/* * ARM helper routines * * Copyright (c) 2005-2007 CodeSourcery, LLC * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "helpers.h" void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } /* thread support */ spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED; void cpu_lock(void) { spin_lock(&global_cpu_lock); } void cpu_unlock(void) { spin_unlock(&global_cpu_lock); } /* VFP support. */ void do_vfp_abss(void) { FT0s = float32_abs(FT0s); } void do_vfp_absd(void) { FT0d = float64_abs(FT0d); } void do_vfp_sqrts(void) { FT0s = float32_sqrt(FT0s, &env->vfp.fp_status); } void do_vfp_sqrtd(void) { FT0d = float64_sqrt(FT0d, &env->vfp.fp_status); } /* XXX: check quiet/signaling case */ #define DO_VFP_cmp(p, size) \ void do_vfp_cmp##p(void) \ { \ uint32_t flags; \ switch(float ## size ## _compare_quiet(FT0##p, FT1##p, &env->vfp.fp_status)) {\ case 0: flags = 0x6; break;\ case -1: flags = 0x8; break;\ case 1: flags = 0x2; break;\ default: case 2: flags = 0x3; break;\ }\ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ FORCE_RET(); \ }\ \ void do_vfp_cmpe##p(void) \ { \ uint32_t flags; \ switch(float ## size ## _compare(FT0##p, FT1##p, &env->vfp.fp_status)) {\ case 0: flags = 0x6; break;\ case -1: flags = 0x8; break;\ case 1: flags = 0x2; break;\ default: case 2: flags = 0x3; break;\ }\ env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28)\ | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \ FORCE_RET(); \ } DO_VFP_cmp(s, 32) DO_VFP_cmp(d, 64) #undef DO_VFP_cmp /* Convert host exception flags to vfp form. */ static inline int vfp_exceptbits_from_host(int host_bits) { int target_bits = 0; if (host_bits & float_flag_invalid) target_bits |= 1; if (host_bits & float_flag_divbyzero) target_bits |= 2; if (host_bits & float_flag_overflow) target_bits |= 4; if (host_bits & float_flag_underflow) target_bits |= 8; if (host_bits & float_flag_inexact) target_bits |= 0x10; return target_bits; } /* Convert vfp exception flags to target form. */ static inline int vfp_exceptbits_to_host(int target_bits) { int host_bits = 0; if (target_bits & 1) host_bits |= float_flag_invalid; if (target_bits & 2) host_bits |= float_flag_divbyzero; if (target_bits & 4) host_bits |= float_flag_overflow; if (target_bits & 8) host_bits |= float_flag_underflow; if (target_bits & 0x10) host_bits |= float_flag_inexact; return host_bits; } void do_vfp_set_fpscr(void) { int i; uint32_t changed; changed = env->vfp.xregs[ARM_VFP_FPSCR]; env->vfp.xregs[ARM_VFP_FPSCR] = (T0 & 0xffc8ffff); env->vfp.vec_len = (T0 >> 16) & 7; env->vfp.vec_stride = (T0 >> 20) & 3; changed ^= T0; if (changed & (3 << 22)) { i = (T0 >> 22) & 3; switch (i) { case 0: i = float_round_nearest_even; break; case 1: i = float_round_up; break; case 2: i = float_round_down; break; case 3: i = float_round_to_zero; break; } set_float_rounding_mode(i, &env->vfp.fp_status); } i = vfp_exceptbits_to_host((T0 >> 8) & 0x1f); set_float_exception_flags(i, &env->vfp.fp_status); /* XXX: FZ and DN are not implemented. */ } void do_vfp_get_fpscr(void) { int i; T0 = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff) | (env->vfp.vec_len << 16) | (env->vfp.vec_stride << 20); i = get_float_exception_flags(&env->vfp.fp_status); T0 |= vfp_exceptbits_from_host(i); } float32 helper_recps_f32(float32 a, float32 b) { float_status *s = &env->vfp.fp_status; float32 two = int32_to_float32(2, s); return float32_sub(two, float32_mul(a, b, s), s); } float32 helper_rsqrts_f32(float32 a, float32 b) { float_status *s = &env->vfp.fp_status; float32 three = int32_to_float32(3, s); return float32_sub(three, float32_mul(a, b, s), s); } /* TODO: The architecture specifies the value that the estimate functions should return. We return the exact reciprocal/root instead. */ float32 helper_recpe_f32(float32 a) { float_status *s = &env->vfp.fp_status; float32 one = int32_to_float32(1, s); return float32_div(one, a, s); } float32 helper_rsqrte_f32(float32 a) { float_status *s = &env->vfp.fp_status; float32 one = int32_to_float32(1, s); return float32_div(one, float32_sqrt(a, s), s); } uint32_t helper_recpe_u32(uint32_t a) { float_status *s = &env->vfp.fp_status; float32 tmp; tmp = int32_to_float32(a, s); tmp = float32_scalbn(tmp, -32, s); tmp = helper_recpe_f32(tmp); tmp = float32_scalbn(tmp, 31, s); return float32_to_int32(tmp, s); } uint32_t helper_rsqrte_u32(uint32_t a) { float_status *s = &env->vfp.fp_status; float32 tmp; tmp = int32_to_float32(a, s); tmp = float32_scalbn(tmp, -32, s); tmp = helper_rsqrte_f32(tmp); tmp = float32_scalbn(tmp, 31, s); return float32_to_int32(tmp, s); } void helper_neon_tbl(int rn, int maxindex) { uint32_t val; uint32_t mask; uint32_t tmp; int index; int shift; uint64_t *table; table = (uint64_t *)&env->vfp.regs[rn]; val = 0; mask = 0; for (shift = 0; shift < 32; shift += 8) { index = (T1 >> shift) & 0xff; if (index <= maxindex) { tmp = (table[index >> 3] >> (index & 7)) & 0xff; val |= tmp << shift; } else { val |= T0 & (0xff << shift); } } T0 = val; } #if !defined(CONFIG_USER_ONLY) #define MMUSUFFIX _mmu #ifdef __s390__ # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL)) #else # define GETPC() (__builtin_return_address(0)) #endif #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (__builtin_expect(ret, 0)) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } raise_exception(env->exception_index); } env = saved_env; } #endif #define SIGNBIT (uint32_t)0x80000000 uint32_t HELPER(add_setq)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) env->QF = 1; return res; } uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b) { uint32_t res = a - b; if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(double_saturate)(int32_t val) { uint32_t res; if (val >= 0x40000000) { res = ~SIGNBIT; env->QF = 1; } else if (val <= (int32_t)0xc0000000) { res = SIGNBIT; env->QF = 1; } else { res = val << 1; } return res; } uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { env->QF = 1; res = ~0; } return res; } uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { env->QF = 1; res = 0; } return res; } /* Signed saturation. */ static inline uint32_t do_ssat(int32_t val, int shift) { int32_t top; uint32_t mask; shift = PARAM1; top = val >> shift; mask = (1u << shift) - 1; if (top > 0) { env->QF = 1; return mask; } else if (top < -1) { env->QF = 1; return ~mask; } return val; } /* Unsigned saturation. */ static inline uint32_t do_usat(int32_t val, int shift) { uint32_t max; shift = PARAM1; max = (1u << shift) - 1; if (val < 0) { env->QF = 1; return 0; } else if (val > max) { env->QF = 1; return max; } return val; } /* Signed saturate. */ uint32_t HELPER(ssat)(uint32_t x, uint32_t shift) { return do_ssat(x, shift); } /* Dual halfword signed saturate. */ uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_ssat((int16_t)x, shift); res |= do_ssat(((int32_t)x) >> 16, shift) << 16; return res; } /* Unsigned saturate. */ uint32_t HELPER(usat)(uint32_t x, uint32_t shift) { return do_usat(x, shift); } /* Dual halfword unsigned saturate. */ uint32_t HELPER(usat16)(uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_usat((int16_t)x, shift); res |= do_usat(((int32_t)x) >> 16, shift) << 16; return res; } void HELPER(wfi)(void) { env->exception_index = EXCP_HLT; env->halted = 1; cpu_loop_exit(); } void HELPER(exception)(uint32_t excp) { env->exception_index = excp; cpu_loop_exit(); } uint32_t HELPER(cpsr_read)(void) { return cpsr_read(env) & ~CPSR_EXEC; } void HELPER(cpsr_write)(uint32_t val, uint32_t mask) { cpsr_write(env, val, mask); } /* Access to user mode registers from privileged modes. */ uint32_t HELPER(get_user_reg)(uint32_t regno) { uint32_t val; if (regno == 13) { val = env->banked_r13[0]; } else if (regno == 14) { val = env->banked_r14[0]; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { val = env->usr_regs[regno - 8]; } else { val = env->regs[regno]; } return val; } void HELPER(set_user_reg)(uint32_t regno, uint32_t val) { if (regno == 13) { env->banked_r13[0] = val; } else if (regno == 14) { env->banked_r14[0] = val; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { env->usr_regs[regno - 8] = val; } else { env->regs[regno] = val; } }