/* * Flash NAND memory emulation. Based on "16M x 8 Bit NAND Flash * Memory" datasheet for the KM29U128AT / K9F2808U0A chips from * Samsung Electronic. * * Copyright (c) 2006 Openedhand Ltd. * Written by Andrzej Zaborowski * * This code is licensed under the GNU GPL v2. */ #ifndef NAND_IO # include "hw.h" # include "flash.h" # include "block.h" /* FIXME: Pass block device as an argument. */ # include "sysemu.h" # define NAND_CMD_READ0 0x00 # define NAND_CMD_READ1 0x01 # define NAND_CMD_READ2 0x50 # define NAND_CMD_LPREAD2 0x30 # define NAND_CMD_NOSERIALREAD2 0x35 # define NAND_CMD_RANDOMREAD1 0x05 # define NAND_CMD_RANDOMREAD2 0xe0 # define NAND_CMD_READID 0x90 # define NAND_CMD_RESET 0xff # define NAND_CMD_PAGEPROGRAM1 0x80 # define NAND_CMD_PAGEPROGRAM2 0x10 # define NAND_CMD_CACHEPROGRAM2 0x15 # define NAND_CMD_BLOCKERASE1 0x60 # define NAND_CMD_BLOCKERASE2 0xd0 # define NAND_CMD_READSTATUS 0x70 # define NAND_CMD_COPYBACKPRG1 0x85 # define NAND_IOSTATUS_ERROR (1 << 0) # define NAND_IOSTATUS_PLANE0 (1 << 1) # define NAND_IOSTATUS_PLANE1 (1 << 2) # define NAND_IOSTATUS_PLANE2 (1 << 3) # define NAND_IOSTATUS_PLANE3 (1 << 4) # define NAND_IOSTATUS_BUSY (1 << 6) # define NAND_IOSTATUS_UNPROTCT (1 << 7) # define MAX_PAGE 0x800 # define MAX_OOB 0x40 struct nand_flash_s { uint8_t manf_id, chip_id; int size, pages; int page_shift, oob_shift, erase_shift, addr_shift; uint8_t *storage; BlockDriverState *bdrv; int mem_oob; int cle, ale, ce, wp, gnd; uint8_t io[MAX_PAGE + MAX_OOB + 0x400]; uint8_t *ioaddr; int iolen; uint32_t cmd, addr; int addrlen; int status; int offset; void (*blk_write)(struct nand_flash_s *s); void (*blk_erase)(struct nand_flash_s *s); void (*blk_load)(struct nand_flash_s *s, uint32_t addr, int offset); }; # define NAND_NO_AUTOINCR 0x00000001 # define NAND_BUSWIDTH_16 0x00000002 # define NAND_NO_PADDING 0x00000004 # define NAND_CACHEPRG 0x00000008 # define NAND_COPYBACK 0x00000010 # define NAND_IS_AND 0x00000020 # define NAND_4PAGE_ARRAY 0x00000040 # define NAND_NO_READRDY 0x00000100 # define NAND_SAMSUNG_LP (NAND_NO_PADDING | NAND_COPYBACK) # define NAND_IO # define PAGE(addr) ((addr) >> ADDR_SHIFT) # define PAGE_START(page) (PAGE(page) * (PAGE_SIZE + OOB_SIZE)) # define PAGE_MASK ((1 << ADDR_SHIFT) - 1) # define OOB_SHIFT (PAGE_SHIFT - 5) # define OOB_SIZE (1 << OOB_SHIFT) # define SECTOR(addr) ((addr) >> (9 + ADDR_SHIFT - PAGE_SHIFT)) # define SECTOR_OFFSET(addr) ((addr) & ((511 >> PAGE_SHIFT) << 8)) # define PAGE_SIZE 256 # define PAGE_SHIFT 8 # define PAGE_SECTORS 1 # define ADDR_SHIFT 8 # include "nand.c" # define PAGE_SIZE 512 # define PAGE_SHIFT 9 # define PAGE_SECTORS 1 # define ADDR_SHIFT 8 # include "nand.c" # define PAGE_SIZE 2048 # define PAGE_SHIFT 11 # define PAGE_SECTORS 4 # define ADDR_SHIFT 16 # include "nand.c" /* Information based on Linux drivers/mtd/nand/nand_ids.c */ struct nand_info_s { int size; int width; int page_shift; int erase_shift; uint32_t options; } nand_flash_ids[0x100] = { [0 ... 0xff] = { 0 }, [0x6e] = { 1, 8, 8, 4, 0 }, [0x64] = { 2, 8, 8, 4, 0 }, [0x6b] = { 4, 8, 9, 4, 0 }, [0xe8] = { 1, 8, 8, 4, 0 }, [0xec] = { 1, 8, 8, 4, 0 }, [0xea] = { 2, 8, 8, 4, 0 }, [0xd5] = { 4, 8, 9, 4, 0 }, [0xe3] = { 4, 8, 9, 4, 0 }, [0xe5] = { 4, 8, 9, 4, 0 }, [0xd6] = { 8, 8, 9, 4, 0 }, [0x39] = { 8, 8, 9, 4, 0 }, [0xe6] = { 8, 8, 9, 4, 0 }, [0x49] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, [0x59] = { 8, 16, 9, 4, NAND_BUSWIDTH_16 }, [0x33] = { 16, 8, 9, 5, 0 }, [0x73] = { 16, 8, 9, 5, 0 }, [0x43] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x53] = { 16, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x35] = { 32, 8, 9, 5, 0 }, [0x75] = { 32, 8, 9, 5, 0 }, [0x45] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x55] = { 32, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x36] = { 64, 8, 9, 5, 0 }, [0x76] = { 64, 8, 9, 5, 0 }, [0x46] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x56] = { 64, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x78] = { 128, 8, 9, 5, 0 }, [0x39] = { 128, 8, 9, 5, 0 }, [0x79] = { 128, 8, 9, 5, 0 }, [0x72] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x49] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x74] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x59] = { 128, 16, 9, 5, NAND_BUSWIDTH_16 }, [0x71] = { 256, 8, 9, 5, 0 }, /* * These are the new chips with large page size. The pagesize and the * erasesize is determined from the extended id bytes */ # define LP_OPTIONS (NAND_SAMSUNG_LP | NAND_NO_READRDY | NAND_NO_AUTOINCR) # define LP_OPTIONS16 (LP_OPTIONS | NAND_BUSWIDTH_16) /* 512 Megabit */ [0xa2] = { 64, 8, 0, 0, LP_OPTIONS }, [0xf2] = { 64, 8, 0, 0, LP_OPTIONS }, [0xb2] = { 64, 16, 0, 0, LP_OPTIONS16 }, [0xc2] = { 64, 16, 0, 0, LP_OPTIONS16 }, /* 1 Gigabit */ [0xa1] = { 128, 8, 0, 0, LP_OPTIONS }, [0xf1] = { 128, 8, 0, 0, LP_OPTIONS }, [0xb1] = { 128, 16, 0, 0, LP_OPTIONS16 }, [0xc1] = { 128, 16, 0, 0, LP_OPTIONS16 }, /* 2 Gigabit */ [0xaa] = { 256, 8, 0, 0, LP_OPTIONS }, [0xda] = { 256, 8, 0, 0, LP_OPTIONS }, [0xba] = { 256, 16, 0, 0, LP_OPTIONS16 }, [0xca] = { 256, 16, 0, 0, LP_OPTIONS16 }, /* 4 Gigabit */ [0xac] = { 512, 8, 0, 0, LP_OPTIONS }, [0xdc] = { 512, 8, 0, 0, LP_OPTIONS }, [0xbc] = { 512, 16, 0, 0, LP_OPTIONS16 }, [0xcc] = { 512, 16, 0, 0, LP_OPTIONS16 }, /* 8 Gigabit */ [0xa3] = { 1024, 8, 0, 0, LP_OPTIONS }, [0xd3] = { 1024, 8, 0, 0, LP_OPTIONS }, [0xb3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, [0xc3] = { 1024, 16, 0, 0, LP_OPTIONS16 }, /* 16 Gigabit */ [0xa5] = { 2048, 8, 0, 0, LP_OPTIONS }, [0xd5] = { 2048, 8, 0, 0, LP_OPTIONS }, [0xb5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, [0xc5] = { 2048, 16, 0, 0, LP_OPTIONS16 }, }; static void nand_reset(struct nand_flash_s *s) { s->cmd = NAND_CMD_READ0; s->addr = 0; s->addrlen = 0; s->iolen = 0; s->offset = 0; s->status &= NAND_IOSTATUS_UNPROTCT; } static void nand_command(struct nand_flash_s *s) { switch (s->cmd) { case NAND_CMD_READ0: s->iolen = 0; break; case NAND_CMD_READID: s->io[0] = s->manf_id; s->io[1] = s->chip_id; s->io[2] = 'Q'; /* Don't-care byte (often 0xa5) */ if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) s->io[3] = 0x15; /* Page Size, Block Size, Spare Size.. */ else s->io[3] = 0xc0; /* Multi-plane */ s->ioaddr = s->io; s->iolen = 4; break; case NAND_CMD_RANDOMREAD2: case NAND_CMD_NOSERIALREAD2: if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP)) break; s->blk_load(s, s->addr, s->addr & ((1 << s->addr_shift) - 1)); break; case NAND_CMD_RESET: nand_reset(s); break; case NAND_CMD_PAGEPROGRAM1: s->ioaddr = s->io; s->iolen = 0; break; case NAND_CMD_PAGEPROGRAM2: if (s->wp) { s->blk_write(s); } break; case NAND_CMD_BLOCKERASE1: break; case NAND_CMD_BLOCKERASE2: if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) s->addr <<= 16; else s->addr <<= 8; if (s->wp) { s->blk_erase(s); } break; case NAND_CMD_READSTATUS: s->io[0] = s->status; s->ioaddr = s->io; s->iolen = 1; break; default: printf("%s: Unknown NAND command 0x%02x\n", __FUNCTION__, s->cmd); } } static void nand_save(QEMUFile *f, void *opaque) { struct nand_flash_s *s = (struct nand_flash_s *) opaque; qemu_put_byte(f, s->cle); qemu_put_byte(f, s->ale); qemu_put_byte(f, s->ce); qemu_put_byte(f, s->wp); qemu_put_byte(f, s->gnd); qemu_put_buffer(f, s->io, sizeof(s->io)); qemu_put_be32(f, s->ioaddr - s->io); qemu_put_be32(f, s->iolen); qemu_put_be32s(f, &s->cmd); qemu_put_be32s(f, &s->addr); qemu_put_be32(f, s->addrlen); qemu_put_be32(f, s->status); qemu_put_be32(f, s->offset); /* XXX: do we want to save s->storage too? */ } static int nand_load(QEMUFile *f, void *opaque, int version_id) { struct nand_flash_s *s = (struct nand_flash_s *) opaque; s->cle = qemu_get_byte(f); s->ale = qemu_get_byte(f); s->ce = qemu_get_byte(f); s->wp = qemu_get_byte(f); s->gnd = qemu_get_byte(f); qemu_get_buffer(f, s->io, sizeof(s->io)); s->ioaddr = s->io + qemu_get_be32(f); s->iolen = qemu_get_be32(f); if (s->ioaddr >= s->io + sizeof(s->io) || s->ioaddr < s->io) return -EINVAL; qemu_get_be32s(f, &s->cmd); qemu_get_be32s(f, &s->addr); s->addrlen = qemu_get_be32(f); s->status = qemu_get_be32(f); s->offset = qemu_get_be32(f); return 0; } static int nand_iid = 0; /* * Chip inputs are CLE, ALE, CE, WP, GND and eight I/O pins. Chip * outputs are R/B and eight I/O pins. * * CE, WP and R/B are active low. */ void nand_setpins(struct nand_flash_s *s, int cle, int ale, int ce, int wp, int gnd) { s->cle = cle; s->ale = ale; s->ce = ce; s->wp = wp; s->gnd = gnd; if (wp) s->status |= NAND_IOSTATUS_UNPROTCT; else s->status &= ~NAND_IOSTATUS_UNPROTCT; } void nand_getpins(struct nand_flash_s *s, int *rb) { *rb = 1; } void nand_setio(struct nand_flash_s *s, uint8_t value) { if (!s->ce && s->cle) { if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { if (s->cmd == NAND_CMD_READ0 && value == NAND_CMD_LPREAD2) return; if (value == NAND_CMD_RANDOMREAD1) { s->addr &= ~((1 << s->addr_shift) - 1); s->addrlen = 0; return; } } if (value == NAND_CMD_READ0) s->offset = 0; else if (value == NAND_CMD_READ1) { s->offset = 0x100; value = NAND_CMD_READ0; } else if (value == NAND_CMD_READ2) { s->offset = 1 << s->page_shift; value = NAND_CMD_READ0; } s->cmd = value; if (s->cmd == NAND_CMD_READSTATUS || s->cmd == NAND_CMD_PAGEPROGRAM2 || s->cmd == NAND_CMD_BLOCKERASE1 || s->cmd == NAND_CMD_BLOCKERASE2 || s->cmd == NAND_CMD_NOSERIALREAD2 || s->cmd == NAND_CMD_RANDOMREAD2 || s->cmd == NAND_CMD_RESET) nand_command(s); if (s->cmd != NAND_CMD_RANDOMREAD2) { s->addrlen = 0; s->addr = 0; } } if (s->ale) { s->addr |= value << (s->addrlen * 8); s->addrlen ++; if (s->addrlen == 1 && s->cmd == NAND_CMD_READID) nand_command(s); if (!(nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && s->addrlen == 3 && ( s->cmd == NAND_CMD_READ0 || s->cmd == NAND_CMD_PAGEPROGRAM1)) nand_command(s); if ((nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) && s->addrlen == 4 && ( s->cmd == NAND_CMD_READ0 || s->cmd == NAND_CMD_PAGEPROGRAM1)) nand_command(s); } if (!s->cle && !s->ale && s->cmd == NAND_CMD_PAGEPROGRAM1) { if (s->iolen < (1 << s->page_shift) + (1 << s->oob_shift)) s->io[s->iolen ++] = value; } else if (!s->cle && !s->ale && s->cmd == NAND_CMD_COPYBACKPRG1) { if ((s->addr & ((1 << s->addr_shift) - 1)) < (1 << s->page_shift) + (1 << s->oob_shift)) { s->io[s->iolen + (s->addr & ((1 << s->addr_shift) - 1))] = value; s->addr ++; } } } uint8_t nand_getio(struct nand_flash_s *s) { int offset; /* Allow sequential reading */ if (!s->iolen && s->cmd == NAND_CMD_READ0) { offset = (s->addr & ((1 << s->addr_shift) - 1)) + s->offset; s->offset = 0; s->blk_load(s, s->addr, offset); if (s->gnd) s->iolen = (1 << s->page_shift) - offset; else s->iolen = (1 << s->page_shift) + (1 << s->oob_shift) - offset; } if (s->ce || s->iolen <= 0) return 0; s->iolen --; return *(s->ioaddr ++); } struct nand_flash_s *nand_init(int manf_id, int chip_id) { int pagesize; struct nand_flash_s *s; int index; if (nand_flash_ids[chip_id].size == 0) { cpu_abort(cpu_single_env, "%s: Unsupported NAND chip ID.\n", __FUNCTION__); } s = (struct nand_flash_s *) qemu_mallocz(sizeof(struct nand_flash_s)); index = drive_get_index(IF_MTD, 0, 0); if (index != -1) s->bdrv = drives_table[index].bdrv; s->manf_id = manf_id; s->chip_id = chip_id; s->size = nand_flash_ids[s->chip_id].size << 20; if (nand_flash_ids[s->chip_id].options & NAND_SAMSUNG_LP) { s->page_shift = 11; s->erase_shift = 6; } else { s->page_shift = nand_flash_ids[s->chip_id].page_shift; s->erase_shift = nand_flash_ids[s->chip_id].erase_shift; } switch (1 << s->page_shift) { case 256: nand_init_256(s); break; case 512: nand_init_512(s); break; case 2048: nand_init_2048(s); break; default: cpu_abort(cpu_single_env, "%s: Unsupported NAND block size.\n", __FUNCTION__); } pagesize = 1 << s->oob_shift; s->mem_oob = 1; if (s->bdrv && bdrv_getlength(s->bdrv) >= (s->pages << s->page_shift) + (s->pages << s->oob_shift)) { pagesize = 0; s->mem_oob = 0; } if (!s->bdrv) pagesize += 1 << s->page_shift; if (pagesize) s->storage = (uint8_t *) memset(qemu_malloc(s->pages * pagesize), 0xff, s->pages * pagesize); register_savevm("nand", nand_iid ++, 0, nand_save, nand_load, s); return s; } void nand_done(struct nand_flash_s *s) { if (s->bdrv) { bdrv_close(s->bdrv); bdrv_delete(s->bdrv); } if (!s->bdrv || s->mem_oob) free(s->storage); free(s); } #else /* Program a single page */ static void glue(nand_blk_write_, PAGE_SIZE)(struct nand_flash_s *s) { uint32_t off, page, sector, soff; uint8_t iobuf[(PAGE_SECTORS + 2) * 0x200]; if (PAGE(s->addr) >= s->pages) return; if (!s->bdrv) { memcpy(s->storage + PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset, s->io, s->iolen); } else if (s->mem_oob) { sector = SECTOR(s->addr); off = (s->addr & PAGE_MASK) + s->offset; soff = SECTOR_OFFSET(s->addr); if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) { printf("%s: read error in sector %i\n", __FUNCTION__, sector); return; } memcpy(iobuf + (soff | off), s->io, MIN(s->iolen, PAGE_SIZE - off)); if (off + s->iolen > PAGE_SIZE) { page = PAGE(s->addr); memcpy(s->storage + (page << OOB_SHIFT), s->io + PAGE_SIZE - off, MIN(OOB_SIZE, off + s->iolen - PAGE_SIZE)); } if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, sector); } else { off = PAGE_START(s->addr) + (s->addr & PAGE_MASK) + s->offset; sector = off >> 9; soff = off & 0x1ff; if (bdrv_read(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) { printf("%s: read error in sector %i\n", __FUNCTION__, sector); return; } memcpy(iobuf + soff, s->io, s->iolen); if (bdrv_write(s->bdrv, sector, iobuf, PAGE_SECTORS + 2) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, sector); } s->offset = 0; } /* Erase a single block */ static void glue(nand_blk_erase_, PAGE_SIZE)(struct nand_flash_s *s) { uint32_t i, page, addr; uint8_t iobuf[0x200] = { [0 ... 0x1ff] = 0xff, }; addr = s->addr & ~((1 << (ADDR_SHIFT + s->erase_shift)) - 1); if (PAGE(addr) >= s->pages) return; if (!s->bdrv) { memset(s->storage + PAGE_START(addr), 0xff, (PAGE_SIZE + OOB_SIZE) << s->erase_shift); } else if (s->mem_oob) { memset(s->storage + (PAGE(addr) << OOB_SHIFT), 0xff, OOB_SIZE << s->erase_shift); i = SECTOR(addr); page = SECTOR(addr + (ADDR_SHIFT + s->erase_shift)); for (; i < page; i ++) if (bdrv_write(s->bdrv, i, iobuf, 1) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, i); } else { addr = PAGE_START(addr); page = addr >> 9; if (bdrv_read(s->bdrv, page, iobuf, 1) == -1) printf("%s: read error in sector %i\n", __FUNCTION__, page); memset(iobuf + (addr & 0x1ff), 0xff, (~addr & 0x1ff) + 1); if (bdrv_write(s->bdrv, page, iobuf, 1) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, page); memset(iobuf, 0xff, 0x200); i = (addr & ~0x1ff) + 0x200; for (addr += ((PAGE_SIZE + OOB_SIZE) << s->erase_shift) - 0x200; i < addr; i += 0x200) if (bdrv_write(s->bdrv, i >> 9, iobuf, 1) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, i >> 9); page = i >> 9; if (bdrv_read(s->bdrv, page, iobuf, 1) == -1) printf("%s: read error in sector %i\n", __FUNCTION__, page); memset(iobuf, 0xff, ((addr - 1) & 0x1ff) + 1); if (bdrv_write(s->bdrv, page, iobuf, 1) == -1) printf("%s: write error in sector %i\n", __FUNCTION__, page); } } static void glue(nand_blk_load_, PAGE_SIZE)(struct nand_flash_s *s, uint32_t addr, int offset) { if (PAGE(addr) >= s->pages) return; if (s->bdrv) { if (s->mem_oob) { if (bdrv_read(s->bdrv, SECTOR(addr), s->io, PAGE_SECTORS) == -1) printf("%s: read error in sector %i\n", __FUNCTION__, SECTOR(addr)); memcpy(s->io + SECTOR_OFFSET(s->addr) + PAGE_SIZE, s->storage + (PAGE(s->addr) << OOB_SHIFT), OOB_SIZE); s->ioaddr = s->io + SECTOR_OFFSET(s->addr) + offset; } else { if (bdrv_read(s->bdrv, PAGE_START(addr) >> 9, s->io, (PAGE_SECTORS + 2)) == -1) printf("%s: read error in sector %i\n", __FUNCTION__, PAGE_START(addr) >> 9); s->ioaddr = s->io + (PAGE_START(addr) & 0x1ff) + offset; } } else { memcpy(s->io, s->storage + PAGE_START(s->addr) + offset, PAGE_SIZE + OOB_SIZE - offset); s->ioaddr = s->io; } s->addr &= PAGE_SIZE - 1; s->addr += PAGE_SIZE; } static void glue(nand_init_, PAGE_SIZE)(struct nand_flash_s *s) { s->oob_shift = PAGE_SHIFT - 5; s->pages = s->size >> PAGE_SHIFT; s->addr_shift = ADDR_SHIFT; s->blk_erase = glue(nand_blk_erase_, PAGE_SIZE); s->blk_write = glue(nand_blk_write_, PAGE_SIZE); s->blk_load = glue(nand_blk_load_, PAGE_SIZE); } # undef PAGE_SIZE # undef PAGE_SHIFT # undef PAGE_SECTORS # undef ADDR_SHIFT #endif /* NAND_IO */