/*
* QEMU PowerPC PowerNV LPC controller
*
* Copyright (c) 2016, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
#include "qemu/osdep.h"
#include "sysemu/sysemu.h"
#include "target/ppc/cpu.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_lpc.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/ppc/fdt.h"
#include
enum {
ECCB_CTL = 0,
ECCB_RESET = 1,
ECCB_STAT = 2,
ECCB_DATA = 3,
};
/* OPB Master LS registers */
#define OPB_MASTER_LS_IRQ_STAT 0x50
#define OPB_MASTER_IRQ_LPC 0x00000800
#define OPB_MASTER_LS_IRQ_MASK 0x54
#define OPB_MASTER_LS_IRQ_POL 0x58
#define OPB_MASTER_LS_IRQ_INPUT 0x5c
/* LPC HC registers */
#define LPC_HC_FW_SEG_IDSEL 0x24
#define LPC_HC_FW_RD_ACC_SIZE 0x28
#define LPC_HC_FW_RD_1B 0x00000000
#define LPC_HC_FW_RD_2B 0x01000000
#define LPC_HC_FW_RD_4B 0x02000000
#define LPC_HC_FW_RD_16B 0x04000000
#define LPC_HC_FW_RD_128B 0x07000000
#define LPC_HC_IRQSER_CTRL 0x30
#define LPC_HC_IRQSER_EN 0x80000000
#define LPC_HC_IRQSER_QMODE 0x40000000
#define LPC_HC_IRQSER_START_MASK 0x03000000
#define LPC_HC_IRQSER_START_4CLK 0x00000000
#define LPC_HC_IRQSER_START_6CLK 0x01000000
#define LPC_HC_IRQSER_START_8CLK 0x02000000
#define LPC_HC_IRQMASK 0x34 /* same bit defs as LPC_HC_IRQSTAT */
#define LPC_HC_IRQSTAT 0x38
#define LPC_HC_IRQ_SERIRQ0 0x80000000 /* all bits down to ... */
#define LPC_HC_IRQ_SERIRQ16 0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
#define LPC_HC_IRQ_SERIRQ_ALL 0xffff8000
#define LPC_HC_IRQ_LRESET 0x00000400
#define LPC_HC_IRQ_SYNC_ABNORM_ERR 0x00000080
#define LPC_HC_IRQ_SYNC_NORESP_ERR 0x00000040
#define LPC_HC_IRQ_SYNC_NORM_ERR 0x00000020
#define LPC_HC_IRQ_SYNC_TIMEOUT_ERR 0x00000010
#define LPC_HC_IRQ_SYNC_TARG_TAR_ERR 0x00000008
#define LPC_HC_IRQ_SYNC_BM_TAR_ERR 0x00000004
#define LPC_HC_IRQ_SYNC_BM0_REQ 0x00000002
#define LPC_HC_IRQ_SYNC_BM1_REQ 0x00000001
#define LPC_HC_ERROR_ADDRESS 0x40
#define LPC_OPB_SIZE 0x100000000ull
#define ISA_IO_SIZE 0x00010000
#define ISA_MEM_SIZE 0x10000000
#define LPC_IO_OPB_ADDR 0xd0010000
#define LPC_IO_OPB_SIZE 0x00010000
#define LPC_MEM_OPB_ADDR 0xe0010000
#define LPC_MEM_OPB_SIZE 0x10000000
#define LPC_FW_OPB_ADDR 0xf0000000
#define LPC_FW_OPB_SIZE 0x10000000
#define LPC_OPB_REGS_OPB_ADDR 0xc0010000
#define LPC_OPB_REGS_OPB_SIZE 0x00002000
#define LPC_HC_REGS_OPB_ADDR 0xc0012000
#define LPC_HC_REGS_OPB_SIZE 0x00001000
static int pnv_lpc_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
{
const char compat[] = "ibm,power8-lpc\0ibm,lpc";
char *name;
int offset;
uint32_t lpc_pcba = PNV_XSCOM_LPC_BASE;
uint32_t reg[] = {
cpu_to_be32(lpc_pcba),
cpu_to_be32(PNV_XSCOM_LPC_SIZE)
};
name = g_strdup_printf("isa@%x", lpc_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT((fdt_setprop(fdt, offset, "reg", reg, sizeof(reg))));
_FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 2)));
_FDT((fdt_setprop_cell(fdt, offset, "#size-cells", 1)));
_FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
return 0;
}
/*
* These read/write handlers of the OPB address space should be common
* with the P9 LPC Controller which uses direct MMIOs.
*
* TODO: rework to use address_space_stq() and address_space_ldq()
* instead.
*/
static bool opb_read(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
int sz)
{
bool success;
/* XXX Handle access size limits and FW read caching here */
success = !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz, false);
return success;
}
static bool opb_write(PnvLpcController *lpc, uint32_t addr, uint8_t *data,
int sz)
{
bool success;
/* XXX Handle access size limits here */
success = !address_space_rw(&lpc->opb_as, addr, MEMTXATTRS_UNSPECIFIED,
data, sz, true);
return success;
}
#define ECCB_CTL_READ PPC_BIT(15)
#define ECCB_CTL_SZ_LSH (63 - 7)
#define ECCB_CTL_SZ_MASK PPC_BITMASK(4, 7)
#define ECCB_CTL_ADDR_MASK PPC_BITMASK(32, 63)
#define ECCB_STAT_OP_DONE PPC_BIT(52)
#define ECCB_STAT_OP_ERR PPC_BIT(52)
#define ECCB_STAT_RD_DATA_LSH (63 - 37)
#define ECCB_STAT_RD_DATA_MASK (0xffffffff << ECCB_STAT_RD_DATA_LSH)
static void pnv_lpc_do_eccb(PnvLpcController *lpc, uint64_t cmd)
{
/* XXX Check for magic bits at the top, addr size etc... */
unsigned int sz = (cmd & ECCB_CTL_SZ_MASK) >> ECCB_CTL_SZ_LSH;
uint32_t opb_addr = cmd & ECCB_CTL_ADDR_MASK;
uint8_t data[4];
bool success;
if (cmd & ECCB_CTL_READ) {
success = opb_read(lpc, opb_addr, data, sz);
if (success) {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(((uint64_t)data[0]) << 24 |
((uint64_t)data[1]) << 16 |
((uint64_t)data[2]) << 8 |
((uint64_t)data[3])) << ECCB_STAT_RD_DATA_LSH;
} else {
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE |
(0xffffffffull << ECCB_STAT_RD_DATA_LSH);
}
} else {
data[0] = lpc->eccb_data_reg >> 24;
data[1] = lpc->eccb_data_reg >> 16;
data[2] = lpc->eccb_data_reg >> 8;
data[3] = lpc->eccb_data_reg;
success = opb_write(lpc, opb_addr, data, sz);
lpc->eccb_stat_reg = ECCB_STAT_OP_DONE;
}
/* XXX Which error bit (if any) to signal OPB error ? */
}
static uint64_t pnv_lpc_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
uint64_t val = 0;
switch (offset & 3) {
case ECCB_CTL:
case ECCB_RESET:
val = 0;
break;
case ECCB_STAT:
val = lpc->eccb_stat_reg;
lpc->eccb_stat_reg = 0;
break;
case ECCB_DATA:
val = ((uint64_t)lpc->eccb_data_reg) << 32;
break;
}
return val;
}
static void pnv_lpc_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = PNV_LPC(opaque);
uint32_t offset = addr >> 3;
switch (offset & 3) {
case ECCB_CTL:
pnv_lpc_do_eccb(lpc, val);
break;
case ECCB_RESET:
/* XXXX */
break;
case ECCB_STAT:
break;
case ECCB_DATA:
lpc->eccb_data_reg = val >> 32;
break;
}
}
static const MemoryRegionOps pnv_lpc_xscom_ops = {
.read = pnv_lpc_xscom_read,
.write = pnv_lpc_xscom_write,
.valid.min_access_size = 8,
.valid.max_access_size = 8,
.impl.min_access_size = 8,
.impl.max_access_size = 8,
.endianness = DEVICE_BIG_ENDIAN,
};
static void pnv_lpc_eval_irqs(PnvLpcController *lpc)
{
bool lpc_to_opb_irq = false;
/* Update LPC controller to OPB line */
if (lpc->lpc_hc_irqser_ctrl & LPC_HC_IRQSER_EN) {
uint32_t irqs;
irqs = lpc->lpc_hc_irqstat & lpc->lpc_hc_irqmask;
lpc_to_opb_irq = (irqs != 0);
}
/* We don't honor the polarity register, it's pointless and unused
* anyway
*/
if (lpc_to_opb_irq) {
lpc->opb_irq_input |= OPB_MASTER_IRQ_LPC;
} else {
lpc->opb_irq_input &= ~OPB_MASTER_IRQ_LPC;
}
/* Update OPB internal latch */
lpc->opb_irq_stat |= lpc->opb_irq_input & lpc->opb_irq_mask;
/* Reflect the interrupt */
pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_LPC_I2C, lpc->opb_irq_stat != 0);
}
static uint64_t lpc_hc_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
val = lpc->lpc_hc_fw_seg_idsel;
break;
case LPC_HC_FW_RD_ACC_SIZE:
val = lpc->lpc_hc_fw_rd_acc_size;
break;
case LPC_HC_IRQSER_CTRL:
val = lpc->lpc_hc_irqser_ctrl;
break;
case LPC_HC_IRQMASK:
val = lpc->lpc_hc_irqmask;
break;
case LPC_HC_IRQSTAT:
val = lpc->lpc_hc_irqstat;
break;
case LPC_HC_ERROR_ADDRESS:
val = lpc->lpc_hc_error_addr;
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void lpc_hc_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
PnvLpcController *lpc = opaque;
/* XXX Filter out reserved bits */
switch (addr) {
case LPC_HC_FW_SEG_IDSEL:
/* XXX Actually figure out how that works as this impact
* memory regions/aliases
*/
lpc->lpc_hc_fw_seg_idsel = val;
break;
case LPC_HC_FW_RD_ACC_SIZE:
lpc->lpc_hc_fw_rd_acc_size = val;
break;
case LPC_HC_IRQSER_CTRL:
lpc->lpc_hc_irqser_ctrl = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQMASK:
lpc->lpc_hc_irqmask = val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_IRQSTAT:
lpc->lpc_hc_irqstat &= ~val;
pnv_lpc_eval_irqs(lpc);
break;
case LPC_HC_ERROR_ADDRESS:
break;
default:
qemu_log_mask(LOG_UNIMP, "LPC HC Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps lpc_hc_ops = {
.read = lpc_hc_read,
.write = lpc_hc_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static uint64_t opb_master_read(void *opaque, hwaddr addr, unsigned size)
{
PnvLpcController *lpc = opaque;
uint64_t val = 0xfffffffffffffffful;
switch (addr) {
case OPB_MASTER_LS_IRQ_STAT:
val = lpc->opb_irq_stat;
break;
case OPB_MASTER_LS_IRQ_MASK:
val = lpc->opb_irq_mask;
break;
case OPB_MASTER_LS_IRQ_POL:
val = lpc->opb_irq_pol;
break;
case OPB_MASTER_LS_IRQ_INPUT:
val = lpc->opb_irq_input;
break;
default:
qemu_log_mask(LOG_UNIMP, "OPB MASTER Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr);
}
return val;
}
static void opb_master_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvLpcController *lpc = opaque;
switch (addr) {
case OPB_MASTER_LS_IRQ_STAT:
lpc->opb_irq_stat &= ~val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_MASK:
lpc->opb_irq_mask = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_POL:
lpc->opb_irq_pol = val;
pnv_lpc_eval_irqs(lpc);
break;
case OPB_MASTER_LS_IRQ_INPUT:
/* Read only */
break;
default:
qemu_log_mask(LOG_UNIMP, "OPB MASTER Unimplemented register: Ox%"
HWADDR_PRIx "\n", addr);
}
}
static const MemoryRegionOps opb_master_ops = {
.read = opb_master_read,
.write = opb_master_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
.impl = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void pnv_lpc_realize(DeviceState *dev, Error **errp)
{
PnvLpcController *lpc = PNV_LPC(dev);
Object *obj;
Error *error = NULL;
/* Reg inits */
lpc->lpc_hc_fw_rd_acc_size = LPC_HC_FW_RD_4B;
/* Create address space and backing MR for the OPB bus */
memory_region_init(&lpc->opb_mr, OBJECT(dev), "lpc-opb", 0x100000000ull);
address_space_init(&lpc->opb_as, &lpc->opb_mr, "lpc-opb");
/* Create ISA IO and Mem space regions which are the root of
* the ISA bus (ie, ISA address spaces). We don't create a
* separate one for FW which we alias to memory.
*/
memory_region_init(&lpc->isa_io, OBJECT(dev), "isa-io", ISA_IO_SIZE);
memory_region_init(&lpc->isa_mem, OBJECT(dev), "isa-mem", ISA_MEM_SIZE);
/* Create windows from the OPB space to the ISA space */
memory_region_init_alias(&lpc->opb_isa_io, OBJECT(dev), "lpc-isa-io",
&lpc->isa_io, 0, LPC_IO_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_IO_OPB_ADDR,
&lpc->opb_isa_io);
memory_region_init_alias(&lpc->opb_isa_mem, OBJECT(dev), "lpc-isa-mem",
&lpc->isa_mem, 0, LPC_MEM_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_MEM_OPB_ADDR,
&lpc->opb_isa_mem);
memory_region_init_alias(&lpc->opb_isa_fw, OBJECT(dev), "lpc-isa-fw",
&lpc->isa_mem, 0, LPC_FW_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_FW_OPB_ADDR,
&lpc->opb_isa_fw);
/* Create MMIO regions for LPC HC and OPB registers */
memory_region_init_io(&lpc->opb_master_regs, OBJECT(dev), &opb_master_ops,
lpc, "lpc-opb-master", LPC_OPB_REGS_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_OPB_REGS_OPB_ADDR,
&lpc->opb_master_regs);
memory_region_init_io(&lpc->lpc_hc_regs, OBJECT(dev), &lpc_hc_ops, lpc,
"lpc-hc", LPC_HC_REGS_OPB_SIZE);
memory_region_add_subregion(&lpc->opb_mr, LPC_HC_REGS_OPB_ADDR,
&lpc->lpc_hc_regs);
/* XScom region for LPC registers */
pnv_xscom_region_init(&lpc->xscom_regs, OBJECT(dev),
&pnv_lpc_xscom_ops, lpc, "xscom-lpc",
PNV_XSCOM_LPC_SIZE);
/* get PSI object from chip */
obj = object_property_get_link(OBJECT(dev), "psi", &error);
if (!obj) {
error_setg(errp, "%s: required link 'psi' not found: %s",
__func__, error_get_pretty(error));
return;
}
lpc->psi = PNV_PSI(obj);
}
static void pnv_lpc_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
xdc->dt_xscom = pnv_lpc_dt_xscom;
dc->realize = pnv_lpc_realize;
}
static const TypeInfo pnv_lpc_info = {
.name = TYPE_PNV_LPC,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvLpcController),
.class_init = pnv_lpc_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_lpc_register_types(void)
{
type_register_static(&pnv_lpc_info);
}
type_init(pnv_lpc_register_types)
/* If we don't use the built-in LPC interrupt deserializer, we need
* to provide a set of qirqs for the ISA bus or things will go bad.
*
* Most machines using pre-Naples chips (without said deserializer)
* have a CPLD that will collect the SerIRQ and shoot them as a
* single level interrupt to the P8 chip. So let's setup a hook
* for doing just that.
*/
static void pnv_lpc_isa_irq_handler_cpld(void *opaque, int n, int level)
{
PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
uint32_t old_state = pnv->cpld_irqstate;
PnvLpcController *lpc = PNV_LPC(opaque);
if (level) {
pnv->cpld_irqstate |= 1u << n;
} else {
pnv->cpld_irqstate &= ~(1u << n);
}
if (pnv->cpld_irqstate != old_state) {
pnv_psi_irq_set(lpc->psi, PSIHB_IRQ_EXTERNAL, pnv->cpld_irqstate != 0);
}
}
static void pnv_lpc_isa_irq_handler(void *opaque, int n, int level)
{
PnvLpcController *lpc = PNV_LPC(opaque);
/* The Naples HW latches the 1 levels, clearing is done by SW */
if (level) {
lpc->lpc_hc_irqstat |= LPC_HC_IRQ_SERIRQ0 >> n;
pnv_lpc_eval_irqs(lpc);
}
}
qemu_irq *pnv_lpc_isa_irq_create(PnvLpcController *lpc, int chip_type,
int nirqs)
{
/* Not all variants have a working serial irq decoder. If not,
* handling of LPC interrupts becomes a platform issue (some
* platforms have a CPLD to do it).
*/
if (chip_type == PNV_CHIP_POWER8NVL) {
return qemu_allocate_irqs(pnv_lpc_isa_irq_handler, lpc, nirqs);
} else {
return qemu_allocate_irqs(pnv_lpc_isa_irq_handler_cpld, lpc, nirqs);
}
}