/* * libslirp glue * * Copyright (c) 2004-2008 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "qemu-common.h" #include "qemu/timer.h" #include "qemu/error-report.h" #include "sysemu/char.h" #include "slirp.h" #include "hw/hw.h" #include "qemu/cutils.h" #ifndef _WIN32 #include #endif /* host loopback address */ struct in_addr loopback_addr; /* host loopback network mask */ unsigned long loopback_mask; /* emulated hosts use the MAC addr 52:55:IP:IP:IP:IP */ static const uint8_t special_ethaddr[ETH_ALEN] = { 0x52, 0x55, 0x00, 0x00, 0x00, 0x00 }; u_int curtime; static QTAILQ_HEAD(slirp_instances, Slirp) slirp_instances = QTAILQ_HEAD_INITIALIZER(slirp_instances); static struct in_addr dns_addr; #ifndef _WIN32 static struct in6_addr dns6_addr; #endif static u_int dns_addr_time; #ifndef _WIN32 static u_int dns6_addr_time; #endif #define TIMEOUT_FAST 2 /* milliseconds */ #define TIMEOUT_SLOW 499 /* milliseconds */ /* for the aging of certain requests like DNS */ #define TIMEOUT_DEFAULT 1000 /* milliseconds */ #ifdef _WIN32 int get_dns_addr(struct in_addr *pdns_addr) { FIXED_INFO *FixedInfo=NULL; ULONG BufLen; DWORD ret; IP_ADDR_STRING *pIPAddr; struct in_addr tmp_addr; if (dns_addr.s_addr != 0 && (curtime - dns_addr_time) < TIMEOUT_DEFAULT) { *pdns_addr = dns_addr; return 0; } FixedInfo = (FIXED_INFO *)GlobalAlloc(GPTR, sizeof(FIXED_INFO)); BufLen = sizeof(FIXED_INFO); if (ERROR_BUFFER_OVERFLOW == GetNetworkParams(FixedInfo, &BufLen)) { if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } FixedInfo = GlobalAlloc(GPTR, BufLen); } if ((ret = GetNetworkParams(FixedInfo, &BufLen)) != ERROR_SUCCESS) { printf("GetNetworkParams failed. ret = %08x\n", (u_int)ret ); if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } return -1; } pIPAddr = &(FixedInfo->DnsServerList); inet_aton(pIPAddr->IpAddress.String, &tmp_addr); *pdns_addr = tmp_addr; dns_addr = tmp_addr; dns_addr_time = curtime; if (FixedInfo) { GlobalFree(FixedInfo); FixedInfo = NULL; } return 0; } int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) { return -1; } static void winsock_cleanup(void) { WSACleanup(); } #else static int get_dns_addr_cached(void *pdns_addr, void *cached_addr, socklen_t addrlen, struct stat *cached_stat, u_int *cached_time) { struct stat old_stat; if (curtime - *cached_time < TIMEOUT_DEFAULT) { memcpy(pdns_addr, cached_addr, addrlen); return 0; } old_stat = *cached_stat; if (stat("/etc/resolv.conf", cached_stat) != 0) { return -1; } if (cached_stat->st_dev == old_stat.st_dev && cached_stat->st_ino == old_stat.st_ino && cached_stat->st_size == old_stat.st_size && cached_stat->st_mtime == old_stat.st_mtime) { memcpy(pdns_addr, cached_addr, addrlen); return 0; } return 1; } static int get_dns_addr_resolv_conf(int af, void *pdns_addr, void *cached_addr, socklen_t addrlen, uint32_t *scope_id, u_int *cached_time) { char buff[512]; char buff2[257]; FILE *f; int found = 0; void *tmp_addr = alloca(addrlen); unsigned if_index; f = fopen("/etc/resolv.conf", "r"); if (!f) return -1; #ifdef DEBUG fprintf(stderr, "IP address of your DNS(s): "); #endif while (fgets(buff, 512, f) != NULL) { if (sscanf(buff, "nameserver%*[ \t]%256s", buff2) == 1) { char *c = strchr(buff2, '%'); if (c) { if_index = if_nametoindex(c + 1); *c = '\0'; } else { if_index = 0; } if (!inet_pton(af, buff2, tmp_addr)) { continue; } /* If it's the first one, set it to dns_addr */ if (!found) { memcpy(pdns_addr, tmp_addr, addrlen); memcpy(cached_addr, tmp_addr, addrlen); if (scope_id) { *scope_id = if_index; } *cached_time = curtime; } #ifdef DEBUG else fprintf(stderr, ", "); #endif if (++found > 3) { #ifdef DEBUG fprintf(stderr, "(more)"); #endif break; } #ifdef DEBUG else { char s[INET6_ADDRSTRLEN]; char *res = inet_ntop(af, tmp_addr, s, sizeof(s)); if (!res) { res = "(string conversion error)"; } fprintf(stderr, "%s", res); } #endif } } fclose(f); if (!found) return -1; return 0; } int get_dns_addr(struct in_addr *pdns_addr) { static struct stat dns_addr_stat; if (dns_addr.s_addr != 0) { int ret; ret = get_dns_addr_cached(pdns_addr, &dns_addr, sizeof(dns_addr), &dns_addr_stat, &dns_addr_time); if (ret <= 0) { return ret; } } return get_dns_addr_resolv_conf(AF_INET, pdns_addr, &dns_addr, sizeof(dns_addr), NULL, &dns_addr_time); } int get_dns6_addr(struct in6_addr *pdns6_addr, uint32_t *scope_id) { static struct stat dns6_addr_stat; if (!in6_zero(&dns6_addr)) { int ret; ret = get_dns_addr_cached(pdns6_addr, &dns6_addr, sizeof(dns6_addr), &dns6_addr_stat, &dns6_addr_time); if (ret <= 0) { return ret; } } return get_dns_addr_resolv_conf(AF_INET6, pdns6_addr, &dns6_addr, sizeof(dns6_addr), scope_id, &dns6_addr_time); } #endif static void slirp_init_once(void) { static int initialized; #ifdef _WIN32 WSADATA Data; #endif if (initialized) { return; } initialized = 1; #ifdef _WIN32 WSAStartup(MAKEWORD(2,0), &Data); atexit(winsock_cleanup); #endif loopback_addr.s_addr = htonl(INADDR_LOOPBACK); loopback_mask = htonl(IN_CLASSA_NET); } static void slirp_state_save(QEMUFile *f, void *opaque); static int slirp_state_load(QEMUFile *f, void *opaque, int version_id); Slirp *slirp_init(int restricted, bool in_enabled, struct in_addr vnetwork, struct in_addr vnetmask, struct in_addr vhost, bool in6_enabled, struct in6_addr vprefix_addr6, uint8_t vprefix_len, struct in6_addr vhost6, const char *vhostname, const char *tftp_path, const char *bootfile, struct in_addr vdhcp_start, struct in_addr vnameserver, struct in6_addr vnameserver6, const char **vdnssearch, void *opaque) { Slirp *slirp = g_malloc0(sizeof(Slirp)); slirp_init_once(); slirp->grand = g_rand_new(); slirp->restricted = restricted; slirp->in_enabled = in_enabled; slirp->in6_enabled = in6_enabled; if_init(slirp); ip_init(slirp); ip6_init(slirp); /* Initialise mbufs *after* setting the MTU */ m_init(slirp); slirp->vnetwork_addr = vnetwork; slirp->vnetwork_mask = vnetmask; slirp->vhost_addr = vhost; slirp->vprefix_addr6 = vprefix_addr6; slirp->vprefix_len = vprefix_len; slirp->vhost_addr6 = vhost6; if (vhostname) { pstrcpy(slirp->client_hostname, sizeof(slirp->client_hostname), vhostname); } slirp->tftp_prefix = g_strdup(tftp_path); slirp->bootp_filename = g_strdup(bootfile); slirp->vdhcp_startaddr = vdhcp_start; slirp->vnameserver_addr = vnameserver; slirp->vnameserver_addr6 = vnameserver6; if (vdnssearch) { translate_dnssearch(slirp, vdnssearch); } slirp->opaque = opaque; register_savevm(NULL, "slirp", 0, 4, slirp_state_save, slirp_state_load, slirp); QTAILQ_INSERT_TAIL(&slirp_instances, slirp, entry); return slirp; } void slirp_cleanup(Slirp *slirp) { QTAILQ_REMOVE(&slirp_instances, slirp, entry); unregister_savevm(NULL, "slirp", slirp); ip_cleanup(slirp); ip6_cleanup(slirp); m_cleanup(slirp); g_rand_free(slirp->grand); g_free(slirp->vdnssearch); g_free(slirp->tftp_prefix); g_free(slirp->bootp_filename); g_free(slirp); } #define CONN_CANFSEND(so) (((so)->so_state & (SS_FCANTSENDMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) #define CONN_CANFRCV(so) (((so)->so_state & (SS_FCANTRCVMORE|SS_ISFCONNECTED)) == SS_ISFCONNECTED) static void slirp_update_timeout(uint32_t *timeout) { Slirp *slirp; uint32_t t; if (*timeout <= TIMEOUT_FAST) { return; } t = MIN(1000, *timeout); /* If we have tcp timeout with slirp, then we will fill @timeout with * more precise value. */ QTAILQ_FOREACH(slirp, &slirp_instances, entry) { if (slirp->time_fasttimo) { *timeout = TIMEOUT_FAST; return; } if (slirp->do_slowtimo) { t = MIN(TIMEOUT_SLOW, t); } } *timeout = t; } void slirp_pollfds_fill(GArray *pollfds, uint32_t *timeout) { Slirp *slirp; struct socket *so, *so_next; if (QTAILQ_EMPTY(&slirp_instances)) { return; } /* * First, TCP sockets */ QTAILQ_FOREACH(slirp, &slirp_instances, entry) { /* * *_slowtimo needs calling if there are IP fragments * in the fragment queue, or there are TCP connections active */ slirp->do_slowtimo = ((slirp->tcb.so_next != &slirp->tcb) || (&slirp->ipq.ip_link != slirp->ipq.ip_link.next)); for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { int events = 0; so_next = so->so_next; so->pollfds_idx = -1; /* * See if we need a tcp_fasttimo */ if (slirp->time_fasttimo == 0 && so->so_tcpcb->t_flags & TF_DELACK) { slirp->time_fasttimo = curtime; /* Flag when want a fasttimo */ } /* * NOFDREF can include still connecting to local-host, * newly socreated() sockets etc. Don't want to select these. */ if (so->so_state & SS_NOFDREF || so->s == -1) { continue; } /* * Set for reading sockets which are accepting */ if (so->so_state & SS_FACCEPTCONN) { GPollFD pfd = { .fd = so->s, .events = G_IO_IN | G_IO_HUP | G_IO_ERR, }; so->pollfds_idx = pollfds->len; g_array_append_val(pollfds, pfd); continue; } /* * Set for writing sockets which are connecting */ if (so->so_state & SS_ISFCONNECTING) { GPollFD pfd = { .fd = so->s, .events = G_IO_OUT | G_IO_ERR, }; so->pollfds_idx = pollfds->len; g_array_append_val(pollfds, pfd); continue; } /* * Set for writing if we are connected, can send more, and * we have something to send */ if (CONN_CANFSEND(so) && so->so_rcv.sb_cc) { events |= G_IO_OUT | G_IO_ERR; } /* * Set for reading (and urgent data) if we are connected, can * receive more, and we have room for it XXX /2 ? */ if (CONN_CANFRCV(so) && (so->so_snd.sb_cc < (so->so_snd.sb_datalen/2))) { events |= G_IO_IN | G_IO_HUP | G_IO_ERR | G_IO_PRI; } if (events) { GPollFD pfd = { .fd = so->s, .events = events, }; so->pollfds_idx = pollfds->len; g_array_append_val(pollfds, pfd); } } /* * UDP sockets */ for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { so_next = so->so_next; so->pollfds_idx = -1; /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { udp_detach(so); continue; } else { slirp->do_slowtimo = true; /* Let socket expire */ } } /* * When UDP packets are received from over the * link, they're sendto()'d straight away, so * no need for setting for writing * Limit the number of packets queued by this session * to 4. Note that even though we try and limit this * to 4 packets, the session could have more queued * if the packets needed to be fragmented * (XXX <= 4 ?) */ if ((so->so_state & SS_ISFCONNECTED) && so->so_queued <= 4) { GPollFD pfd = { .fd = so->s, .events = G_IO_IN | G_IO_HUP | G_IO_ERR, }; so->pollfds_idx = pollfds->len; g_array_append_val(pollfds, pfd); } } /* * ICMP sockets */ for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { so_next = so->so_next; so->pollfds_idx = -1; /* * See if it's timed out */ if (so->so_expire) { if (so->so_expire <= curtime) { icmp_detach(so); continue; } else { slirp->do_slowtimo = true; /* Let socket expire */ } } if (so->so_state & SS_ISFCONNECTED) { GPollFD pfd = { .fd = so->s, .events = G_IO_IN | G_IO_HUP | G_IO_ERR, }; so->pollfds_idx = pollfds->len; g_array_append_val(pollfds, pfd); } } } slirp_update_timeout(timeout); } void slirp_pollfds_poll(GArray *pollfds, int select_error) { Slirp *slirp; struct socket *so, *so_next; int ret; if (QTAILQ_EMPTY(&slirp_instances)) { return; } curtime = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); QTAILQ_FOREACH(slirp, &slirp_instances, entry) { /* * See if anything has timed out */ if (slirp->time_fasttimo && ((curtime - slirp->time_fasttimo) >= TIMEOUT_FAST)) { tcp_fasttimo(slirp); slirp->time_fasttimo = 0; } if (slirp->do_slowtimo && ((curtime - slirp->last_slowtimo) >= TIMEOUT_SLOW)) { ip_slowtimo(slirp); tcp_slowtimo(slirp); slirp->last_slowtimo = curtime; } /* * Check sockets */ if (!select_error) { /* * Check TCP sockets */ for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = g_array_index(pollfds, GPollFD, so->pollfds_idx).revents; } if (so->so_state & SS_NOFDREF || so->s == -1) { continue; } /* * Check for URG data * This will soread as well, so no need to * test for G_IO_IN below if this succeeds */ if (revents & G_IO_PRI) { ret = sorecvoob(so); if (ret < 0) { /* Socket error might have resulted in the socket being * removed, do not try to do anything more with it. */ continue; } } /* * Check sockets for reading */ else if (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR)) { /* * Check for incoming connections */ if (so->so_state & SS_FACCEPTCONN) { tcp_connect(so); continue; } /* else */ ret = soread(so); /* Output it if we read something */ if (ret > 0) { tcp_output(sototcpcb(so)); } if (ret < 0) { /* Socket error might have resulted in the socket being * removed, do not try to do anything more with it. */ continue; } } /* * Check sockets for writing */ if (!(so->so_state & SS_NOFDREF) && (revents & (G_IO_OUT | G_IO_ERR))) { /* * Check for non-blocking, still-connecting sockets */ if (so->so_state & SS_ISFCONNECTING) { /* Connected */ so->so_state &= ~SS_ISFCONNECTING; ret = send(so->s, (const void *) &ret, 0, 0); if (ret < 0) { /* XXXXX Must fix, zero bytes is a NOP */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { continue; } /* else failed */ so->so_state &= SS_PERSISTENT_MASK; so->so_state |= SS_NOFDREF; } /* else so->so_state &= ~SS_ISFCONNECTING; */ /* * Continue tcp_input */ tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, so->so_ffamily); /* continue; */ } else { ret = sowrite(so); } /* * XXXXX If we wrote something (a lot), there * could be a need for a window update. * In the worst case, the remote will send * a window probe to get things going again */ } /* * Probe a still-connecting, non-blocking socket * to check if it's still alive */ #ifdef PROBE_CONN if (so->so_state & SS_ISFCONNECTING) { ret = qemu_recv(so->s, &ret, 0, 0); if (ret < 0) { /* XXX */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { continue; /* Still connecting, continue */ } /* else failed */ so->so_state &= SS_PERSISTENT_MASK; so->so_state |= SS_NOFDREF; /* tcp_input will take care of it */ } else { ret = send(so->s, &ret, 0, 0); if (ret < 0) { /* XXX */ if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINPROGRESS || errno == ENOTCONN) { continue; } /* else failed */ so->so_state &= SS_PERSISTENT_MASK; so->so_state |= SS_NOFDREF; } else { so->so_state &= ~SS_ISFCONNECTING; } } tcp_input((struct mbuf *)NULL, sizeof(struct ip), so, so->so_ffamily); } /* SS_ISFCONNECTING */ #endif } /* * Now UDP sockets. * Incoming packets are sent straight away, they're not buffered. * Incoming UDP data isn't buffered either. */ for (so = slirp->udb.so_next; so != &slirp->udb; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = g_array_index(pollfds, GPollFD, so->pollfds_idx).revents; } if (so->s != -1 && (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) { sorecvfrom(so); } } /* * Check incoming ICMP relies. */ for (so = slirp->icmp.so_next; so != &slirp->icmp; so = so_next) { int revents; so_next = so->so_next; revents = 0; if (so->pollfds_idx != -1) { revents = g_array_index(pollfds, GPollFD, so->pollfds_idx).revents; } if (so->s != -1 && (revents & (G_IO_IN | G_IO_HUP | G_IO_ERR))) { icmp_receive(so); } } } if_start(slirp); } } static void arp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) { struct arphdr *ah = (struct arphdr *)(pkt + ETH_HLEN); uint8_t arp_reply[max(ETH_HLEN + sizeof(struct arphdr), 64)]; struct ethhdr *reh = (struct ethhdr *)arp_reply; struct arphdr *rah = (struct arphdr *)(arp_reply + ETH_HLEN); int ar_op; struct ex_list *ex_ptr; if (!slirp->in_enabled) { return; } ar_op = ntohs(ah->ar_op); switch(ar_op) { case ARPOP_REQUEST: if (ah->ar_tip == ah->ar_sip) { /* Gratuitous ARP */ arp_table_add(slirp, ah->ar_sip, ah->ar_sha); return; } if ((ah->ar_tip & slirp->vnetwork_mask.s_addr) == slirp->vnetwork_addr.s_addr) { if (ah->ar_tip == slirp->vnameserver_addr.s_addr || ah->ar_tip == slirp->vhost_addr.s_addr) goto arp_ok; for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if (ex_ptr->ex_addr.s_addr == ah->ar_tip) goto arp_ok; } return; arp_ok: memset(arp_reply, 0, sizeof(arp_reply)); arp_table_add(slirp, ah->ar_sip, ah->ar_sha); /* ARP request for alias/dns mac address */ memcpy(reh->h_dest, pkt + ETH_ALEN, ETH_ALEN); memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); memcpy(&reh->h_source[2], &ah->ar_tip, 4); reh->h_proto = htons(ETH_P_ARP); rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REPLY); memcpy(rah->ar_sha, reh->h_source, ETH_ALEN); rah->ar_sip = ah->ar_tip; memcpy(rah->ar_tha, ah->ar_sha, ETH_ALEN); rah->ar_tip = ah->ar_sip; slirp_output(slirp->opaque, arp_reply, sizeof(arp_reply)); } break; case ARPOP_REPLY: arp_table_add(slirp, ah->ar_sip, ah->ar_sha); break; default: break; } } void slirp_input(Slirp *slirp, const uint8_t *pkt, int pkt_len) { struct mbuf *m; int proto; if (pkt_len < ETH_HLEN) return; proto = ntohs(*(uint16_t *)(pkt + 12)); switch(proto) { case ETH_P_ARP: arp_input(slirp, pkt, pkt_len); break; case ETH_P_IP: case ETH_P_IPV6: m = m_get(slirp); if (!m) return; /* Note: we add 2 to align the IP header on 4 bytes, * and add the margin for the tcpiphdr overhead */ if (M_FREEROOM(m) < pkt_len + TCPIPHDR_DELTA + 2) { m_inc(m, pkt_len + TCPIPHDR_DELTA + 2); } m->m_len = pkt_len + TCPIPHDR_DELTA + 2; memcpy(m->m_data + TCPIPHDR_DELTA + 2, pkt, pkt_len); m->m_data += TCPIPHDR_DELTA + 2 + ETH_HLEN; m->m_len -= TCPIPHDR_DELTA + 2 + ETH_HLEN; if (proto == ETH_P_IP) { ip_input(m); } else if (proto == ETH_P_IPV6) { ip6_input(m); } break; default: break; } } /* Prepare the IPv4 packet to be sent to the ethernet device. Returns 1 if no * packet should be sent, 0 if the packet must be re-queued, 2 if the packet * is ready to go. */ static int if_encap4(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, uint8_t ethaddr[ETH_ALEN]) { const struct ip *iph = (const struct ip *)ifm->m_data; if (iph->ip_dst.s_addr == 0) { /* 0.0.0.0 can not be a destination address, something went wrong, * avoid making it worse */ return 1; } if (!arp_table_search(slirp, iph->ip_dst.s_addr, ethaddr)) { uint8_t arp_req[ETH_HLEN + sizeof(struct arphdr)]; struct ethhdr *reh = (struct ethhdr *)arp_req; struct arphdr *rah = (struct arphdr *)(arp_req + ETH_HLEN); if (!ifm->resolution_requested) { /* If the client addr is not known, send an ARP request */ memset(reh->h_dest, 0xff, ETH_ALEN); memcpy(reh->h_source, special_ethaddr, ETH_ALEN - 4); memcpy(&reh->h_source[2], &slirp->vhost_addr, 4); reh->h_proto = htons(ETH_P_ARP); rah->ar_hrd = htons(1); rah->ar_pro = htons(ETH_P_IP); rah->ar_hln = ETH_ALEN; rah->ar_pln = 4; rah->ar_op = htons(ARPOP_REQUEST); /* source hw addr */ memcpy(rah->ar_sha, special_ethaddr, ETH_ALEN - 4); memcpy(&rah->ar_sha[2], &slirp->vhost_addr, 4); /* source IP */ rah->ar_sip = slirp->vhost_addr.s_addr; /* target hw addr (none) */ memset(rah->ar_tha, 0, ETH_ALEN); /* target IP */ rah->ar_tip = iph->ip_dst.s_addr; slirp->client_ipaddr = iph->ip_dst; slirp_output(slirp->opaque, arp_req, sizeof(arp_req)); ifm->resolution_requested = true; /* Expire request and drop outgoing packet after 1 second */ ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL; } return 0; } else { memcpy(eh->h_source, special_ethaddr, ETH_ALEN - 4); /* XXX: not correct */ memcpy(&eh->h_source[2], &slirp->vhost_addr, 4); eh->h_proto = htons(ETH_P_IP); /* Send this */ return 2; } } /* Prepare the IPv6 packet to be sent to the ethernet device. Returns 1 if no * packet should be sent, 0 if the packet must be re-queued, 2 if the packet * is ready to go. */ static int if_encap6(Slirp *slirp, struct mbuf *ifm, struct ethhdr *eh, uint8_t ethaddr[ETH_ALEN]) { const struct ip6 *ip6h = mtod(ifm, const struct ip6 *); if (!ndp_table_search(slirp, ip6h->ip_dst, ethaddr)) { if (!ifm->resolution_requested) { ndp_send_ns(slirp, ip6h->ip_dst); ifm->resolution_requested = true; ifm->expiration_date = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + 1000000000ULL; } return 0; } else { eh->h_proto = htons(ETH_P_IPV6); in6_compute_ethaddr(ip6h->ip_src, eh->h_source); /* Send this */ return 2; } } /* Output the IP packet to the ethernet device. Returns 0 if the packet must be * re-queued. */ int if_encap(Slirp *slirp, struct mbuf *ifm) { uint8_t buf[1600]; struct ethhdr *eh = (struct ethhdr *)buf; uint8_t ethaddr[ETH_ALEN]; const struct ip *iph = (const struct ip *)ifm->m_data; int ret; if (ifm->m_len + ETH_HLEN > sizeof(buf)) { return 1; } switch (iph->ip_v) { case IPVERSION: ret = if_encap4(slirp, ifm, eh, ethaddr); if (ret < 2) { return ret; } break; case IP6VERSION: ret = if_encap6(slirp, ifm, eh, ethaddr); if (ret < 2) { return ret; } break; default: g_assert_not_reached(); break; } memcpy(eh->h_dest, ethaddr, ETH_ALEN); DEBUG_ARGS((dfd, " src = %02x:%02x:%02x:%02x:%02x:%02x\n", eh->h_source[0], eh->h_source[1], eh->h_source[2], eh->h_source[3], eh->h_source[4], eh->h_source[5])); DEBUG_ARGS((dfd, " dst = %02x:%02x:%02x:%02x:%02x:%02x\n", eh->h_dest[0], eh->h_dest[1], eh->h_dest[2], eh->h_dest[3], eh->h_dest[4], eh->h_dest[5])); memcpy(buf + sizeof(struct ethhdr), ifm->m_data, ifm->m_len); slirp_output(slirp->opaque, buf, ifm->m_len + ETH_HLEN); return 1; } /* Drop host forwarding rule, return 0 if found. */ int slirp_remove_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, int host_port) { struct socket *so; struct socket *head = (is_udp ? &slirp->udb : &slirp->tcb); struct sockaddr_in addr; int port = htons(host_port); socklen_t addr_len; for (so = head->so_next; so != head; so = so->so_next) { addr_len = sizeof(addr); if ((so->so_state & SS_HOSTFWD) && getsockname(so->s, (struct sockaddr *)&addr, &addr_len) == 0 && addr.sin_addr.s_addr == host_addr.s_addr && addr.sin_port == port) { close(so->s); sofree(so); return 0; } } return -1; } int slirp_add_hostfwd(Slirp *slirp, int is_udp, struct in_addr host_addr, int host_port, struct in_addr guest_addr, int guest_port) { if (!guest_addr.s_addr) { guest_addr = slirp->vdhcp_startaddr; } if (is_udp) { if (!udp_listen(slirp, host_addr.s_addr, htons(host_port), guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) return -1; } else { if (!tcp_listen(slirp, host_addr.s_addr, htons(host_port), guest_addr.s_addr, htons(guest_port), SS_HOSTFWD)) return -1; } return 0; } int slirp_add_exec(Slirp *slirp, int do_pty, const void *args, struct in_addr *guest_addr, int guest_port) { if (!guest_addr->s_addr) { guest_addr->s_addr = slirp->vnetwork_addr.s_addr | (htonl(0x0204) & ~slirp->vnetwork_mask.s_addr); } if ((guest_addr->s_addr & slirp->vnetwork_mask.s_addr) != slirp->vnetwork_addr.s_addr || guest_addr->s_addr == slirp->vhost_addr.s_addr || guest_addr->s_addr == slirp->vnameserver_addr.s_addr) { return -1; } return add_exec(&slirp->exec_list, do_pty, (char *)args, *guest_addr, htons(guest_port)); } ssize_t slirp_send(struct socket *so, const void *buf, size_t len, int flags) { if (so->s == -1 && so->extra) { qemu_chr_fe_write(so->extra, buf, len); return len; } return send(so->s, buf, len, flags); } static struct socket * slirp_find_ctl_socket(Slirp *slirp, struct in_addr guest_addr, int guest_port) { struct socket *so; for (so = slirp->tcb.so_next; so != &slirp->tcb; so = so->so_next) { if (so->so_faddr.s_addr == guest_addr.s_addr && htons(so->so_fport) == guest_port) { return so; } } return NULL; } size_t slirp_socket_can_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port) { struct iovec iov[2]; struct socket *so; so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); if (!so || so->so_state & SS_NOFDREF) { return 0; } if (!CONN_CANFRCV(so) || so->so_snd.sb_cc >= (so->so_snd.sb_datalen/2)) { return 0; } return sopreprbuf(so, iov, NULL); } void slirp_socket_recv(Slirp *slirp, struct in_addr guest_addr, int guest_port, const uint8_t *buf, int size) { int ret; struct socket *so = slirp_find_ctl_socket(slirp, guest_addr, guest_port); if (!so) return; ret = soreadbuf(so, (const char *)buf, size); if (ret > 0) tcp_output(sototcpcb(so)); } static void slirp_tcp_save(QEMUFile *f, struct tcpcb *tp) { int i; qemu_put_sbe16(f, tp->t_state); for (i = 0; i < TCPT_NTIMERS; i++) qemu_put_sbe16(f, tp->t_timer[i]); qemu_put_sbe16(f, tp->t_rxtshift); qemu_put_sbe16(f, tp->t_rxtcur); qemu_put_sbe16(f, tp->t_dupacks); qemu_put_be16(f, tp->t_maxseg); qemu_put_sbyte(f, tp->t_force); qemu_put_be16(f, tp->t_flags); qemu_put_be32(f, tp->snd_una); qemu_put_be32(f, tp->snd_nxt); qemu_put_be32(f, tp->snd_up); qemu_put_be32(f, tp->snd_wl1); qemu_put_be32(f, tp->snd_wl2); qemu_put_be32(f, tp->iss); qemu_put_be32(f, tp->snd_wnd); qemu_put_be32(f, tp->rcv_wnd); qemu_put_be32(f, tp->rcv_nxt); qemu_put_be32(f, tp->rcv_up); qemu_put_be32(f, tp->irs); qemu_put_be32(f, tp->rcv_adv); qemu_put_be32(f, tp->snd_max); qemu_put_be32(f, tp->snd_cwnd); qemu_put_be32(f, tp->snd_ssthresh); qemu_put_sbe16(f, tp->t_idle); qemu_put_sbe16(f, tp->t_rtt); qemu_put_be32(f, tp->t_rtseq); qemu_put_sbe16(f, tp->t_srtt); qemu_put_sbe16(f, tp->t_rttvar); qemu_put_be16(f, tp->t_rttmin); qemu_put_be32(f, tp->max_sndwnd); qemu_put_byte(f, tp->t_oobflags); qemu_put_byte(f, tp->t_iobc); qemu_put_sbe16(f, tp->t_softerror); qemu_put_byte(f, tp->snd_scale); qemu_put_byte(f, tp->rcv_scale); qemu_put_byte(f, tp->request_r_scale); qemu_put_byte(f, tp->requested_s_scale); qemu_put_be32(f, tp->ts_recent); qemu_put_be32(f, tp->ts_recent_age); qemu_put_be32(f, tp->last_ack_sent); } static void slirp_sbuf_save(QEMUFile *f, struct sbuf *sbuf) { uint32_t off; qemu_put_be32(f, sbuf->sb_cc); qemu_put_be32(f, sbuf->sb_datalen); off = (uint32_t)(sbuf->sb_wptr - sbuf->sb_data); qemu_put_sbe32(f, off); off = (uint32_t)(sbuf->sb_rptr - sbuf->sb_data); qemu_put_sbe32(f, off); qemu_put_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); } static void slirp_socket_save(QEMUFile *f, struct socket *so) { qemu_put_be32(f, so->so_urgc); qemu_put_be16(f, so->so_ffamily); switch (so->so_ffamily) { case AF_INET: qemu_put_be32(f, so->so_faddr.s_addr); qemu_put_be16(f, so->so_fport); break; default: error_report( "so_ffamily unknown, unable to save so_faddr and so_fport\n"); } qemu_put_be16(f, so->so_lfamily); switch (so->so_lfamily) { case AF_INET: qemu_put_be32(f, so->so_laddr.s_addr); qemu_put_be16(f, so->so_lport); break; default: error_report( "so_ffamily unknown, unable to save so_laddr and so_lport\n"); } qemu_put_byte(f, so->so_iptos); qemu_put_byte(f, so->so_emu); qemu_put_byte(f, so->so_type); qemu_put_be32(f, so->so_state); slirp_sbuf_save(f, &so->so_rcv); slirp_sbuf_save(f, &so->so_snd); slirp_tcp_save(f, so->so_tcpcb); } static void slirp_bootp_save(QEMUFile *f, Slirp *slirp) { int i; for (i = 0; i < NB_BOOTP_CLIENTS; i++) { qemu_put_be16(f, slirp->bootp_clients[i].allocated); qemu_put_buffer(f, slirp->bootp_clients[i].macaddr, 6); } } static void slirp_state_save(QEMUFile *f, void *opaque) { Slirp *slirp = opaque; struct ex_list *ex_ptr; for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) if (ex_ptr->ex_pty == 3) { struct socket *so; so = slirp_find_ctl_socket(slirp, ex_ptr->ex_addr, ntohs(ex_ptr->ex_fport)); if (!so) continue; qemu_put_byte(f, 42); slirp_socket_save(f, so); } qemu_put_byte(f, 0); qemu_put_be16(f, slirp->ip_id); slirp_bootp_save(f, slirp); } static void slirp_tcp_load(QEMUFile *f, struct tcpcb *tp) { int i; tp->t_state = qemu_get_sbe16(f); for (i = 0; i < TCPT_NTIMERS; i++) tp->t_timer[i] = qemu_get_sbe16(f); tp->t_rxtshift = qemu_get_sbe16(f); tp->t_rxtcur = qemu_get_sbe16(f); tp->t_dupacks = qemu_get_sbe16(f); tp->t_maxseg = qemu_get_be16(f); tp->t_force = qemu_get_sbyte(f); tp->t_flags = qemu_get_be16(f); tp->snd_una = qemu_get_be32(f); tp->snd_nxt = qemu_get_be32(f); tp->snd_up = qemu_get_be32(f); tp->snd_wl1 = qemu_get_be32(f); tp->snd_wl2 = qemu_get_be32(f); tp->iss = qemu_get_be32(f); tp->snd_wnd = qemu_get_be32(f); tp->rcv_wnd = qemu_get_be32(f); tp->rcv_nxt = qemu_get_be32(f); tp->rcv_up = qemu_get_be32(f); tp->irs = qemu_get_be32(f); tp->rcv_adv = qemu_get_be32(f); tp->snd_max = qemu_get_be32(f); tp->snd_cwnd = qemu_get_be32(f); tp->snd_ssthresh = qemu_get_be32(f); tp->t_idle = qemu_get_sbe16(f); tp->t_rtt = qemu_get_sbe16(f); tp->t_rtseq = qemu_get_be32(f); tp->t_srtt = qemu_get_sbe16(f); tp->t_rttvar = qemu_get_sbe16(f); tp->t_rttmin = qemu_get_be16(f); tp->max_sndwnd = qemu_get_be32(f); tp->t_oobflags = qemu_get_byte(f); tp->t_iobc = qemu_get_byte(f); tp->t_softerror = qemu_get_sbe16(f); tp->snd_scale = qemu_get_byte(f); tp->rcv_scale = qemu_get_byte(f); tp->request_r_scale = qemu_get_byte(f); tp->requested_s_scale = qemu_get_byte(f); tp->ts_recent = qemu_get_be32(f); tp->ts_recent_age = qemu_get_be32(f); tp->last_ack_sent = qemu_get_be32(f); tcp_template(tp); } static int slirp_sbuf_load(QEMUFile *f, struct sbuf *sbuf) { uint32_t off, sb_cc, sb_datalen; sb_cc = qemu_get_be32(f); sb_datalen = qemu_get_be32(f); sbreserve(sbuf, sb_datalen); if (sbuf->sb_datalen != sb_datalen) return -ENOMEM; sbuf->sb_cc = sb_cc; off = qemu_get_sbe32(f); sbuf->sb_wptr = sbuf->sb_data + off; off = qemu_get_sbe32(f); sbuf->sb_rptr = sbuf->sb_data + off; qemu_get_buffer(f, (unsigned char*)sbuf->sb_data, sbuf->sb_datalen); return 0; } static int slirp_socket_load(QEMUFile *f, struct socket *so, int version_id) { if (tcp_attach(so) < 0) return -ENOMEM; so->so_urgc = qemu_get_be32(f); if (version_id <= 3) { so->so_ffamily = AF_INET; so->so_faddr.s_addr = qemu_get_be32(f); so->so_laddr.s_addr = qemu_get_be32(f); so->so_fport = qemu_get_be16(f); so->so_lport = qemu_get_be16(f); } else { so->so_ffamily = qemu_get_be16(f); switch (so->so_ffamily) { case AF_INET: so->so_faddr.s_addr = qemu_get_be32(f); so->so_fport = qemu_get_be16(f); break; default: error_report( "so_ffamily unknown, unable to restore so_faddr and so_lport"); } so->so_lfamily = qemu_get_be16(f); switch (so->so_lfamily) { case AF_INET: so->so_laddr.s_addr = qemu_get_be32(f); so->so_lport = qemu_get_be16(f); break; default: error_report( "so_ffamily unknown, unable to restore so_laddr and so_lport"); } } so->so_iptos = qemu_get_byte(f); so->so_emu = qemu_get_byte(f); so->so_type = qemu_get_byte(f); so->so_state = qemu_get_be32(f); if (slirp_sbuf_load(f, &so->so_rcv) < 0) return -ENOMEM; if (slirp_sbuf_load(f, &so->so_snd) < 0) return -ENOMEM; slirp_tcp_load(f, so->so_tcpcb); return 0; } static void slirp_bootp_load(QEMUFile *f, Slirp *slirp) { int i; for (i = 0; i < NB_BOOTP_CLIENTS; i++) { slirp->bootp_clients[i].allocated = qemu_get_be16(f); qemu_get_buffer(f, slirp->bootp_clients[i].macaddr, 6); } } static int slirp_state_load(QEMUFile *f, void *opaque, int version_id) { Slirp *slirp = opaque; struct ex_list *ex_ptr; while (qemu_get_byte(f)) { int ret; struct socket *so = socreate(slirp); if (!so) return -ENOMEM; ret = slirp_socket_load(f, so, version_id); if (ret < 0) return ret; if ((so->so_faddr.s_addr & slirp->vnetwork_mask.s_addr) != slirp->vnetwork_addr.s_addr) { return -EINVAL; } for (ex_ptr = slirp->exec_list; ex_ptr; ex_ptr = ex_ptr->ex_next) { if (ex_ptr->ex_pty == 3 && so->so_faddr.s_addr == ex_ptr->ex_addr.s_addr && so->so_fport == ex_ptr->ex_fport) { break; } } if (!ex_ptr) return -EINVAL; so->extra = (void *)ex_ptr->ex_exec; } if (version_id >= 2) { slirp->ip_id = qemu_get_be16(f); } if (version_id >= 3) { slirp_bootp_load(f, slirp); } return 0; }