/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include
#include "cpu.h"
#include "dyngen-exec.h"
#include "host-utils.h"
#include "helper.h"
#if !defined(CONFIG_USER_ONLY)
#include "softmmu_exec.h"
#endif /* !defined(CONFIG_USER_ONLY) */
#ifndef CONFIG_USER_ONLY
static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
#endif
static inline void compute_hflags(CPUMIPSState *env)
{
env->hflags &= ~(MIPS_HFLAG_COP1X | MIPS_HFLAG_64 | MIPS_HFLAG_CP0 |
MIPS_HFLAG_F64 | MIPS_HFLAG_FPU | MIPS_HFLAG_KSU |
MIPS_HFLAG_UX);
if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
!(env->CP0_Status & (1 << CP0St_ERL)) &&
!(env->hflags & MIPS_HFLAG_DM)) {
env->hflags |= (env->CP0_Status >> CP0St_KSU) & MIPS_HFLAG_KSU;
}
#if defined(TARGET_MIPS64)
if (((env->hflags & MIPS_HFLAG_KSU) != MIPS_HFLAG_UM) ||
(env->CP0_Status & (1 << CP0St_PX)) ||
(env->CP0_Status & (1 << CP0St_UX))) {
env->hflags |= MIPS_HFLAG_64;
}
if (env->CP0_Status & (1 << CP0St_UX)) {
env->hflags |= MIPS_HFLAG_UX;
}
#endif
if ((env->CP0_Status & (1 << CP0St_CU0)) ||
!(env->hflags & MIPS_HFLAG_KSU)) {
env->hflags |= MIPS_HFLAG_CP0;
}
if (env->CP0_Status & (1 << CP0St_CU1)) {
env->hflags |= MIPS_HFLAG_FPU;
}
if (env->CP0_Status & (1 << CP0St_FR)) {
env->hflags |= MIPS_HFLAG_F64;
}
if (env->insn_flags & ISA_MIPS32R2) {
if (env->active_fpu.fcr0 & (1 << FCR0_F64)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS32) {
if (env->hflags & MIPS_HFLAG_64) {
env->hflags |= MIPS_HFLAG_COP1X;
}
} else if (env->insn_flags & ISA_MIPS4) {
/* All supported MIPS IV CPUs use the XX (CU3) to enable
and disable the MIPS IV extensions to the MIPS III ISA.
Some other MIPS IV CPUs ignore the bit, so the check here
would be too restrictive for them. */
if (env->CP0_Status & (1 << CP0St_CU3)) {
env->hflags |= MIPS_HFLAG_COP1X;
}
}
}
/*****************************************************************************/
/* Exceptions processing helpers */
void helper_raise_exception_err (uint32_t exception, int error_code)
{
#if 1
if (exception < 0x100)
qemu_log("%s: %d %d\n", __func__, exception, error_code);
#endif
env->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit(env);
}
void helper_raise_exception (uint32_t exception)
{
helper_raise_exception_err(exception, 0);
}
#if !defined(CONFIG_USER_ONLY)
static void do_restore_state (void *pc_ptr)
{
TranslationBlock *tb;
unsigned long pc = (unsigned long) pc_ptr;
tb = tb_find_pc (pc);
if (tb) {
cpu_restore_state(tb, env, pc);
}
}
#endif
#if defined(CONFIG_USER_ONLY)
#define HELPER_LD(name, insn, type) \
static inline type do_##name(target_ulong addr, int mem_idx) \
{ \
return (type) insn##_raw(addr); \
}
#else
#define HELPER_LD(name, insn, type) \
static inline type do_##name(target_ulong addr, int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: return (type) insn##_kernel(addr); break; \
case 1: return (type) insn##_super(addr); break; \
default: \
case 2: return (type) insn##_user(addr); break; \
} \
}
#endif
HELPER_LD(lbu, ldub, uint8_t)
HELPER_LD(lw, ldl, int32_t)
#ifdef TARGET_MIPS64
HELPER_LD(ld, ldq, int64_t)
#endif
#undef HELPER_LD
#if defined(CONFIG_USER_ONLY)
#define HELPER_ST(name, insn, type) \
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
{ \
insn##_raw(addr, val); \
}
#else
#define HELPER_ST(name, insn, type) \
static inline void do_##name(target_ulong addr, type val, int mem_idx) \
{ \
switch (mem_idx) \
{ \
case 0: insn##_kernel(addr, val); break; \
case 1: insn##_super(addr, val); break; \
default: \
case 2: insn##_user(addr, val); break; \
} \
}
#endif
HELPER_ST(sb, stb, uint8_t)
HELPER_ST(sw, stl, uint32_t)
#ifdef TARGET_MIPS64
HELPER_ST(sd, stq, uint64_t)
#endif
#undef HELPER_ST
target_ulong helper_clo (target_ulong arg1)
{
return clo32(arg1);
}
target_ulong helper_clz (target_ulong arg1)
{
return clz32(arg1);
}
#if defined(TARGET_MIPS64)
target_ulong helper_dclo (target_ulong arg1)
{
return clo64(arg1);
}
target_ulong helper_dclz (target_ulong arg1)
{
return clz64(arg1);
}
#endif /* TARGET_MIPS64 */
/* 64 bits arithmetic for 32 bits hosts */
static inline uint64_t get_HILO (void)
{
return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
}
static inline void set_HILO (uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)HILO;
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
{
env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
{
arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
env->active_tc.HI[0] = (int32_t)(HILO >> 32);
}
/* Multiplication variants of the vr54xx. */
target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
{
set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
return arg1;
}
target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
return arg1;
}
target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
return arg1;
}
target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
{
set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
return arg1;
}
#ifdef TARGET_MIPS64
void helper_dmult (target_ulong arg1, target_ulong arg2)
{
muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
}
void helper_dmultu (target_ulong arg1, target_ulong arg2)
{
mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
}
#endif
#ifndef CONFIG_USER_ONLY
static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
{
target_phys_addr_t lladdr;
lladdr = cpu_mips_translate_address(env, address, rw);
if (lladdr == -1LL) {
cpu_loop_exit(env);
} else {
return lladdr;
}
}
#define HELPER_LD_ATOMIC(name, insn) \
target_ulong helper_##name(target_ulong arg, int mem_idx) \
{ \
env->lladdr = do_translate_address(arg, 0); \
env->llval = do_##insn(arg, mem_idx); \
return env->llval; \
}
HELPER_LD_ATOMIC(ll, lw)
#ifdef TARGET_MIPS64
HELPER_LD_ATOMIC(lld, ld)
#endif
#undef HELPER_LD_ATOMIC
#define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
{ \
target_long tmp; \
\
if (arg2 & almask) { \
env->CP0_BadVAddr = arg2; \
helper_raise_exception(EXCP_AdES); \
} \
if (do_translate_address(arg2, 1) == env->lladdr) { \
tmp = do_##ld_insn(arg2, mem_idx); \
if (tmp == env->llval) { \
do_##st_insn(arg2, arg1, mem_idx); \
return 1; \
} \
} \
return 0; \
}
HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
#ifdef TARGET_MIPS64
HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
#endif
#undef HELPER_ST_ATOMIC
#endif
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK(v) ((v) & 3)
#define GET_OFFSET(addr, offset) (addr + (offset))
#else
#define GET_LMASK(v) (((v) & 3) ^ 3)
#define GET_OFFSET(addr, offset) (addr - (offset))
#endif
target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
target_ulong tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
if (GET_LMASK(arg2) <= 2) {
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
}
if (GET_LMASK(arg2) <= 1) {
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
}
if (GET_LMASK(arg2) == 0) {
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
arg1 = (arg1 & 0xFFFFFF00) | tmp;
}
return (int32_t)arg1;
}
target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
target_ulong tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0xFFFFFF00) | tmp;
if (GET_LMASK(arg2) >= 1) {
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
}
if (GET_LMASK(arg2) >= 2) {
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
}
if (GET_LMASK(arg2) == 3) {
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
}
return (int32_t)arg1;
}
void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK(arg2) <= 2)
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) <= 1)
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) == 0)
do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
}
void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK(arg2) >= 1)
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK(arg2) >= 2)
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK(arg2) == 3)
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
}
#if defined(TARGET_MIPS64)
/* "half" load and stores. We must do the memory access inline,
or fault handling won't work. */
#ifdef TARGET_WORDS_BIGENDIAN
#define GET_LMASK64(v) ((v) & 7)
#else
#define GET_LMASK64(v) (((v) & 7) ^ 7)
#endif
target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
uint64_t tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
if (GET_LMASK64(arg2) <= 6) {
tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
}
if (GET_LMASK64(arg2) <= 5) {
tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
}
if (GET_LMASK64(arg2) <= 4) {
tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
}
if (GET_LMASK64(arg2) <= 3) {
tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
}
if (GET_LMASK64(arg2) <= 2) {
tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
}
if (GET_LMASK64(arg2) <= 1) {
tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
}
if (GET_LMASK64(arg2) == 0) {
tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
}
return arg1;
}
target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
uint64_t tmp;
tmp = do_lbu(arg2, mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
if (GET_LMASK64(arg2) >= 1) {
tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
}
if (GET_LMASK64(arg2) >= 2) {
tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
}
if (GET_LMASK64(arg2) >= 3) {
tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
}
if (GET_LMASK64(arg2) >= 4) {
tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
}
if (GET_LMASK64(arg2) >= 5) {
tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
}
if (GET_LMASK64(arg2) >= 6) {
tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
}
if (GET_LMASK64(arg2) == 7) {
tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
}
return arg1;
}
void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
if (GET_LMASK64(arg2) <= 6)
do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) <= 5)
do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) <= 4)
do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) <= 3)
do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) <= 2)
do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) <= 1)
do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) <= 0)
do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
}
void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
{
do_sb(arg2, (uint8_t)arg1, mem_idx);
if (GET_LMASK64(arg2) >= 1)
do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
if (GET_LMASK64(arg2) >= 2)
do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
if (GET_LMASK64(arg2) >= 3)
do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
if (GET_LMASK64(arg2) >= 4)
do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
if (GET_LMASK64(arg2) >= 5)
do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
if (GET_LMASK64(arg2) >= 6)
do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
if (GET_LMASK64(arg2) == 7)
do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
}
#endif /* TARGET_MIPS64 */
static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
#ifdef CONFIG_USER_ONLY
#undef ldfun
#define ldfun ldl_raw
#else
uint32_t (*ldfun)(target_ulong);
switch (mem_idx)
{
case 0: ldfun = ldl_kernel; break;
case 1: ldfun = ldl_super; break;
default:
case 2: ldfun = ldl_user; break;
}
#endif
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
addr += 4;
}
}
if (do_r31) {
env->active_tc.gpr[31] = (target_long) ldfun(addr);
}
}
void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
#ifdef CONFIG_USER_ONLY
#undef stfun
#define stfun stl_raw
#else
void (*stfun)(target_ulong, uint32_t);
switch (mem_idx)
{
case 0: stfun = stl_kernel; break;
case 1: stfun = stl_super; break;
default:
case 2: stfun = stl_user; break;
}
#endif
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
addr += 4;
}
}
if (do_r31) {
stfun(addr, env->active_tc.gpr[31]);
}
}
#if defined(TARGET_MIPS64)
void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
#ifdef CONFIG_USER_ONLY
#undef ldfun
#define ldfun ldq_raw
#else
uint64_t (*ldfun)(target_ulong);
switch (mem_idx)
{
case 0: ldfun = ldq_kernel; break;
case 1: ldfun = ldq_super; break;
default:
case 2: ldfun = ldq_user; break;
}
#endif
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
addr += 8;
}
}
if (do_r31) {
env->active_tc.gpr[31] = ldfun(addr);
}
}
void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
{
target_ulong base_reglist = reglist & 0xf;
target_ulong do_r31 = reglist & 0x10;
#ifdef CONFIG_USER_ONLY
#undef stfun
#define stfun stq_raw
#else
void (*stfun)(target_ulong, uint64_t);
switch (mem_idx)
{
case 0: stfun = stq_kernel; break;
case 1: stfun = stq_super; break;
default:
case 2: stfun = stq_user; break;
}
#endif
if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
target_ulong i;
for (i = 0; i < base_reglist; i++) {
stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
addr += 8;
}
}
if (do_r31) {
stfun(addr, env->active_tc.gpr[31]);
}
}
#endif
#ifndef CONFIG_USER_ONLY
/* SMP helpers. */
static int mips_vpe_is_wfi(CPUMIPSState *c)
{
/* If the VPE is halted but otherwise active, it means it's waiting for
an interrupt. */
return c->halted && mips_vpe_active(c);
}
static inline void mips_vpe_wake(CPUMIPSState *c)
{
/* Dont set ->halted = 0 directly, let it be done via cpu_has_work
because there might be other conditions that state that c should
be sleeping. */
cpu_interrupt(c, CPU_INTERRUPT_WAKE);
}
static inline void mips_vpe_sleep(CPUMIPSState *c)
{
/* The VPE was shut off, really go to bed.
Reset any old _WAKE requests. */
c->halted = 1;
cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
}
static inline void mips_tc_wake(CPUMIPSState *c, int tc)
{
/* FIXME: TC reschedule. */
if (mips_vpe_active(c) && !mips_vpe_is_wfi(c)) {
mips_vpe_wake(c);
}
}
static inline void mips_tc_sleep(CPUMIPSState *c, int tc)
{
/* FIXME: TC reschedule. */
if (!mips_vpe_active(c)) {
mips_vpe_sleep(c);
}
}
/* tc should point to an int with the value of the global TC index.
This function will transform it into a local index within the
returned CPUMIPSState.
FIXME: This code assumes that all VPEs have the same number of TCs,
which depends on runtime setup. Can probably be fixed by
walking the list of CPUMIPSStates. */
static CPUMIPSState *mips_cpu_map_tc(int *tc)
{
CPUMIPSState *other;
int vpe_idx, nr_threads = env->nr_threads;
int tc_idx = *tc;
if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
/* Not allowed to address other CPUs. */
*tc = env->current_tc;
return env;
}
vpe_idx = tc_idx / nr_threads;
*tc = tc_idx % nr_threads;
other = qemu_get_cpu(vpe_idx);
return other ? other : env;
}
/* The per VPE CP0_Status register shares some fields with the per TC
CP0_TCStatus registers. These fields are wired to the same registers,
so changes to either of them should be reflected on both registers.
Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
These helper call synchronizes the regs for a given cpu. */
/* Called for updates to CP0_Status. */
static void sync_c0_status(CPUMIPSState *cpu, int tc)
{
int32_t tcstatus, *tcst;
uint32_t v = cpu->CP0_Status;
uint32_t cu, mx, asid, ksu;
uint32_t mask = ((1 << CP0TCSt_TCU3)
| (1 << CP0TCSt_TCU2)
| (1 << CP0TCSt_TCU1)
| (1 << CP0TCSt_TCU0)
| (1 << CP0TCSt_TMX)
| (3 << CP0TCSt_TKSU)
| (0xff << CP0TCSt_TASID));
cu = (v >> CP0St_CU0) & 0xf;
mx = (v >> CP0St_MX) & 0x1;
ksu = (v >> CP0St_KSU) & 0x3;
asid = env->CP0_EntryHi & 0xff;
tcstatus = cu << CP0TCSt_TCU0;
tcstatus |= mx << CP0TCSt_TMX;
tcstatus |= ksu << CP0TCSt_TKSU;
tcstatus |= asid;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~mask;
*tcst |= tcstatus;
compute_hflags(cpu);
}
/* Called for updates to CP0_TCStatus. */
static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc, target_ulong v)
{
uint32_t status;
uint32_t tcu, tmx, tasid, tksu;
uint32_t mask = ((1 << CP0St_CU3)
| (1 << CP0St_CU2)
| (1 << CP0St_CU1)
| (1 << CP0St_CU0)
| (1 << CP0St_MX)
| (3 << CP0St_KSU));
tcu = (v >> CP0TCSt_TCU0) & 0xf;
tmx = (v >> CP0TCSt_TMX) & 0x1;
tasid = v & 0xff;
tksu = (v >> CP0TCSt_TKSU) & 0x3;
status = tcu << CP0St_CU0;
status |= tmx << CP0St_MX;
status |= tksu << CP0St_KSU;
cpu->CP0_Status &= ~mask;
cpu->CP0_Status |= status;
/* Sync the TASID with EntryHi. */
cpu->CP0_EntryHi &= ~0xff;
cpu->CP0_EntryHi = tasid;
compute_hflags(cpu);
}
/* Called for updates to CP0_EntryHi. */
static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
{
int32_t *tcst;
uint32_t asid, v = cpu->CP0_EntryHi;
asid = v & 0xff;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~0xff;
*tcst |= asid;
}
/* CP0 helpers */
target_ulong helper_mfc0_mvpcontrol (void)
{
return env->mvp->CP0_MVPControl;
}
target_ulong helper_mfc0_mvpconf0 (void)
{
return env->mvp->CP0_MVPConf0;
}
target_ulong helper_mfc0_mvpconf1 (void)
{
return env->mvp->CP0_MVPConf1;
}
target_ulong helper_mfc0_random (void)
{
return (int32_t)cpu_mips_get_random(env);
}
target_ulong helper_mfc0_tcstatus (void)
{
return env->active_tc.CP0_TCStatus;
}
target_ulong helper_mftc0_tcstatus(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCStatus;
else
return other->tcs[other_tc].CP0_TCStatus;
}
target_ulong helper_mfc0_tcbind (void)
{
return env->active_tc.CP0_TCBind;
}
target_ulong helper_mftc0_tcbind(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCBind;
else
return other->tcs[other_tc].CP0_TCBind;
}
target_ulong helper_mfc0_tcrestart (void)
{
return env->active_tc.PC;
}
target_ulong helper_mftc0_tcrestart(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.PC;
else
return other->tcs[other_tc].PC;
}
target_ulong helper_mfc0_tchalt (void)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_mftc0_tchalt(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCHalt;
else
return other->tcs[other_tc].CP0_TCHalt;
}
target_ulong helper_mfc0_tccontext (void)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_mftc0_tccontext(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCContext;
else
return other->tcs[other_tc].CP0_TCContext;
}
target_ulong helper_mfc0_tcschedule (void)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_mftc0_tcschedule(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCSchedule;
else
return other->tcs[other_tc].CP0_TCSchedule;
}
target_ulong helper_mfc0_tcschefback (void)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_mftc0_tcschefback(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.CP0_TCScheFBack;
else
return other->tcs[other_tc].CP0_TCScheFBack;
}
target_ulong helper_mfc0_count (void)
{
return (int32_t)cpu_mips_get_count(env);
}
target_ulong helper_mftc0_entryhi(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
return other->CP0_EntryHi;
}
target_ulong helper_mftc0_cause(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tccause;
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc) {
tccause = other->CP0_Cause;
} else {
tccause = other->CP0_Cause;
}
return tccause;
}
target_ulong helper_mftc0_status(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
return other->CP0_Status;
}
target_ulong helper_mfc0_lladdr (void)
{
return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
}
target_ulong helper_mfc0_watchlo (uint32_t sel)
{
return (int32_t)env->CP0_WatchLo[sel];
}
target_ulong helper_mfc0_watchhi (uint32_t sel)
{
return env->CP0_WatchHi[sel];
}
target_ulong helper_mfc0_debug (void)
{
target_ulong t0 = env->CP0_Debug;
if (env->hflags & MIPS_HFLAG_DM)
t0 |= 1 << CP0DB_DM;
return t0;
}
target_ulong helper_mftc0_debug(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
int32_t tcstatus;
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
tcstatus = other->active_tc.CP0_Debug_tcstatus;
else
tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
/* XXX: Might be wrong, check with EJTAG spec. */
return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
#if defined(TARGET_MIPS64)
target_ulong helper_dmfc0_tcrestart (void)
{
return env->active_tc.PC;
}
target_ulong helper_dmfc0_tchalt (void)
{
return env->active_tc.CP0_TCHalt;
}
target_ulong helper_dmfc0_tccontext (void)
{
return env->active_tc.CP0_TCContext;
}
target_ulong helper_dmfc0_tcschedule (void)
{
return env->active_tc.CP0_TCSchedule;
}
target_ulong helper_dmfc0_tcschefback (void)
{
return env->active_tc.CP0_TCScheFBack;
}
target_ulong helper_dmfc0_lladdr (void)
{
return env->lladdr >> env->CP0_LLAddr_shift;
}
target_ulong helper_dmfc0_watchlo (uint32_t sel)
{
return env->CP0_WatchLo[sel];
}
#endif /* TARGET_MIPS64 */
void helper_mtc0_index (target_ulong arg1)
{
int num = 1;
unsigned int tmp = env->tlb->nb_tlb;
do {
tmp >>= 1;
num <<= 1;
} while (tmp);
env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
}
void helper_mtc0_mvpcontrol (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
(1 << CP0MVPCo_EVP);
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0MVPCo_STLB);
newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
// TODO: Enable/disable shared TLB, enable/disable VPEs.
env->mvp->CP0_MVPControl = newval;
}
void helper_mtc0_vpecontrol (target_ulong arg1)
{
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
/* Yield scheduler intercept not implemented. */
/* Gating storage scheduler intercept not implemented. */
// TODO: Enable/disable TCs.
env->CP0_VPEControl = newval;
}
void helper_mttc0_vpecontrol(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
uint32_t mask;
uint32_t newval;
mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
(1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
/* TODO: Enable/disable TCs. */
other->CP0_VPEControl = newval;
}
target_ulong helper_mftc0_vpecontrol(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
/* FIXME: Mask away return zero on read bits. */
return other->CP0_VPEControl;
}
target_ulong helper_mftc0_vpeconf0(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
return other->CP0_VPEConf0;
}
void helper_mtc0_vpeconf0 (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
mask |= (0xff << CP0VPEC0_XTC);
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
}
newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
// TODO: TC exclusive handling due to ERL/EXL.
env->CP0_VPEConf0 = newval;
}
void helper_mttc0_vpeconf0(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
uint32_t mask = 0;
uint32_t newval;
mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
/* TODO: TC exclusive handling due to ERL/EXL. */
other->CP0_VPEConf0 = newval;
}
void helper_mtc0_vpeconf1 (target_ulong arg1)
{
uint32_t mask = 0;
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
(0xff << CP0VPEC1_NCP1);
newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
/* UDI not implemented. */
/* CP2 not implemented. */
// TODO: Handle FPU (CP1) binding.
env->CP0_VPEConf1 = newval;
}
void helper_mtc0_yqmask (target_ulong arg1)
{
/* Yield qualifier inputs not implemented. */
env->CP0_YQMask = 0x00000000;
}
void helper_mtc0_vpeopt (target_ulong arg1)
{
env->CP0_VPEOpt = arg1 & 0x0000ffff;
}
void helper_mtc0_entrylo0 (target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_tcstatus (target_ulong arg1)
{
uint32_t mask = env->CP0_TCStatus_rw_bitmask;
uint32_t newval;
newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCStatus = newval;
sync_c0_tcstatus(env, env->current_tc, newval);
}
void helper_mttc0_tcstatus (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCStatus = arg1;
else
other->tcs[other_tc].CP0_TCStatus = arg1;
sync_c0_tcstatus(other, other_tc, arg1);
}
void helper_mtc0_tcbind (target_ulong arg1)
{
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
env->active_tc.CP0_TCBind = newval;
}
void helper_mttc0_tcbind (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t mask = (1 << CP0TCBd_TBE);
uint32_t newval;
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
mask |= (1 << CP0TCBd_CurVPE);
if (other_tc == other->current_tc) {
newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
other->active_tc.CP0_TCBind = newval;
} else {
newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
other->tcs[other_tc].CP0_TCBind = newval;
}
}
void helper_mtc0_tcrestart (target_ulong arg1)
{
env->active_tc.PC = arg1;
env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
env->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
void helper_mttc0_tcrestart (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc) {
other->active_tc.PC = arg1;
other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->lladdr = 0ULL;
/* MIPS16 not implemented. */
} else {
other->tcs[other_tc].PC = arg1;
other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
other->lladdr = 0ULL;
/* MIPS16 not implemented. */
}
}
void helper_mtc0_tchalt (target_ulong arg1)
{
env->active_tc.CP0_TCHalt = arg1 & 0x1;
// TODO: Halt TC / Restart (if allocated+active) TC.
if (env->active_tc.CP0_TCHalt & 1) {
mips_tc_sleep(env, env->current_tc);
} else {
mips_tc_wake(env, env->current_tc);
}
}
void helper_mttc0_tchalt (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
// TODO: Halt TC / Restart (if allocated+active) TC.
if (other_tc == other->current_tc)
other->active_tc.CP0_TCHalt = arg1;
else
other->tcs[other_tc].CP0_TCHalt = arg1;
if (arg1 & 1) {
mips_tc_sleep(other, other_tc);
} else {
mips_tc_wake(other, other_tc);
}
}
void helper_mtc0_tccontext (target_ulong arg1)
{
env->active_tc.CP0_TCContext = arg1;
}
void helper_mttc0_tccontext (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCContext = arg1;
else
other->tcs[other_tc].CP0_TCContext = arg1;
}
void helper_mtc0_tcschedule (target_ulong arg1)
{
env->active_tc.CP0_TCSchedule = arg1;
}
void helper_mttc0_tcschedule (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCSchedule = arg1;
else
other->tcs[other_tc].CP0_TCSchedule = arg1;
}
void helper_mtc0_tcschefback (target_ulong arg1)
{
env->active_tc.CP0_TCScheFBack = arg1;
}
void helper_mttc0_tcschefback (target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.CP0_TCScheFBack = arg1;
else
other->tcs[other_tc].CP0_TCScheFBack = arg1;
}
void helper_mtc0_entrylo1 (target_ulong arg1)
{
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
}
void helper_mtc0_context (target_ulong arg1)
{
env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
}
void helper_mtc0_pagemask (target_ulong arg1)
{
/* 1k pages not implemented */
env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
}
void helper_mtc0_pagegrain (target_ulong arg1)
{
/* SmartMIPS not implemented */
/* Large physaddr (PABITS) not implemented */
/* 1k pages not implemented */
env->CP0_PageGrain = 0;
}
void helper_mtc0_wired (target_ulong arg1)
{
env->CP0_Wired = arg1 % env->tlb->nb_tlb;
}
void helper_mtc0_srsconf0 (target_ulong arg1)
{
env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
}
void helper_mtc0_srsconf1 (target_ulong arg1)
{
env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
}
void helper_mtc0_srsconf2 (target_ulong arg1)
{
env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
}
void helper_mtc0_srsconf3 (target_ulong arg1)
{
env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
}
void helper_mtc0_srsconf4 (target_ulong arg1)
{
env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
}
void helper_mtc0_hwrena (target_ulong arg1)
{
env->CP0_HWREna = arg1 & 0x0000000F;
}
void helper_mtc0_count (target_ulong arg1)
{
cpu_mips_store_count(env, arg1);
}
void helper_mtc0_entryhi (target_ulong arg1)
{
target_ulong old, val;
/* 1k pages not implemented */
val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
#if defined(TARGET_MIPS64)
val &= env->SEGMask;
#endif
old = env->CP0_EntryHi;
env->CP0_EntryHi = val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_entryhi(env, env->current_tc);
}
/* If the ASID changes, flush qemu's TLB. */
if ((old & 0xFF) != (val & 0xFF))
cpu_mips_tlb_flush(env, 1);
}
void helper_mttc0_entryhi(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
other->CP0_EntryHi = arg1;
sync_c0_entryhi(other, other_tc);
}
void helper_mtc0_compare (target_ulong arg1)
{
cpu_mips_store_compare(env, arg1);
}
void helper_mtc0_status (target_ulong arg1)
{
uint32_t val, old;
uint32_t mask = env->CP0_Status_rw_bitmask;
val = arg1 & mask;
old = env->CP0_Status;
env->CP0_Status = (env->CP0_Status & ~mask) | val;
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_status(env, env->current_tc);
} else {
compute_hflags(env);
}
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
old, old & env->CP0_Cause & CP0Ca_IP_mask,
val, val & env->CP0_Cause & CP0Ca_IP_mask,
env->CP0_Cause);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
}
void helper_mttc0_status(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
other->CP0_Status = arg1 & ~0xf1000018;
sync_c0_status(other, other_tc);
}
void helper_mtc0_intctl (target_ulong arg1)
{
/* vectored interrupts not implemented, no performance counters. */
env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
}
void helper_mtc0_srsctl (target_ulong arg1)
{
uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
}
static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
{
uint32_t mask = 0x00C00300;
uint32_t old = cpu->CP0_Cause;
int i;
if (cpu->insn_flags & ISA_MIPS32R2) {
mask |= 1 << CP0Ca_DC;
}
cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
cpu_mips_stop_count(cpu);
} else {
cpu_mips_start_count(cpu);
}
}
/* Set/reset software interrupts */
for (i = 0 ; i < 2 ; i++) {
if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
}
}
}
void helper_mtc0_cause(target_ulong arg1)
{
mtc0_cause(env, arg1);
}
void helper_mttc0_cause(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
mtc0_cause(other, arg1);
}
target_ulong helper_mftc0_epc(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
return other->CP0_EPC;
}
target_ulong helper_mftc0_ebase(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
return other->CP0_EBase;
}
void helper_mtc0_ebase (target_ulong arg1)
{
/* vectored interrupts not implemented */
env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
}
void helper_mttc0_ebase(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
}
target_ulong helper_mftc0_configx(target_ulong idx)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
switch (idx) {
case 0: return other->CP0_Config0;
case 1: return other->CP0_Config1;
case 2: return other->CP0_Config2;
case 3: return other->CP0_Config3;
/* 4 and 5 are reserved. */
case 6: return other->CP0_Config6;
case 7: return other->CP0_Config7;
default:
break;
}
return 0;
}
void helper_mtc0_config0 (target_ulong arg1)
{
env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
}
void helper_mtc0_config2 (target_ulong arg1)
{
/* tertiary/secondary caches not implemented */
env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
}
void helper_mtc0_lladdr (target_ulong arg1)
{
target_long mask = env->CP0_LLAddr_rw_bitmask;
arg1 = arg1 << env->CP0_LLAddr_shift;
env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
}
void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
{
/* Watch exceptions for instructions, data loads, data stores
not implemented. */
env->CP0_WatchLo[sel] = (arg1 & ~0x7);
}
void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
{
env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
}
void helper_mtc0_xcontext (target_ulong arg1)
{
target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
}
void helper_mtc0_framemask (target_ulong arg1)
{
env->CP0_Framemask = arg1; /* XXX */
}
void helper_mtc0_debug (target_ulong arg1)
{
env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
if (arg1 & (1 << CP0DB_DM))
env->hflags |= MIPS_HFLAG_DM;
else
env->hflags &= ~MIPS_HFLAG_DM;
}
void helper_mttc0_debug(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
/* XXX: Might be wrong, check with EJTAG spec. */
if (other_tc == other->current_tc)
other->active_tc.CP0_Debug_tcstatus = val;
else
other->tcs[other_tc].CP0_Debug_tcstatus = val;
other->CP0_Debug = (other->CP0_Debug &
((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
(arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
}
void helper_mtc0_performance0 (target_ulong arg1)
{
env->CP0_Performance0 = arg1 & 0x000007ff;
}
void helper_mtc0_taglo (target_ulong arg1)
{
env->CP0_TagLo = arg1 & 0xFFFFFCF6;
}
void helper_mtc0_datalo (target_ulong arg1)
{
env->CP0_DataLo = arg1; /* XXX */
}
void helper_mtc0_taghi (target_ulong arg1)
{
env->CP0_TagHi = arg1; /* XXX */
}
void helper_mtc0_datahi (target_ulong arg1)
{
env->CP0_DataHi = arg1; /* XXX */
}
/* MIPS MT functions */
target_ulong helper_mftgpr(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.gpr[sel];
else
return other->tcs[other_tc].gpr[sel];
}
target_ulong helper_mftlo(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.LO[sel];
else
return other->tcs[other_tc].LO[sel];
}
target_ulong helper_mfthi(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.HI[sel];
else
return other->tcs[other_tc].HI[sel];
}
target_ulong helper_mftacx(uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.ACX[sel];
else
return other->tcs[other_tc].ACX[sel];
}
target_ulong helper_mftdsp(void)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
return other->active_tc.DSPControl;
else
return other->tcs[other_tc].DSPControl;
}
void helper_mttgpr(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.gpr[sel] = arg1;
else
other->tcs[other_tc].gpr[sel] = arg1;
}
void helper_mttlo(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.LO[sel] = arg1;
else
other->tcs[other_tc].LO[sel] = arg1;
}
void helper_mtthi(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.HI[sel] = arg1;
else
other->tcs[other_tc].HI[sel] = arg1;
}
void helper_mttacx(target_ulong arg1, uint32_t sel)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.ACX[sel] = arg1;
else
other->tcs[other_tc].ACX[sel] = arg1;
}
void helper_mttdsp(target_ulong arg1)
{
int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
if (other_tc == other->current_tc)
other->active_tc.DSPControl = arg1;
else
other->tcs[other_tc].DSPControl = arg1;
}
/* MIPS MT functions */
target_ulong helper_dmt(void)
{
// TODO
return 0;
}
target_ulong helper_emt(void)
{
// TODO
return 0;
}
target_ulong helper_dvpe(void)
{
CPUMIPSState *other_cpu = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
/* Turn off all VPEs except the one executing the dvpe. */
if (other_cpu != env) {
other_cpu->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
mips_vpe_sleep(other_cpu);
}
other_cpu = other_cpu->next_cpu;
} while (other_cpu);
return prev;
}
target_ulong helper_evpe(void)
{
CPUMIPSState *other_cpu = first_cpu;
target_ulong prev = env->mvp->CP0_MVPControl;
do {
if (other_cpu != env
/* If the VPE is WFI, don't disturb its sleep. */
&& !mips_vpe_is_wfi(other_cpu)) {
/* Enable the VPE. */
other_cpu->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
mips_vpe_wake(other_cpu); /* And wake it up. */
}
other_cpu = other_cpu->next_cpu;
} while (other_cpu);
return prev;
}
#endif /* !CONFIG_USER_ONLY */
void helper_fork(target_ulong arg1, target_ulong arg2)
{
// arg1 = rt, arg2 = rs
arg1 = 0;
// TODO: store to TC register
}
target_ulong helper_yield(target_ulong arg)
{
target_long arg1 = arg;
if (arg1 < 0) {
/* No scheduling policy implemented. */
if (arg1 != -2) {
if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
helper_raise_exception(EXCP_THREAD);
}
}
} else if (arg1 == 0) {
if (0 /* TODO: TC underflow */) {
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
helper_raise_exception(EXCP_THREAD);
} else {
// TODO: Deallocate TC
}
} else if (arg1 > 0) {
/* Yield qualifier inputs not implemented. */
env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
helper_raise_exception(EXCP_THREAD);
}
return env->CP0_YQMask;
}
#ifndef CONFIG_USER_ONLY
/* TLB management */
static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
{
/* Flush qemu's TLB and discard all shadowed entries. */
tlb_flush (env, flush_global);
env->tlb->tlb_in_use = env->tlb->nb_tlb;
}
static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static void r4k_fill_tlb (int idx)
{
r4k_tlb_t *tlb;
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & 0xFF;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
}
void r4k_helper_tlbwi (void)
{
int idx;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
/* Discard cached TLB entries. We could avoid doing this if the
tlbwi is just upgrading access permissions on the current entry;
that might be a further win. */
r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(idx);
}
void r4k_helper_tlbwr (void)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(r);
}
void r4k_helper_tlbp (void)
{
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint8_t ASID;
int i;
ASID = env->CP0_EntryHi & 0xFF;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
r4k_mips_tlb_flush_extra (env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
void r4k_helper_tlbr (void)
{
r4k_tlb_t *tlb;
uint8_t ASID;
int idx;
ASID = env->CP0_EntryHi & 0xFF;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/* If this will change the current ASID, flush qemu's TLB. */
if (ASID != tlb->ASID)
cpu_mips_tlb_flush (env, 1);
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
env->CP0_EntryHi = tlb->VPN | tlb->ASID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
(tlb->C0 << 3) | (tlb->PFN[0] >> 6);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
(tlb->C1 << 3) | (tlb->PFN[1] >> 6);
}
void helper_tlbwi(void)
{
env->tlb->helper_tlbwi();
}
void helper_tlbwr(void)
{
env->tlb->helper_tlbwr();
}
void helper_tlbp(void)
{
env->tlb->helper_tlbp();
}
void helper_tlbr(void)
{
env->tlb->helper_tlbr();
}
/* Specials */
target_ulong helper_di (void)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 & ~(1 << CP0St_IE);
return t0;
}
target_ulong helper_ei (void)
{
target_ulong t0 = env->CP0_Status;
env->CP0_Status = t0 | (1 << CP0St_IE);
return t0;
}
static void debug_pre_eret (void)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
qemu_log("\n");
}
}
static void debug_post_eret (void)
{
if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
env->active_tc.PC, env->CP0_EPC);
if (env->CP0_Status & (1 << CP0St_ERL))
qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
if (env->hflags & MIPS_HFLAG_DM)
qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
switch (env->hflags & MIPS_HFLAG_KSU) {
case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
case MIPS_HFLAG_KM: qemu_log("\n"); break;
default: cpu_abort(env, "Invalid MMU mode!\n"); break;
}
}
}
static void set_pc (target_ulong error_pc)
{
env->active_tc.PC = error_pc & ~(target_ulong)1;
if (error_pc & 1) {
env->hflags |= MIPS_HFLAG_M16;
} else {
env->hflags &= ~(MIPS_HFLAG_M16);
}
}
void helper_eret (void)
{
debug_pre_eret();
if (env->CP0_Status & (1 << CP0St_ERL)) {
set_pc(env->CP0_ErrorEPC);
env->CP0_Status &= ~(1 << CP0St_ERL);
} else {
set_pc(env->CP0_EPC);
env->CP0_Status &= ~(1 << CP0St_EXL);
}
compute_hflags(env);
debug_post_eret();
env->lladdr = 1;
}
void helper_deret (void)
{
debug_pre_eret();
set_pc(env->CP0_DEPC);
env->hflags &= MIPS_HFLAG_DM;
compute_hflags(env);
debug_post_eret();
env->lladdr = 1;
}
#endif /* !CONFIG_USER_ONLY */
target_ulong helper_rdhwr_cpunum(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 0)))
return env->CP0_EBase & 0x3ff;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_synci_step(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 1)))
return env->SYNCI_Step;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_cc(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 2)))
return env->CP0_Count;
else
helper_raise_exception(EXCP_RI);
return 0;
}
target_ulong helper_rdhwr_ccres(void)
{
if ((env->hflags & MIPS_HFLAG_CP0) ||
(env->CP0_HWREna & (1 << 3)))
return env->CCRes;
else
helper_raise_exception(EXCP_RI);
return 0;
}
void helper_pmon (int function)
{
function /= 2;
switch (function) {
case 2: /* TODO: char inbyte(int waitflag); */
if (env->active_tc.gpr[4] == 0)
env->active_tc.gpr[2] = -1;
/* Fall through */
case 11: /* TODO: char inbyte (void); */
env->active_tc.gpr[2] = -1;
break;
case 3:
case 12:
printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
break;
case 17:
break;
case 158:
{
unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
printf("%s", fmt);
}
break;
}
}
void helper_wait (void)
{
env->halted = 1;
cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
helper_raise_exception(EXCP_HLT);
}
#if !defined(CONFIG_USER_ONLY)
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
#define MMUSUFFIX _mmu
#define ALIGNED_ONLY
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 1
#include "softmmu_template.h"
#define SHIFT 2
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
{
env->CP0_BadVAddr = addr;
do_restore_state (retaddr);
helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
}
void tlb_fill(CPUMIPSState *env1, target_ulong addr, int is_write, int mmu_idx,
void *retaddr)
{
TranslationBlock *tb;
CPUMIPSState *saved_env;
unsigned long pc;
int ret;
saved_env = env;
env = env1;
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
pc = (unsigned long)retaddr;
tb = tb_find_pc(pc);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
cpu_restore_state(tb, env, pc);
}
}
helper_raise_exception_err(env->exception_index, env->error_code);
}
env = saved_env;
}
void cpu_unassigned_access(CPUMIPSState *env1, target_phys_addr_t addr,
int is_write, int is_exec, int unused, int size)
{
env = env1;
if (is_exec)
helper_raise_exception(EXCP_IBE);
else
helper_raise_exception(EXCP_DBE);
}
#endif /* !CONFIG_USER_ONLY */
/* Complex FPU operations which may need stack space. */
#define FLOAT_ONE32 make_float32(0x3f8 << 20)
#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
#define FLOAT_TWO32 make_float32(1 << 30)
#define FLOAT_TWO64 make_float64(1ULL << 62)
#define FLOAT_QNAN32 0x7fbfffff
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
#define FLOAT_SNAN32 0x7fffffff
#define FLOAT_SNAN64 0x7fffffffffffffffULL
/* convert MIPS rounding mode in FCR31 to IEEE library */
static unsigned int ieee_rm[] = {
float_round_nearest_even,
float_round_to_zero,
float_round_up,
float_round_down
};
#define RESTORE_ROUNDING_MODE \
set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
#define RESTORE_FLUSH_MODE \
set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
target_ulong helper_cfc1 (uint32_t reg)
{
target_ulong arg1;
switch (reg) {
case 0:
arg1 = (int32_t)env->active_fpu.fcr0;
break;
case 25:
arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
break;
case 26:
arg1 = env->active_fpu.fcr31 & 0x0003f07c;
break;
case 28:
arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
break;
default:
arg1 = (int32_t)env->active_fpu.fcr31;
break;
}
return arg1;
}
void helper_ctc1 (target_ulong arg1, uint32_t reg)
{
switch(reg) {
case 25:
if (arg1 & 0xffffff00)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
((arg1 & 0x1) << 23);
break;
case 26:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
break;
case 28:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
((arg1 & 0x4) << 22);
break;
case 31:
if (arg1 & 0x007c0000)
return;
env->active_fpu.fcr31 = arg1;
break;
default:
return;
}
/* set rounding mode */
RESTORE_ROUNDING_MODE;
/* set flush-to-zero mode */
RESTORE_FLUSH_MODE;
set_float_exception_flags(0, &env->active_fpu.fp_status);
if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
helper_raise_exception(EXCP_FPE);
}
static inline int ieee_ex_to_mips(int xcpt)
{
int ret = 0;
if (xcpt) {
if (xcpt & float_flag_invalid) {
ret |= FP_INVALID;
}
if (xcpt & float_flag_overflow) {
ret |= FP_OVERFLOW;
}
if (xcpt & float_flag_underflow) {
ret |= FP_UNDERFLOW;
}
if (xcpt & float_flag_divbyzero) {
ret |= FP_DIV0;
}
if (xcpt & float_flag_inexact) {
ret |= FP_INEXACT;
}
}
return ret;
}
static inline void update_fcr31(void)
{
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
helper_raise_exception(EXCP_FPE);
else
UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
}
/* Float support.
Single precition routines have a "s" suffix, double precision a
"d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
paired single lower "pl", paired single upper "pu". */
/* unary operations, modifying fp status */
uint64_t helper_float_sqrt_d(uint64_t fdt0)
{
return float64_sqrt(fdt0, &env->active_fpu.fp_status);
}
uint32_t helper_float_sqrt_s(uint32_t fst0)
{
return float32_sqrt(fst0, &env->active_fpu.fp_status);
}
uint64_t helper_float_cvtd_s(uint32_t fst0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtd_w(uint32_t wt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtd_l(uint64_t dt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint64_t helper_float_cvtl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_cvtl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_cvtps_pw(uint64_t dt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
{
uint32_t wt2;
uint32_t wth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
wt2 = FLOAT_SNAN32;
wth2 = FLOAT_SNAN32;
}
return ((uint64_t)wth2 << 32) | wt2;
}
uint32_t helper_float_cvts_d(uint64_t fdt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_w(uint32_t wt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_l(uint64_t dt0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint32_t helper_float_cvts_pl(uint32_t wt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = wt0;
update_fcr31();
return wt2;
}
uint32_t helper_float_cvts_pu(uint32_t wth0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = wth0;
update_fcr31();
return wt2;
}
uint32_t helper_float_cvtw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_cvtw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_roundl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_roundl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_roundw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_roundw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_truncl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_truncl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_truncw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_truncw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_ceill_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_ceill_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_ceilw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_ceilw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint64_t helper_float_floorl_d(uint64_t fdt0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint64_t helper_float_floorl_s(uint32_t fst0)
{
uint64_t dt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
dt2 = FLOAT_SNAN64;
return dt2;
}
uint32_t helper_float_floorw_d(uint64_t fdt0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
uint32_t helper_float_floorw_s(uint32_t fst0)
{
uint32_t wt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
RESTORE_ROUNDING_MODE;
update_fcr31();
if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
wt2 = FLOAT_SNAN32;
return wt2;
}
/* unary operations, not modifying fp status */
#define FLOAT_UNOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
{ \
return float64_ ## name(fdt0); \
} \
uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
{ \
return float32_ ## name(fst0); \
} \
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
{ \
uint32_t wt0; \
uint32_t wth0; \
\
wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
wth0 = float32_ ## name(fdt0 >> 32); \
return ((uint64_t)wth0 << 32) | wt0; \
}
FLOAT_UNOP(abs)
FLOAT_UNOP(chs)
#undef FLOAT_UNOP
/* MIPS specific unary operations */
uint64_t helper_float_recip_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_recip1_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip1_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_recip1_ps(uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
{
uint64_t fdt2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt1_s(uint32_t fst0)
{
uint32_t fst2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
{
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
#define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
/* binary operations */
#define FLOAT_BINOP(name) \
uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
{ \
uint64_t dt2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
dt2 = FLOAT_QNAN64; \
return dt2; \
} \
\
uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
{ \
uint32_t wt2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
wt2 = FLOAT_QNAN32; \
return wt2; \
} \
\
uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t wt2; \
uint32_t wth2; \
\
set_float_exception_flags(0, &env->active_fpu.fp_status); \
wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
update_fcr31(); \
if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
wt2 = FLOAT_QNAN32; \
wth2 = FLOAT_QNAN32; \
} \
return ((uint64_t)wth2 << 32) | wt2; \
}
FLOAT_BINOP(add)
FLOAT_BINOP(sub)
FLOAT_BINOP(mul)
FLOAT_BINOP(div)
#undef FLOAT_BINOP
/* ternary operations */
#define FLOAT_TERNOP(name1, name2) \
uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
} \
\
uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
} \
\
uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
return ((uint64_t)fsth2 << 32) | fst2; \
}
FLOAT_TERNOP(mul, add)
FLOAT_TERNOP(mul, sub)
#undef FLOAT_TERNOP
/* negated ternary operations */
#define FLOAT_NTERNOP(name1, name2) \
uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
uint64_t fdt2) \
{ \
fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
return float64_chs(fdt2); \
} \
\
uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
uint32_t fst2) \
{ \
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
return float32_chs(fst2); \
} \
\
uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
uint64_t fdt2) \
{ \
uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
uint32_t fsth0 = fdt0 >> 32; \
uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
uint32_t fsth1 = fdt1 >> 32; \
uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
uint32_t fsth2 = fdt2 >> 32; \
\
fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
fst2 = float32_chs(fst2); \
fsth2 = float32_chs(fsth2); \
return ((uint64_t)fsth2 << 32) | fst2; \
}
FLOAT_NTERNOP(mul, add)
FLOAT_NTERNOP(mul, sub)
#undef FLOAT_NTERNOP
/* MIPS specific binary operations */
uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
update_fcr31();
return fdt2;
}
uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
update_fcr31();
return fst2;
}
uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
update_fcr31();
return fdt2;
}
uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
{
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31();
return fst2;
}
uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst2 = fdt2 & 0XFFFFFFFF;
uint32_t fsth2 = fdt2 >> 32;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
{
uint32_t fst0 = fdt0 & 0XFFFFFFFF;
uint32_t fsth0 = fdt0 >> 32;
uint32_t fst1 = fdt1 & 0XFFFFFFFF;
uint32_t fsth1 = fdt1 >> 32;
uint32_t fst2;
uint32_t fsth2;
set_float_exception_flags(0, &env->active_fpu.fp_status);
fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
update_fcr31();
return ((uint64_t)fsth2 << 32) | fst2;
}
/* compare operations */
#define FOP_COND_D(op, cond) \
void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
int c; \
set_float_exception_flags(0, &env->active_fpu.fp_status); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
int c; \
set_float_exception_flags(0, &env->active_fpu.fp_status); \
fdt0 = float64_abs(fdt0); \
fdt1 = float64_abs(fdt1); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered_quiet() is still called. */
FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float64_unordered() is still called. */
FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
#define FOP_COND_S(op, cond) \
void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
{ \
int c; \
set_float_exception_flags(0, &env->active_fpu.fp_status); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
} \
void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
{ \
int c; \
set_float_exception_flags(0, &env->active_fpu.fp_status); \
fst0 = float32_abs(fst0); \
fst1 = float32_abs(fst1); \
c = cond; \
update_fcr31(); \
if (c) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called. */
FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called. */
FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
#define FOP_COND_PS(op, condl, condh) \
void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
set_float_exception_flags(0, &env->active_fpu.fp_status); \
fst0 = fdt0 & 0XFFFFFFFF; \
fsth0 = fdt0 >> 32; \
fst1 = fdt1 & 0XFFFFFFFF; \
fsth1 = fdt1 >> 32; \
cl = condl; \
ch = condh; \
update_fcr31(); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
} \
void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
{ \
uint32_t fst0, fsth0, fst1, fsth1; \
int ch, cl; \
fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
fsth0 = float32_abs(fdt0 >> 32); \
fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
fsth1 = float32_abs(fdt1 >> 32); \
cl = condl; \
ch = condh; \
update_fcr31(); \
if (cl) \
SET_FP_COND(cc, env->active_fpu); \
else \
CLEAR_FP_COND(cc, env->active_fpu); \
if (ch) \
SET_FP_COND(cc + 1, env->active_fpu); \
else \
CLEAR_FP_COND(cc + 1, env->active_fpu); \
}
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered_quiet() is still called. */
FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
/* NOTE: the comma operator will make "cond" to eval to false,
* but float32_unordered() is still called. */
FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
(float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))