, rm); genfn(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr); tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); tcg_temp_free_ptr(tcg_rm_ptr); } else { TCGv_i64 tcg_op1, tcg_op2, tcg_res[2]; int pass; tcg_op1 = tcg_temp_new_i64(); tcg_op2 = tcg_temp_new_i64(); tcg_res[0] = tcg_temp_new_i64(); tcg_res[1] = tcg_temp_new_i64(); for (pass = 0; pass < 2; pass++) { read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); tcg_gen_rotli_i64(tcg_res[pass], tcg_op2, 1); tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); } write_vec_element(s, tcg_res[0], rd, 0, MO_64); write_vec_element(s, tcg_res[1], rd, 1, MO_64); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res[0]); tcg_temp_free_i64(tcg_res[1]); } } /* Crypto two-reg SHA512 * 31 12 11 10 9 5 4 0 * +-----------------------------------------+--------+------+------+ * | 1 1 0 0 1 1 1 0 1 1 0 0 0 0 0 0 1 0 0 0 | opcode | Rn | Rd | * +-----------------------------------------+--------+------+------+ */ static void disas_crypto_two_reg_sha512(DisasContext *s, uint32_t insn) { int opcode = extract32(insn, 10, 2); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); TCGv_ptr tcg_rd_ptr, tcg_rn_ptr; int feature; CryptoTwoOpFn *genfn; switch (opcode) { case 0: /* SHA512SU0 */ feature = ARM_FEATURE_V8_SHA512; genfn = gen_helper_crypto_sha512su0; break; case 1: /* SM4E */ feature = ARM_FEATURE_V8_SM4; genfn = gen_helper_crypto_sm4e; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); genfn(tcg_rd_ptr, tcg_rn_ptr); tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); } /* Crypto four-register * 31 23 22 21 20 16 15 14 10 9 5 4 0 * +-------------------+-----+------+---+------+------+------+ * | 1 1 0 0 1 1 1 0 0 | Op0 | Rm | 0 | Ra | Rn | Rd | * +-------------------+-----+------+---+------+------+------+ */ static void disas_crypto_four_reg(DisasContext *s, uint32_t insn) { int op0 = extract32(insn, 21, 2); int rm = extract32(insn, 16, 5); int ra = extract32(insn, 10, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); int feature; switch (op0) { case 0: /* EOR3 */ case 1: /* BCAX */ feature = ARM_FEATURE_V8_SHA3; break; case 2: /* SM3SS1 */ feature = ARM_FEATURE_V8_SM3; break; default: unallocated_encoding(s); return; } if (!arm_dc_feature(s, feature)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } if (op0 < 2) { TCGv_i64 tcg_op1, tcg_op2, tcg_op3, tcg_res[2]; int pass; tcg_op1 = tcg_temp_new_i64(); tcg_op2 = tcg_temp_new_i64(); tcg_op3 = tcg_temp_new_i64(); tcg_res[0] = tcg_temp_new_i64(); tcg_res[1] = tcg_temp_new_i64(); for (pass = 0; pass < 2; pass++) { read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); read_vec_element(s, tcg_op3, ra, pass, MO_64); if (op0 == 0) { /* EOR3 */ tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op3); } else { /* BCAX */ tcg_gen_andc_i64(tcg_res[pass], tcg_op2, tcg_op3); } tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1); } write_vec_element(s, tcg_res[0], rd, 0, MO_64); write_vec_element(s, tcg_res[1], rd, 1, MO_64); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_op3); tcg_temp_free_i64(tcg_res[0]); tcg_temp_free_i64(tcg_res[1]); } else { TCGv_i32 tcg_op1, tcg_op2, tcg_op3, tcg_res, tcg_zero; tcg_op1 = tcg_temp_new_i32(); tcg_op2 = tcg_temp_new_i32(); tcg_op3 = tcg_temp_new_i32(); tcg_res = tcg_temp_new_i32(); tcg_zero = tcg_const_i32(0); read_vec_element_i32(s, tcg_op1, rn, 3, MO_32); read_vec_element_i32(s, tcg_op2, rm, 3, MO_32); read_vec_element_i32(s, tcg_op3, ra, 3, MO_32); tcg_gen_rotri_i32(tcg_res, tcg_op1, 20); tcg_gen_add_i32(tcg_res, tcg_res, tcg_op2); tcg_gen_add_i32(tcg_res, tcg_res, tcg_op3); tcg_gen_rotri_i32(tcg_res, tcg_res, 25); write_vec_element_i32(s, tcg_zero, rd, 0, MO_32); write_vec_element_i32(s, tcg_zero, rd, 1, MO_32); write_vec_element_i32(s, tcg_zero, rd, 2, MO_32); write_vec_element_i32(s, tcg_res, rd, 3, MO_32); tcg_temp_free_i32(tcg_op1); tcg_temp_free_i32(tcg_op2); tcg_temp_free_i32(tcg_op3); tcg_temp_free_i32(tcg_res); tcg_temp_free_i32(tcg_zero); } } /* Crypto XAR * 31 21 20 16 15 10 9 5 4 0 * +-----------------------+------+--------+------+------+ * | 1 1 0 0 1 1 1 0 1 0 0 | Rm | imm6 | Rn | Rd | * +-----------------------+------+--------+------+------+ */ static void disas_crypto_xar(DisasContext *s, uint32_t insn) { int rm = extract32(insn, 16, 5); int imm6 = extract32(insn, 10, 6); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); TCGv_i64 tcg_op1, tcg_op2, tcg_res[2]; int pass; if (!arm_dc_feature(s, ARM_FEATURE_V8_SHA3)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_op1 = tcg_temp_new_i64(); tcg_op2 = tcg_temp_new_i64(); tcg_res[0] = tcg_temp_new_i64(); tcg_res[1] = tcg_temp_new_i64(); for (pass = 0; pass < 2; pass++) { read_vec_element(s, tcg_op1, rn, pass, MO_64); read_vec_element(s, tcg_op2, rm, pass, MO_64); tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2); tcg_gen_rotri_i64(tcg_res[pass], tcg_res[pass], imm6); } write_vec_element(s, tcg_res[0], rd, 0, MO_64); write_vec_element(s, tcg_res[1], rd, 1, MO_64); tcg_temp_free_i64(tcg_op1); tcg_temp_free_i64(tcg_op2); tcg_temp_free_i64(tcg_res[0]); tcg_temp_free_i64(tcg_res[1]); } /* Crypto three-reg imm2 * 31 21 20 16 15 14 13 12 11 10 9 5 4 0 * +-----------------------+------+-----+------+--------+------+------+ * | 1 1 0 0 1 1 1 0 0 1 0 | Rm | 1 0 | imm2 | opcode | Rn | Rd | * +-----------------------+------+-----+------+--------+------+------+ */ static void disas_crypto_three_reg_imm2(DisasContext *s, uint32_t insn) { int opcode = extract32(insn, 10, 2); int imm2 = extract32(insn, 12, 2); int rm = extract32(insn, 16, 5); int rn = extract32(insn, 5, 5); int rd = extract32(insn, 0, 5); TCGv_ptr tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr; TCGv_i32 tcg_imm2, tcg_opcode; if (!arm_dc_feature(s, ARM_FEATURE_V8_SM3)) { unallocated_encoding(s); return; } if (!fp_access_check(s)) { return; } tcg_rd_ptr = vec_full_reg_ptr(s, rd); tcg_rn_ptr = vec_full_reg_ptr(s, rn); tcg_rm_ptr = vec_full_reg_ptr(s, rm); tcg_imm2 = tcg_const_i32(imm2); tcg_opcode = tcg_const_i32(opcode); gen_helper_crypto_sm3tt(tcg_rd_ptr, tcg_rn_ptr, tcg_rm_ptr, tcg_imm2, tcg_opcode); tcg_temp_free_ptr(tcg_rd_ptr); tcg_temp_free_ptr(tcg_rn_ptr); tcg_temp_free_ptr(tcg_rm_ptr); tcg_temp_free_i32(tcg_imm2); tcg_temp_free_i32(tcg_opcode); } /* C3.6 Data processing - SIMD, inc Crypto * * As the decode gets a little complex we are using a table based * approach for this part of the decode. */ static const AArch64DecodeTable data_proc_simd[] = { /* pattern , mask , fn */ { 0x0e200400, 0x9f200400, disas_simd_three_reg_same }, { 0x0e008400, 0x9f208400, disas_simd_three_reg_same_extra }, { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff }, { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc }, { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes }, { 0x0e000400, 0x9fe08400, disas_simd_copy }, { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */ /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */ { 0x0f000400, 0x9ff80400, disas_simd_mod_imm }, { 0x0f000400, 0x9f800400, disas_simd_shift_imm }, { 0x0e000000, 0xbf208c00, disas_simd_tb }, { 0x0e000800, 0xbf208c00, disas_simd_zip_trn }, { 0x2e000000, 0xbf208400, disas_simd_ext }, { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same }, { 0x5e008400, 0xdf208400, disas_simd_scalar_three_reg_same_extra }, { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff }, { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc }, { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise }, { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy }, { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */ { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm }, { 0x4e280800, 0xff3e0c00, disas_crypto_aes }, { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha }, { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha }, { 0xce608000, 0xffe0b000, disas_crypto_three_reg_sha512 }, { 0xcec08000, 0xfffff000, disas_crypto_two_reg_sha512 }, { 0xce000000, 0xff808000, disas_crypto_four_reg }, { 0xce800000, 0xffe00000, disas_crypto_xar }, { 0xce408000, 0xffe0c000, disas_crypto_three_reg_imm2 }, { 0x0e400400, 0x9f60c400, disas_simd_three_reg_same_fp16 }, { 0x0e780800, 0x8f7e0c00, disas_simd_two_reg_misc_fp16 }, { 0x5e400400, 0xdf60c400, disas_simd_scalar_three_reg_same_fp16 }, { 0x00000000, 0x00000000, NULL } }; static void disas_data_proc_simd(DisasContext *s, uint32_t insn) { /* Note that this is called with all non-FP cases from * table C3-6 so it must UNDEF for entries not specifically * allocated to instructions in that table. */ AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn); if (fn) { fn(s, insn); } else { unallocated_encoding(s); } } /* C3.6 Data processing - SIMD and floating point */ static void disas_data_proc_simd_fp(DisasContext *s, uint32_t insn) { if (extract32(insn, 28, 1) == 1 && extract32(insn, 30, 1) == 0) { disas_data_proc_fp(s, insn); } else { /* SIMD, including crypto */ disas_data_proc_simd(s, insn); } } /* C3.1 A64 instruction index by encoding */ static void disas_a64_insn(CPUARMState *env, DisasContext *s) { uint32_t insn; insn = arm_ldl_code(env, s->pc, s->sctlr_b); s->insn = insn; s->pc += 4; s->fp_access_checked = false; switch (extract32(insn, 25, 4)) { case 0x0: case 0x1: case 0x3: /* UNALLOCATED */ unallocated_encoding(s); break; case 0x2: if (!arm_dc_feature(s, ARM_FEATURE_SVE) || !disas_sve(s, insn)) { unallocated_encoding(s); } break; case 0x8: case 0x9: /* Data processing - immediate */ disas_data_proc_imm(s, insn); break; case 0xa: case 0xb: /* Branch, exception generation and system insns */ disas_b_exc_sys(s, insn); break; case 0x4: case 0x6: case 0xc: case 0xe: /* Loads and stores */ disas_ldst(s, insn); break; case 0x5: case 0xd: /* Data processing - register */ disas_data_proc_reg(s, insn); break; case 0x7: case 0xf: /* Data processing - SIMD and floating point */ disas_data_proc_simd_fp(s, insn); break; default: assert(FALSE); /* all 15 cases should be handled above */ break; } /* if we allocated any temporaries, free them here */ free_tmp_a64(s); } static void aarch64_tr_init_disas_context(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); CPUARMState *env = cpu->env_ptr; ARMCPU *arm_cpu = arm_env_get_cpu(env); int bound; dc->pc = dc->base.pc_first; dc->condjmp = 0; dc->aarch64 = 1; /* If we are coming from secure EL0 in a system with a 32-bit EL3, then * there is no secure EL1, so we route exceptions to EL3. */ dc->secure_routed_to_el3 = arm_feature(env, ARM_FEATURE_EL3) && !arm_el_is_aa64(env, 3); dc->thumb = 0; dc->sctlr_b = 0; dc->be_data = ARM_TBFLAG_BE_DATA(dc->base.tb->flags) ? MO_BE : MO_LE; dc->condexec_mask = 0; dc->condexec_cond = 0; dc->mmu_idx = core_to_arm_mmu_idx(env, ARM_TBFLAG_MMUIDX(dc->base.tb->flags)); dc->tbi0 = ARM_TBFLAG_TBI0(dc->base.tb->flags); dc->tbi1 = ARM_TBFLAG_TBI1(dc->base.tb->flags); dc->current_el = arm_mmu_idx_to_el(dc->mmu_idx); #if !defined(CONFIG_USER_ONLY) dc->user = (dc->current_el == 0); #endif dc->fp_excp_el = ARM_TBFLAG_FPEXC_EL(dc->base.tb->flags); dc->sve_excp_el = ARM_TBFLAG_SVEEXC_EL(dc->base.tb->flags); dc->sve_len = (ARM_TBFLAG_ZCR_LEN(dc->base.tb->flags) + 1) * 16; dc->vec_len = 0; dc->vec_stride = 0; dc->cp_regs = arm_cpu->cp_regs; dc->features = env->features; /* Single step state. The code-generation logic here is: * SS_ACTIVE == 0: * generate code with no special handling for single-stepping (except * that anything that can make us go to SS_ACTIVE == 1 must end the TB; * this happens anyway because those changes are all system register or * PSTATE writes). * SS_ACTIVE == 1, PSTATE.SS == 1: (active-not-pending) * emit code for one insn * emit code to clear PSTATE.SS * emit code to generate software step exception for completed step * end TB (as usual for having generated an exception) * SS_ACTIVE == 1, PSTATE.SS == 0: (active-pending) * emit code to generate a software step exception * end the TB */ dc->ss_active = ARM_TBFLAG_SS_ACTIVE(dc->base.tb->flags); dc->pstate_ss = ARM_TBFLAG_PSTATE_SS(dc->base.tb->flags); dc->is_ldex = false; dc->ss_same_el = (arm_debug_target_el(env) == dc->current_el); /* Bound the number of insns to execute to those left on the page. */ bound = -(dc->base.pc_first | TARGET_PAGE_MASK) / 4; /* If architectural single step active, limit to 1. */ if (dc->ss_active) { bound = 1; } dc->base.max_insns = MIN(dc->base.max_insns, bound); init_tmp_a64_array(dc); } static void aarch64_tr_tb_start(DisasContextBase *db, CPUState *cpu) { tcg_clear_temp_count(); } static void aarch64_tr_insn_start(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); tcg_gen_insn_start(dc->pc, 0, 0); dc->insn_start = tcg_last_op(); } static bool aarch64_tr_breakpoint_check(DisasContextBase *dcbase, CPUState *cpu, const CPUBreakpoint *bp) { DisasContext *dc = container_of(dcbase, DisasContext, base); if (bp->flags & BP_CPU) { gen_a64_set_pc_im(dc->pc); gen_helper_check_breakpoints(cpu_env); /* End the TB early; it likely won't be executed */ dc->base.is_jmp = DISAS_TOO_MANY; } else { gen_exception_internal_insn(dc, 0, EXCP_DEBUG); /* The address covered by the breakpoint must be included in [tb->pc, tb->pc + tb->size) in order to for it to be properly cleared -- thus we increment the PC here so that the logic setting tb->size below does the right thing. */ dc->pc += 4; dc->base.is_jmp = DISAS_NORETURN; } return true; } static void aarch64_tr_translate_insn(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); CPUARMState *env = cpu->env_ptr; if (dc->ss_active && !dc->pstate_ss) { /* Singlestep state is Active-pending. * If we're in this state at the start of a TB then either * a) we just took an exception to an EL which is being debugged * and this is the first insn in the exception handler * b) debug exceptions were masked and we just unmasked them * without changing EL (eg by clearing PSTATE.D) * In either case we're going to take a swstep exception in the * "did not step an insn" case, and so the syndrome ISV and EX * bits should be zero. */ assert(dc->base.num_insns == 1); gen_exception(EXCP_UDEF, syn_swstep(dc->ss_same_el, 0, 0), default_exception_el(dc)); dc->base.is_jmp = DISAS_NORETURN; } else { disas_a64_insn(env, dc); } dc->base.pc_next = dc->pc; translator_loop_temp_check(&dc->base); } static void aarch64_tr_tb_stop(DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); if (unlikely(dc->base.singlestep_enabled || dc->ss_active)) { /* Note that this means single stepping WFI doesn't halt the CPU. * For conditional branch insns this is harmless unreachable code as * gen_goto_tb() has already handled emitting the debug exception * (and thus a tb-jump is not possible when singlestepping). */ switch (dc->base.is_jmp) { default: gen_a64_set_pc_im(dc->pc); /* fall through */ case DISAS_EXIT: case DISAS_JUMP: if (dc->base.singlestep_enabled) { gen_exception_internal(EXCP_DEBUG); } else { gen_step_complete_exception(dc); } break; case DISAS_NORETURN: break; } } else { switch (dc->base.is_jmp) { case DISAS_NEXT: case DISAS_TOO_MANY: gen_goto_tb(dc, 1, dc->pc); break; default: case DISAS_UPDATE: gen_a64_set_pc_im(dc->pc); /* fall through */ case DISAS_EXIT: tcg_gen_exit_tb(NULL, 0); break; case DISAS_JUMP: tcg_gen_lookup_and_goto_ptr(); break; case DISAS_NORETURN: case DISAS_SWI: break; case DISAS_WFE: gen_a64_set_pc_im(dc->pc); gen_helper_wfe(cpu_env); break; case DISAS_YIELD: gen_a64_set_pc_im(dc->pc); gen_helper_yield(cpu_env); break; case DISAS_WFI: { /* This is a special case because we don't want to just halt the CPU * if trying to debug across a WFI. */ TCGv_i32 tmp = tcg_const_i32(4); gen_a64_set_pc_im(dc->pc); gen_helper_wfi(cpu_env, tmp); tcg_temp_free_i32(tmp); /* The helper doesn't necessarily throw an exception, but we * must go back to the main loop to check for interrupts anyway. */ tcg_gen_exit_tb(NULL, 0); break; } } } /* Functions above can change dc->pc, so re-align db->pc_next */ dc->base.pc_next = dc->pc; } static void aarch64_tr_disas_log(const DisasContextBase *dcbase, CPUState *cpu) { DisasContext *dc = container_of(dcbase, DisasContext, base); qemu_log("IN: %s\n", lookup_symbol(dc->base.pc_first)); log_target_disas(cpu, dc->base.pc_first, dc->base.tb->size); } const TranslatorOps aarch64_translator_ops = { .init_disas_context = aarch64_tr_init_disas_context, .tb_start = aarch64_tr_tb_start, .insn_start = aarch64_tr_insn_start, .breakpoint_check = aarch64_tr_breakpoint_check, .translate_insn = aarch64_tr_translate_insn, .tb_stop = aarch64_tr_tb_stop, .disas_log = aarch64_tr_disas_log, };