/* * generic functions used by VFIO devices * * Copyright Red Hat, Inc. 2012 * * Authors: * Alex Williamson * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * * Based on qemu-kvm device-assignment: * Adapted for KVM by Qumranet. * Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com) * Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com) * Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com) * Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com) * Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com) */ #include "qemu/osdep.h" #include #include #include #include "hw/vfio/vfio-common.h" #include "hw/vfio/vfio.h" #include "exec/address-spaces.h" #include "exec/memory.h" #include "hw/hw.h" #include "qemu/error-report.h" #include "sysemu/kvm.h" #ifdef CONFIG_KVM #include "linux/kvm.h" #endif #include "trace.h" struct vfio_group_head vfio_group_list = QLIST_HEAD_INITIALIZER(vfio_group_list); struct vfio_as_head vfio_address_spaces = QLIST_HEAD_INITIALIZER(vfio_address_spaces); #ifdef CONFIG_KVM /* * We have a single VFIO pseudo device per KVM VM. Once created it lives * for the life of the VM. Closing the file descriptor only drops our * reference to it and the device's reference to kvm. Therefore once * initialized, this file descriptor is only released on QEMU exit and * we'll re-use it should another vfio device be attached before then. */ static int vfio_kvm_device_fd = -1; #endif /* * Common VFIO interrupt disable */ void vfio_disable_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_TRIGGER, .index = index, .start = 0, .count = 0, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_unmask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_UNMASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } void vfio_mask_single_irqindex(VFIODevice *vbasedev, int index) { struct vfio_irq_set irq_set = { .argsz = sizeof(irq_set), .flags = VFIO_IRQ_SET_DATA_NONE | VFIO_IRQ_SET_ACTION_MASK, .index = index, .start = 0, .count = 1, }; ioctl(vbasedev->fd, VFIO_DEVICE_SET_IRQS, &irq_set); } /* * IO Port/MMIO - Beware of the endians, VFIO is always little endian */ void vfio_region_write(void *opaque, hwaddr addr, uint64_t data, unsigned size) { VFIORegion *region = opaque; VFIODevice *vbasedev = region->vbasedev; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; switch (size) { case 1: buf.byte = data; break; case 2: buf.word = cpu_to_le16(data); break; case 4: buf.dword = cpu_to_le32(data); break; default: hw_error("vfio: unsupported write size, %d bytes", size); break; } if (pwrite(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { error_report("%s(%s:region%d+0x%"HWADDR_PRIx", 0x%"PRIx64 ",%d) failed: %m", __func__, vbasedev->name, region->nr, addr, data, size); } trace_vfio_region_write(vbasedev->name, region->nr, addr, data, size); /* * A read or write to a BAR always signals an INTx EOI. This will * do nothing if not pending (including not in INTx mode). We assume * that a BAR access is in response to an interrupt and that BAR * accesses will service the interrupt. Unfortunately, we don't know * which access will service the interrupt, so we're potentially * getting quite a few host interrupts per guest interrupt. */ vbasedev->ops->vfio_eoi(vbasedev); } uint64_t vfio_region_read(void *opaque, hwaddr addr, unsigned size) { VFIORegion *region = opaque; VFIODevice *vbasedev = region->vbasedev; union { uint8_t byte; uint16_t word; uint32_t dword; uint64_t qword; } buf; uint64_t data = 0; if (pread(vbasedev->fd, &buf, size, region->fd_offset + addr) != size) { error_report("%s(%s:region%d+0x%"HWADDR_PRIx", %d) failed: %m", __func__, vbasedev->name, region->nr, addr, size); return (uint64_t)-1; } switch (size) { case 1: data = buf.byte; break; case 2: data = le16_to_cpu(buf.word); break; case 4: data = le32_to_cpu(buf.dword); break; default: hw_error("vfio: unsupported read size, %d bytes", size); break; } trace_vfio_region_read(vbasedev->name, region->nr, addr, size, data); /* Same as write above */ vbasedev->ops->vfio_eoi(vbasedev); return data; } const MemoryRegionOps vfio_region_ops = { .read = vfio_region_read, .write = vfio_region_write, .endianness = DEVICE_LITTLE_ENDIAN, }; /* * DMA - Mapping and unmapping for the "type1" IOMMU interface used on x86 */ static int vfio_dma_unmap(VFIOContainer *container, hwaddr iova, ram_addr_t size) { struct vfio_iommu_type1_dma_unmap unmap = { .argsz = sizeof(unmap), .flags = 0, .iova = iova, .size = size, }; if (ioctl(container->fd, VFIO_IOMMU_UNMAP_DMA, &unmap)) { error_report("VFIO_UNMAP_DMA: %d", -errno); return -errno; } return 0; } static int vfio_dma_map(VFIOContainer *container, hwaddr iova, ram_addr_t size, void *vaddr, bool readonly) { struct vfio_iommu_type1_dma_map map = { .argsz = sizeof(map), .flags = VFIO_DMA_MAP_FLAG_READ, .vaddr = (__u64)(uintptr_t)vaddr, .iova = iova, .size = size, }; if (!readonly) { map.flags |= VFIO_DMA_MAP_FLAG_WRITE; } /* * Try the mapping, if it fails with EBUSY, unmap the region and try * again. This shouldn't be necessary, but we sometimes see it in * the VGA ROM space. */ if (ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0 || (errno == EBUSY && vfio_dma_unmap(container, iova, size) == 0 && ioctl(container->fd, VFIO_IOMMU_MAP_DMA, &map) == 0)) { return 0; } error_report("VFIO_MAP_DMA: %d", -errno); return -errno; } static bool vfio_listener_skipped_section(MemoryRegionSection *section) { return (!memory_region_is_ram(section->mr) && !memory_region_is_iommu(section->mr)) || /* * Sizing an enabled 64-bit BAR can cause spurious mappings to * addresses in the upper part of the 64-bit address space. These * are never accessed by the CPU and beyond the address width of * some IOMMU hardware. TODO: VFIO should tell us the IOMMU width. */ section->offset_within_address_space & (1ULL << 63); } static void vfio_iommu_map_notify(Notifier *n, void *data) { VFIOGuestIOMMU *giommu = container_of(n, VFIOGuestIOMMU, n); VFIOContainer *container = giommu->container; IOMMUTLBEntry *iotlb = data; MemoryRegion *mr; hwaddr xlat; hwaddr len = iotlb->addr_mask + 1; void *vaddr; int ret; trace_vfio_iommu_map_notify(iotlb->iova, iotlb->iova + iotlb->addr_mask); /* * The IOMMU TLB entry we have just covers translation through * this IOMMU to its immediate target. We need to translate * it the rest of the way through to memory. */ rcu_read_lock(); mr = address_space_translate(&address_space_memory, iotlb->translated_addr, &xlat, &len, iotlb->perm & IOMMU_WO); if (!memory_region_is_ram(mr)) { error_report("iommu map to non memory area %"HWADDR_PRIx"", xlat); goto out; } /* * Translation truncates length to the IOMMU page size, * check that it did not truncate too much. */ if (len & iotlb->addr_mask) { error_report("iommu has granularity incompatible with target AS"); goto out; } if ((iotlb->perm & IOMMU_RW) != IOMMU_NONE) { vaddr = memory_region_get_ram_ptr(mr) + xlat; ret = vfio_dma_map(container, iotlb->iova, iotlb->addr_mask + 1, vaddr, !(iotlb->perm & IOMMU_WO) || mr->readonly); if (ret) { error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx", %p) = %d (%m)", container, iotlb->iova, iotlb->addr_mask + 1, vaddr, ret); } } else { ret = vfio_dma_unmap(container, iotlb->iova, iotlb->addr_mask + 1); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iotlb->iova, iotlb->addr_mask + 1, ret); } } out: rcu_read_unlock(); } static hwaddr vfio_container_granularity(VFIOContainer *container) { return (hwaddr)1 << ctz64(container->iova_pgsizes); } static void vfio_listener_region_add(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); hwaddr iova, end; Int128 llend, llsize; void *vaddr; int ret; if (vfio_listener_skipped_section(section)) { trace_vfio_listener_region_add_skip( section->offset_within_address_space, section->offset_within_address_space + int128_get64(int128_sub(section->size, int128_one()))); return; } if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != (section->offset_within_region & ~TARGET_PAGE_MASK))) { error_report("%s received unaligned region", __func__); return; } iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); llend = int128_make64(section->offset_within_address_space); llend = int128_add(llend, section->size); llend = int128_and(llend, int128_exts64(TARGET_PAGE_MASK)); if (int128_ge(int128_make64(iova), llend)) { return; } end = int128_get64(int128_sub(llend, int128_one())); if ((iova < container->min_iova) || (end > container->max_iova)) { error_report("vfio: IOMMU container %p can't map guest IOVA region" " 0x%"HWADDR_PRIx"..0x%"HWADDR_PRIx, container, iova, end); ret = -EFAULT; goto fail; } memory_region_ref(section->mr); if (memory_region_is_iommu(section->mr)) { VFIOGuestIOMMU *giommu; trace_vfio_listener_region_add_iommu(iova, end); /* * FIXME: We should do some checking to see if the * capabilities of the host VFIO IOMMU are adequate to model * the guest IOMMU * * FIXME: For VFIO iommu types which have KVM acceleration to * avoid bouncing all map/unmaps through qemu this way, this * would be the right place to wire that up (tell the KVM * device emulation the VFIO iommu handles to use). */ giommu = g_malloc0(sizeof(*giommu)); giommu->iommu = section->mr; giommu->container = container; giommu->n.notify = vfio_iommu_map_notify; QLIST_INSERT_HEAD(&container->giommu_list, giommu, giommu_next); memory_region_register_iommu_notifier(giommu->iommu, &giommu->n); memory_region_iommu_replay(giommu->iommu, &giommu->n, vfio_container_granularity(container), false); return; } /* Here we assume that memory_region_is_ram(section->mr)==true */ vaddr = memory_region_get_ram_ptr(section->mr) + section->offset_within_region + (iova - section->offset_within_address_space); trace_vfio_listener_region_add_ram(iova, end, vaddr); llsize = int128_sub(llend, int128_make64(iova)); ret = vfio_dma_map(container, iova, int128_get64(llsize), vaddr, section->readonly); if (ret) { error_report("vfio_dma_map(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx", %p) = %d (%m)", container, iova, int128_get64(llsize), vaddr, ret); goto fail; } return; fail: /* * On the initfn path, store the first error in the container so we * can gracefully fail. Runtime, there's not much we can do other * than throw a hardware error. */ if (!container->initialized) { if (!container->error) { container->error = ret; } } else { hw_error("vfio: DMA mapping failed, unable to continue"); } } static void vfio_listener_region_del(MemoryListener *listener, MemoryRegionSection *section) { VFIOContainer *container = container_of(listener, VFIOContainer, listener); hwaddr iova, end; int ret; if (vfio_listener_skipped_section(section)) { trace_vfio_listener_region_del_skip( section->offset_within_address_space, section->offset_within_address_space + int128_get64(int128_sub(section->size, int128_one()))); return; } if (unlikely((section->offset_within_address_space & ~TARGET_PAGE_MASK) != (section->offset_within_region & ~TARGET_PAGE_MASK))) { error_report("%s received unaligned region", __func__); return; } if (memory_region_is_iommu(section->mr)) { VFIOGuestIOMMU *giommu; QLIST_FOREACH(giommu, &container->giommu_list, giommu_next) { if (giommu->iommu == section->mr) { memory_region_unregister_iommu_notifier(&giommu->n); QLIST_REMOVE(giommu, giommu_next); g_free(giommu); break; } } /* * FIXME: We assume the one big unmap below is adequate to * remove any individual page mappings in the IOMMU which * might have been copied into VFIO. This works for a page table * based IOMMU where a big unmap flattens a large range of IO-PTEs. * That may not be true for all IOMMU types. */ } iova = TARGET_PAGE_ALIGN(section->offset_within_address_space); end = (section->offset_within_address_space + int128_get64(section->size)) & TARGET_PAGE_MASK; if (iova >= end) { return; } trace_vfio_listener_region_del(iova, end - 1); ret = vfio_dma_unmap(container, iova, end - iova); memory_region_unref(section->mr); if (ret) { error_report("vfio_dma_unmap(%p, 0x%"HWADDR_PRIx", " "0x%"HWADDR_PRIx") = %d (%m)", container, iova, end - iova, ret); } } static const MemoryListener vfio_memory_listener = { .region_add = vfio_listener_region_add, .region_del = vfio_listener_region_del, }; static void vfio_listener_release(VFIOContainer *container) { memory_listener_unregister(&container->listener); } int vfio_region_setup(Object *obj, VFIODevice *vbasedev, VFIORegion *region, int index, const char *name) { struct vfio_region_info *info; int ret; ret = vfio_get_region_info(vbasedev, index, &info); if (ret) { return ret; } region->vbasedev = vbasedev; region->flags = info->flags; region->size = info->size; region->fd_offset = info->offset; region->nr = index; if (region->size) { region->mem = g_new0(MemoryRegion, 1); memory_region_init_io(region->mem, obj, &vfio_region_ops, region, name, region->size); if (!vbasedev->no_mmap && region->flags & VFIO_REGION_INFO_FLAG_MMAP && !(region->size & ~qemu_real_host_page_mask)) { region->nr_mmaps = 1; region->mmaps = g_new0(VFIOMmap, region->nr_mmaps); region->mmaps[0].offset = 0; region->mmaps[0].size = region->size; } } g_free(info); trace_vfio_region_setup(vbasedev->name, index, name, region->flags, region->fd_offset, region->size); return 0; } int vfio_region_mmap(VFIORegion *region) { int i, prot = 0; char *name; if (!region->mem) { return 0; } prot |= region->flags & VFIO_REGION_INFO_FLAG_READ ? PROT_READ : 0; prot |= region->flags & VFIO_REGION_INFO_FLAG_WRITE ? PROT_WRITE : 0; for (i = 0; i < region->nr_mmaps; i++) { region->mmaps[i].mmap = mmap(NULL, region->mmaps[i].size, prot, MAP_SHARED, region->vbasedev->fd, region->fd_offset + region->mmaps[i].offset); if (region->mmaps[i].mmap == MAP_FAILED) { int ret = -errno; trace_vfio_region_mmap_fault(memory_region_name(region->mem), i, region->fd_offset + region->mmaps[i].offset, region->fd_offset + region->mmaps[i].offset + region->mmaps[i].size - 1, ret); region->mmaps[i].mmap = NULL; for (i--; i >= 0; i--) { memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); munmap(region->mmaps[i].mmap, region->mmaps[i].size); object_unparent(OBJECT(®ion->mmaps[i].mem)); region->mmaps[i].mmap = NULL; } return ret; } name = g_strdup_printf("%s mmaps[%d]", memory_region_name(region->mem), i); memory_region_init_ram_ptr(®ion->mmaps[i].mem, memory_region_owner(region->mem), name, region->mmaps[i].size, region->mmaps[i].mmap); g_free(name); memory_region_set_skip_dump(®ion->mmaps[i].mem); memory_region_add_subregion(region->mem, region->mmaps[i].offset, ®ion->mmaps[i].mem); trace_vfio_region_mmap(memory_region_name(®ion->mmaps[i].mem), region->mmaps[i].offset, region->mmaps[i].offset + region->mmaps[i].size - 1); } return 0; } void vfio_region_exit(VFIORegion *region) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { memory_region_del_subregion(region->mem, ®ion->mmaps[i].mem); } } trace_vfio_region_exit(region->vbasedev->name, region->nr); } void vfio_region_finalize(VFIORegion *region) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { munmap(region->mmaps[i].mmap, region->mmaps[i].size); object_unparent(OBJECT(®ion->mmaps[i].mem)); } } object_unparent(OBJECT(region->mem)); g_free(region->mem); g_free(region->mmaps); trace_vfio_region_finalize(region->vbasedev->name, region->nr); } void vfio_region_mmaps_set_enabled(VFIORegion *region, bool enabled) { int i; if (!region->mem) { return; } for (i = 0; i < region->nr_mmaps; i++) { if (region->mmaps[i].mmap) { memory_region_set_enabled(®ion->mmaps[i].mem, enabled); } } trace_vfio_region_mmaps_set_enabled(memory_region_name(region->mem), enabled); } void vfio_reset_handler(void *opaque) { VFIOGroup *group; VFIODevice *vbasedev; QLIST_FOREACH(group, &vfio_group_list, next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { vbasedev->ops->vfio_compute_needs_reset(vbasedev); } } QLIST_FOREACH(group, &vfio_group_list, next) { QLIST_FOREACH(vbasedev, &group->device_list, next) { if (vbasedev->needs_reset) { vbasedev->ops->vfio_hot_reset_multi(vbasedev); } } } } static void vfio_kvm_device_add_group(VFIOGroup *group) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_GROUP, .attr = KVM_DEV_VFIO_GROUP_ADD, .addr = (uint64_t)(unsigned long)&group->fd, }; if (!kvm_enabled()) { return; } if (vfio_kvm_device_fd < 0) { struct kvm_create_device cd = { .type = KVM_DEV_TYPE_VFIO, }; if (kvm_vm_ioctl(kvm_state, KVM_CREATE_DEVICE, &cd)) { error_report("Failed to create KVM VFIO device: %m"); return; } vfio_kvm_device_fd = cd.fd; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_report("Failed to add group %d to KVM VFIO device: %m", group->groupid); } #endif } static void vfio_kvm_device_del_group(VFIOGroup *group) { #ifdef CONFIG_KVM struct kvm_device_attr attr = { .group = KVM_DEV_VFIO_GROUP, .attr = KVM_DEV_VFIO_GROUP_DEL, .addr = (uint64_t)(unsigned long)&group->fd, }; if (vfio_kvm_device_fd < 0) { return; } if (ioctl(vfio_kvm_device_fd, KVM_SET_DEVICE_ATTR, &attr)) { error_report("Failed to remove group %d from KVM VFIO device: %m", group->groupid); } #endif } static VFIOAddressSpace *vfio_get_address_space(AddressSpace *as) { VFIOAddressSpace *space; QLIST_FOREACH(space, &vfio_address_spaces, list) { if (space->as == as) { return space; } } /* No suitable VFIOAddressSpace, create a new one */ space = g_malloc0(sizeof(*space)); space->as = as; QLIST_INIT(&space->containers); QLIST_INSERT_HEAD(&vfio_address_spaces, space, list); return space; } static void vfio_put_address_space(VFIOAddressSpace *space) { if (QLIST_EMPTY(&space->containers)) { QLIST_REMOVE(space, list); g_free(space); } } static int vfio_connect_container(VFIOGroup *group, AddressSpace *as) { VFIOContainer *container; int ret, fd; VFIOAddressSpace *space; space = vfio_get_address_space(as); QLIST_FOREACH(container, &space->containers, next) { if (!ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &container->fd)) { group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; } } fd = qemu_open("/dev/vfio/vfio", O_RDWR); if (fd < 0) { error_report("vfio: failed to open /dev/vfio/vfio: %m"); ret = -errno; goto put_space_exit; } ret = ioctl(fd, VFIO_GET_API_VERSION); if (ret != VFIO_API_VERSION) { error_report("vfio: supported vfio version: %d, " "reported version: %d", VFIO_API_VERSION, ret); ret = -EINVAL; goto close_fd_exit; } container = g_malloc0(sizeof(*container)); container->space = space; container->fd = fd; if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1_IOMMU) || ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1v2_IOMMU)) { bool v2 = !!ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_TYPE1v2_IOMMU); struct vfio_iommu_type1_info info; ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); if (ret) { error_report("vfio: failed to set group container: %m"); ret = -errno; goto free_container_exit; } ret = ioctl(fd, VFIO_SET_IOMMU, v2 ? VFIO_TYPE1v2_IOMMU : VFIO_TYPE1_IOMMU); if (ret) { error_report("vfio: failed to set iommu for container: %m"); ret = -errno; goto free_container_exit; } /* * FIXME: This assumes that a Type1 IOMMU can map any 64-bit * IOVA whatsoever. That's not actually true, but the current * kernel interface doesn't tell us what it can map, and the * existing Type1 IOMMUs generally support any IOVA we're * going to actually try in practice. */ container->min_iova = 0; container->max_iova = (hwaddr)-1; /* Assume just 4K IOVA page size */ container->iova_pgsizes = 0x1000; info.argsz = sizeof(info); ret = ioctl(fd, VFIO_IOMMU_GET_INFO, &info); /* Ignore errors */ if ((ret == 0) && (info.flags & VFIO_IOMMU_INFO_PGSIZES)) { container->iova_pgsizes = info.iova_pgsizes; } } else if (ioctl(fd, VFIO_CHECK_EXTENSION, VFIO_SPAPR_TCE_IOMMU)) { struct vfio_iommu_spapr_tce_info info; ret = ioctl(group->fd, VFIO_GROUP_SET_CONTAINER, &fd); if (ret) { error_report("vfio: failed to set group container: %m"); ret = -errno; goto free_container_exit; } ret = ioctl(fd, VFIO_SET_IOMMU, VFIO_SPAPR_TCE_IOMMU); if (ret) { error_report("vfio: failed to set iommu for container: %m"); ret = -errno; goto free_container_exit; } /* * The host kernel code implementing VFIO_IOMMU_DISABLE is called * when container fd is closed so we do not call it explicitly * in this file. */ ret = ioctl(fd, VFIO_IOMMU_ENABLE); if (ret) { error_report("vfio: failed to enable container: %m"); ret = -errno; goto free_container_exit; } /* * This only considers the host IOMMU's 32-bit window. At * some point we need to add support for the optional 64-bit * window and dynamic windows */ info.argsz = sizeof(info); ret = ioctl(fd, VFIO_IOMMU_SPAPR_TCE_GET_INFO, &info); if (ret) { error_report("vfio: VFIO_IOMMU_SPAPR_TCE_GET_INFO failed: %m"); ret = -errno; goto free_container_exit; } container->min_iova = info.dma32_window_start; container->max_iova = container->min_iova + info.dma32_window_size - 1; /* Assume just 4K IOVA pages for now */ container->iova_pgsizes = 0x1000; } else { error_report("vfio: No available IOMMU models"); ret = -EINVAL; goto free_container_exit; } container->listener = vfio_memory_listener; memory_listener_register(&container->listener, container->space->as); if (container->error) { ret = container->error; error_report("vfio: memory listener initialization failed for container"); goto listener_release_exit; } container->initialized = true; QLIST_INIT(&container->group_list); QLIST_INSERT_HEAD(&space->containers, container, next); group->container = container; QLIST_INSERT_HEAD(&container->group_list, group, container_next); return 0; listener_release_exit: vfio_listener_release(container); free_container_exit: g_free(container); close_fd_exit: close(fd); put_space_exit: vfio_put_address_space(space); return ret; } static void vfio_disconnect_container(VFIOGroup *group) { VFIOContainer *container = group->container; if (ioctl(group->fd, VFIO_GROUP_UNSET_CONTAINER, &container->fd)) { error_report("vfio: error disconnecting group %d from container", group->groupid); } QLIST_REMOVE(group, container_next); group->container = NULL; if (QLIST_EMPTY(&container->group_list)) { VFIOAddressSpace *space = container->space; VFIOGuestIOMMU *giommu, *tmp; vfio_listener_release(container); QLIST_REMOVE(container, next); QLIST_FOREACH_SAFE(giommu, &container->giommu_list, giommu_next, tmp) { memory_region_unregister_iommu_notifier(&giommu->n); QLIST_REMOVE(giommu, giommu_next); g_free(giommu); } trace_vfio_disconnect_container(container->fd); close(container->fd); g_free(container); vfio_put_address_space(space); } } VFIOGroup *vfio_get_group(int groupid, AddressSpace *as) { VFIOGroup *group; char path[32]; struct vfio_group_status status = { .argsz = sizeof(status) }; QLIST_FOREACH(group, &vfio_group_list, next) { if (group->groupid == groupid) { /* Found it. Now is it already in the right context? */ if (group->container->space->as == as) { return group; } else { error_report("vfio: group %d used in multiple address spaces", group->groupid); return NULL; } } } group = g_malloc0(sizeof(*group)); snprintf(path, sizeof(path), "/dev/vfio/%d", groupid); group->fd = qemu_open(path, O_RDWR); if (group->fd < 0) { error_report("vfio: error opening %s: %m", path); goto free_group_exit; } if (ioctl(group->fd, VFIO_GROUP_GET_STATUS, &status)) { error_report("vfio: error getting group status: %m"); goto close_fd_exit; } if (!(status.flags & VFIO_GROUP_FLAGS_VIABLE)) { error_report("vfio: error, group %d is not viable, please ensure " "all devices within the iommu_group are bound to their " "vfio bus driver.", groupid); goto close_fd_exit; } group->groupid = groupid; QLIST_INIT(&group->device_list); if (vfio_connect_container(group, as)) { error_report("vfio: failed to setup container for group %d", groupid); goto close_fd_exit; } if (QLIST_EMPTY(&vfio_group_list)) { qemu_register_reset(vfio_reset_handler, NULL); } QLIST_INSERT_HEAD(&vfio_group_list, group, next); vfio_kvm_device_add_group(group); return group; close_fd_exit: close(group->fd); free_group_exit: g_free(group); return NULL; } void vfio_put_group(VFIOGroup *group) { if (!group || !QLIST_EMPTY(&group->device_list)) { return; } vfio_kvm_device_del_group(group); vfio_disconnect_container(group); QLIST_REMOVE(group, next); trace_vfio_put_group(group->fd); close(group->fd); g_free(group); if (QLIST_EMPTY(&vfio_group_list)) { qemu_unregister_reset(vfio_reset_handler, NULL); } } int vfio_get_device(VFIOGroup *group, const char *name, VFIODevice *vbasedev) { struct vfio_device_info dev_info = { .argsz = sizeof(dev_info) }; int ret, fd; fd = ioctl(group->fd, VFIO_GROUP_GET_DEVICE_FD, name); if (fd < 0) { error_report("vfio: error getting device %s from group %d: %m", name, group->groupid); error_printf("Verify all devices in group %d are bound to vfio- " "or pci-stub and not already in use\n", group->groupid); return fd; } ret = ioctl(fd, VFIO_DEVICE_GET_INFO, &dev_info); if (ret) { error_report("vfio: error getting device info: %m"); close(fd); return ret; } vbasedev->fd = fd; vbasedev->group = group; QLIST_INSERT_HEAD(&group->device_list, vbasedev, next); vbasedev->num_irqs = dev_info.num_irqs; vbasedev->num_regions = dev_info.num_regions; vbasedev->flags = dev_info.flags; trace_vfio_get_device(name, dev_info.flags, dev_info.num_regions, dev_info.num_irqs); vbasedev->reset_works = !!(dev_info.flags & VFIO_DEVICE_FLAGS_RESET); return 0; } void vfio_put_base_device(VFIODevice *vbasedev) { if (!vbasedev->group) { return; } QLIST_REMOVE(vbasedev, next); vbasedev->group = NULL; trace_vfio_put_base_device(vbasedev->fd); close(vbasedev->fd); } int vfio_get_region_info(VFIODevice *vbasedev, int index, struct vfio_region_info **info) { size_t argsz = sizeof(struct vfio_region_info); *info = g_malloc0(argsz); (*info)->index = index; (*info)->argsz = argsz; if (ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, *info)) { g_free(*info); return -errno; } return 0; } /* * Interfaces for IBM EEH (Enhanced Error Handling) */ static bool vfio_eeh_container_ok(VFIOContainer *container) { /* * As of 2016-03-04 (linux-4.5) the host kernel EEH/VFIO * implementation is broken if there are multiple groups in a * container. The hardware works in units of Partitionable * Endpoints (== IOMMU groups) and the EEH operations naively * iterate across all groups in the container, without any logic * to make sure the groups have their state synchronized. For * certain operations (ENABLE) that might be ok, until an error * occurs, but for others (GET_STATE) it's clearly broken. */ /* * XXX Once fixed kernels exist, test for them here */ if (QLIST_EMPTY(&container->group_list)) { return false; } if (QLIST_NEXT(QLIST_FIRST(&container->group_list), container_next)) { return false; } return true; } static int vfio_eeh_container_op(VFIOContainer *container, uint32_t op) { struct vfio_eeh_pe_op pe_op = { .argsz = sizeof(pe_op), .op = op, }; int ret; if (!vfio_eeh_container_ok(container)) { error_report("vfio/eeh: EEH_PE_OP 0x%x: " "kernel requires a container with exactly one group", op); return -EPERM; } ret = ioctl(container->fd, VFIO_EEH_PE_OP, &pe_op); if (ret < 0) { error_report("vfio/eeh: EEH_PE_OP 0x%x failed: %m", op); return -errno; } return 0; } static VFIOContainer *vfio_eeh_as_container(AddressSpace *as) { VFIOAddressSpace *space = vfio_get_address_space(as); VFIOContainer *container = NULL; if (QLIST_EMPTY(&space->containers)) { /* No containers to act on */ goto out; } container = QLIST_FIRST(&space->containers); if (QLIST_NEXT(container, next)) { /* We don't yet have logic to synchronize EEH state across * multiple containers */ container = NULL; goto out; } out: vfio_put_address_space(space); return container; } bool vfio_eeh_as_ok(AddressSpace *as) { VFIOContainer *container = vfio_eeh_as_container(as); return (container != NULL) && vfio_eeh_container_ok(container); } int vfio_eeh_as_op(AddressSpace *as, uint32_t op) { VFIOContainer *container = vfio_eeh_as_container(as); if (!container) { return -ENODEV; } return vfio_eeh_container_op(container, op); }