/* * ARM implementation of KVM hooks, 32 bit specific code. * * Copyright Christoffer Dall 2009-2010 * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include "qemu/osdep.h" #include #include #include "qemu-common.h" #include "cpu.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" #include "sysemu/kvm.h" #include "kvm_arm.h" #include "internals.h" #include "hw/arm/arm.h" #include "qemu/log.h" static inline void set_feature(uint64_t *features, int feature) { *features |= 1ULL << feature; } static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) { struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32); return ioctl(fd, KVM_GET_ONE_REG, &idreg); } bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) { /* Identify the feature bits corresponding to the host CPU, and * fill out the ARMHostCPUClass fields accordingly. To do this * we have to create a scratch VM, create a single CPU inside it, * and then query that CPU for the relevant ID registers. */ int err = 0, fdarray[3]; uint32_t midr, id_pfr0; uint64_t features = 0; /* Old kernels may not know about the PREFERRED_TARGET ioctl: however * we know these will only support creating one kind of guest CPU, * which is its preferred CPU type. */ static const uint32_t cpus_to_try[] = { QEMU_KVM_ARM_TARGET_CORTEX_A15, QEMU_KVM_ARM_TARGET_NONE }; struct kvm_vcpu_init init; if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { return false; } ahcf->target = init.target; /* This is not strictly blessed by the device tree binding docs yet, * but in practice the kernel does not care about this string so * there is no point maintaining an KVM_ARM_TARGET_* -> string table. */ ahcf->dtb_compatible = "arm,arm-v7"; err |= read_sys_reg32(fdarray[2], &midr, ARM_CP15_REG32(0, 0, 0, 0)); err |= read_sys_reg32(fdarray[2], &id_pfr0, ARM_CP15_REG32(0, 0, 1, 0)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, ARM_CP15_REG32(0, 0, 2, 0)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, ARM_CP15_REG32(0, 0, 2, 1)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, ARM_CP15_REG32(0, 0, 2, 2)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, ARM_CP15_REG32(0, 0, 2, 3)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, ARM_CP15_REG32(0, 0, 2, 4)); err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, ARM_CP15_REG32(0, 0, 2, 5)); if (read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, ARM_CP15_REG32(0, 0, 2, 7))) { /* * Older kernels don't support reading ID_ISAR6. This register was * only introduced in ARMv8, so we can assume that it is zero on a * CPU that a kernel this old is running on. */ ahcf->isar.id_isar6 = 0; } err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR0); err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1); /* * FIXME: There is not yet a way to read MVFR2. * Fortunately there is not yet anything in there that affects migration. */ kvm_arm_destroy_scratch_host_vcpu(fdarray); if (err < 0) { return false; } /* Now we've retrieved all the register information we can * set the feature bits based on the ID register fields. * We can assume any KVM supporting CPU is at least a v7 * with VFPv3, virtualization extensions, and the generic * timers; this in turn implies most of the other feature * bits, but a few must be tested. */ set_feature(&features, ARM_FEATURE_V7VE); set_feature(&features, ARM_FEATURE_VFP3); set_feature(&features, ARM_FEATURE_GENERIC_TIMER); if (extract32(id_pfr0, 12, 4) == 1) { set_feature(&features, ARM_FEATURE_THUMB2EE); } if (extract32(ahcf->isar.mvfr1, 12, 4) == 1) { set_feature(&features, ARM_FEATURE_NEON); } if (extract32(ahcf->isar.mvfr1, 28, 4) == 1) { /* FMAC support implies VFPv4 */ set_feature(&features, ARM_FEATURE_VFP4); } ahcf->features = features; return true; } bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) { /* Return true if the regidx is a register we should synchronize * via the cpreg_tuples array (ie is not a core reg we sync by * hand in kvm_arch_get/put_registers()) */ switch (regidx & KVM_REG_ARM_COPROC_MASK) { case KVM_REG_ARM_CORE: case KVM_REG_ARM_VFP: return false; default: return true; } } typedef struct CPRegStateLevel { uint64_t regidx; int level; } CPRegStateLevel; /* All coprocessor registers not listed in the following table are assumed to * be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less * often, you must add it to this table with a state of either * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. */ static const CPRegStateLevel non_runtime_cpregs[] = { { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, }; int kvm_arm_cpreg_level(uint64_t regidx) { int i; for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { const CPRegStateLevel *l = &non_runtime_cpregs[i]; if (l->regidx == regidx) { return l->level; } } return KVM_PUT_RUNTIME_STATE; } #define ARM_CPU_ID_MPIDR 0, 0, 0, 5 int kvm_arch_init_vcpu(CPUState *cs) { int ret; uint64_t v; uint32_t mpidr; struct kvm_one_reg r; ARMCPU *cpu = ARM_CPU(cs); if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) { fprintf(stderr, "KVM is not supported for this guest CPU type\n"); return -EINVAL; } /* Determine init features for this CPU */ memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); if (cpu->start_powered_off) { cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; } if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { cpu->psci_version = 2; cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; } /* Do KVM_ARM_VCPU_INIT ioctl */ ret = kvm_arm_vcpu_init(cs); if (ret) { return ret; } /* Query the kernel to make sure it supports 32 VFP * registers: QEMU's "cortex-a15" CPU is always a * VFP-D32 core. The simplest way to do this is just * to attempt to read register d31. */ r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31; r.addr = (uintptr_t)(&v); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (ret == -ENOENT) { return -EINVAL; } /* * When KVM is in use, PSCI is emulated in-kernel and not by qemu. * Currently KVM has its own idea about MPIDR assignment, so we * override our defaults with what we get from KVM. */ ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr); if (ret) { return ret; } cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK; /* Check whether userspace can specify guest syndrome value */ kvm_arm_init_serror_injection(cs); return kvm_arm_init_cpreg_list(cpu); } typedef struct Reg { uint64_t id; int offset; } Reg; #define COREREG(KERNELNAME, QEMUFIELD) \ { \ KVM_REG_ARM | KVM_REG_SIZE_U32 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ offsetof(CPUARMState, QEMUFIELD) \ } #define VFPSYSREG(R) \ { \ KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \ KVM_REG_ARM_VFP_##R, \ offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \ } /* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */ #define COREREG64(KERNELNAME, QEMUFIELD) \ { \ KVM_REG_ARM | KVM_REG_SIZE_U32 | \ KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \ offsetoflow32(CPUARMState, QEMUFIELD) \ } static const Reg regs[] = { /* R0_usr .. R14_usr */ COREREG(usr_regs.uregs[0], regs[0]), COREREG(usr_regs.uregs[1], regs[1]), COREREG(usr_regs.uregs[2], regs[2]), COREREG(usr_regs.uregs[3], regs[3]), COREREG(usr_regs.uregs[4], regs[4]), COREREG(usr_regs.uregs[5], regs[5]), COREREG(usr_regs.uregs[6], regs[6]), COREREG(usr_regs.uregs[7], regs[7]), COREREG(usr_regs.uregs[8], usr_regs[0]), COREREG(usr_regs.uregs[9], usr_regs[1]), COREREG(usr_regs.uregs[10], usr_regs[2]), COREREG(usr_regs.uregs[11], usr_regs[3]), COREREG(usr_regs.uregs[12], usr_regs[4]), COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]), COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]), /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */ COREREG(svc_regs[0], banked_r13[BANK_SVC]), COREREG(svc_regs[1], banked_r14[BANK_SVC]), COREREG64(svc_regs[2], banked_spsr[BANK_SVC]), COREREG(abt_regs[0], banked_r13[BANK_ABT]), COREREG(abt_regs[1], banked_r14[BANK_ABT]), COREREG64(abt_regs[2], banked_spsr[BANK_ABT]), COREREG(und_regs[0], banked_r13[BANK_UND]), COREREG(und_regs[1], banked_r14[BANK_UND]), COREREG64(und_regs[2], banked_spsr[BANK_UND]), COREREG(irq_regs[0], banked_r13[BANK_IRQ]), COREREG(irq_regs[1], banked_r14[BANK_IRQ]), COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]), /* R8_fiq .. R14_fiq and SPSR_fiq */ COREREG(fiq_regs[0], fiq_regs[0]), COREREG(fiq_regs[1], fiq_regs[1]), COREREG(fiq_regs[2], fiq_regs[2]), COREREG(fiq_regs[3], fiq_regs[3]), COREREG(fiq_regs[4], fiq_regs[4]), COREREG(fiq_regs[5], banked_r13[BANK_FIQ]), COREREG(fiq_regs[6], banked_r14[BANK_FIQ]), COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]), /* R15 */ COREREG(usr_regs.uregs[15], regs[15]), /* VFP system registers */ VFPSYSREG(FPSID), VFPSYSREG(MVFR1), VFPSYSREG(MVFR0), VFPSYSREG(FPEXC), VFPSYSREG(FPINST), VFPSYSREG(FPINST2), }; int kvm_arch_put_registers(CPUState *cs, int level) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; struct kvm_one_reg r; int mode, bn; int ret, i; uint32_t cpsr, fpscr; /* Make sure the banked regs are properly set */ mode = env->uncached_cpsr & CPSR_M; bn = bank_number(mode); if (mode == ARM_CPU_MODE_FIQ) { memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t)); } else { memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t)); } env->banked_r13[bn] = env->regs[13]; env->banked_spsr[bn] = env->spsr; env->banked_r14[r14_bank_number(mode)] = env->regs[14]; /* Now we can safely copy stuff down to the kernel */ for (i = 0; i < ARRAY_SIZE(regs); i++) { r.id = regs[i].id; r.addr = (uintptr_t)(env) + regs[i].offset; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); if (ret) { return ret; } } /* Special cases which aren't a single CPUARMState field */ cpsr = cpsr_read(env); r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); r.addr = (uintptr_t)(&cpsr); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); if (ret) { return ret; } /* VFP registers */ r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; for (i = 0; i < 32; i++) { r.addr = (uintptr_t)aa32_vfp_dreg(env, i); ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); if (ret) { return ret; } r.id++; } r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_FPSCR; fpscr = vfp_get_fpscr(env); r.addr = (uintptr_t)&fpscr; ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r); if (ret) { return ret; } ret = kvm_put_vcpu_events(cpu); if (ret) { return ret; } write_cpustate_to_list(cpu, true); if (!write_list_to_kvmstate(cpu, level)) { return EINVAL; } kvm_arm_sync_mpstate_to_kvm(cpu); return ret; } int kvm_arch_get_registers(CPUState *cs) { ARMCPU *cpu = ARM_CPU(cs); CPUARMState *env = &cpu->env; struct kvm_one_reg r; int mode, bn; int ret, i; uint32_t cpsr, fpscr; for (i = 0; i < ARRAY_SIZE(regs); i++) { r.id = regs[i].id; r.addr = (uintptr_t)(env) + regs[i].offset; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (ret) { return ret; } } /* Special cases which aren't a single CPUARMState field */ r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr); r.addr = (uintptr_t)(&cpsr); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (ret) { return ret; } cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw); /* Make sure the current mode regs are properly set */ mode = env->uncached_cpsr & CPSR_M; bn = bank_number(mode); if (mode == ARM_CPU_MODE_FIQ) { memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t)); } else { memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t)); } env->regs[13] = env->banked_r13[bn]; env->spsr = env->banked_spsr[bn]; env->regs[14] = env->banked_r14[r14_bank_number(mode)]; /* VFP registers */ r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP; for (i = 0; i < 32; i++) { r.addr = (uintptr_t)aa32_vfp_dreg(env, i); ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (ret) { return ret; } r.id++; } r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_FPSCR; r.addr = (uintptr_t)&fpscr; ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r); if (ret) { return ret; } vfp_set_fpscr(env, fpscr); ret = kvm_get_vcpu_events(cpu); if (ret) { return ret; } if (!write_kvmstate_to_list(cpu)) { return EINVAL; } /* Note that it's OK to have registers which aren't in CPUState, * so we can ignore a failure return here. */ write_list_to_cpustate(cpu); kvm_arm_sync_mpstate_to_qemu(cpu); return 0; } int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); return -EINVAL; } int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) { qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); return -EINVAL; } bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) { qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__); return false; } int kvm_arch_insert_hw_breakpoint(target_ulong addr, target_ulong len, int type) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } int kvm_arch_remove_hw_breakpoint(target_ulong addr, target_ulong len, int type) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); return -EINVAL; } void kvm_arch_remove_all_hw_breakpoints(void) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); } void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); } bool kvm_arm_hw_debug_active(CPUState *cs) { return false; } void kvm_arm_pmu_set_irq(CPUState *cs, int irq) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); } void kvm_arm_pmu_init(CPUState *cs) { qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__); }