/* * ARM Nested Vectored Interrupt Controller * * Copyright (c) 2006-2007 CodeSourcery. * Written by Paul Brook * * This code is licensed under the GPL. * * The ARMv7M System controller is fairly tightly tied in with the * NVIC. Much of that is also implemented here. */ #include "sysbus.h" #include "qemu-timer.h" #include "arm-misc.h" #include "exec-memory.h" #define NVIC 1 static uint32_t nvic_readl(void *opaque, uint32_t offset); static void nvic_writel(void *opaque, uint32_t offset, uint32_t value); #include "arm_gic.c" typedef struct { gic_state gic; struct { uint32_t control; uint32_t reload; int64_t tick; QEMUTimer *timer; } systick; MemoryRegion sysregmem; MemoryRegion gic_iomem_alias; MemoryRegion container; uint32_t num_irq; } nvic_state; static const uint8_t nvic_id[] = { 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 }; /* qemu timers run at 1GHz. We want something closer to 1MHz. */ #define SYSTICK_SCALE 1000ULL #define SYSTICK_ENABLE (1 << 0) #define SYSTICK_TICKINT (1 << 1) #define SYSTICK_CLKSOURCE (1 << 2) #define SYSTICK_COUNTFLAG (1 << 16) int system_clock_scale; /* Conversion factor from qemu timer to SysTick frequencies. */ static inline int64_t systick_scale(nvic_state *s) { if (s->systick.control & SYSTICK_CLKSOURCE) return system_clock_scale; else return 1000; } static void systick_reload(nvic_state *s, int reset) { if (reset) s->systick.tick = qemu_get_clock_ns(vm_clock); s->systick.tick += (s->systick.reload + 1) * systick_scale(s); qemu_mod_timer(s->systick.timer, s->systick.tick); } static void systick_timer_tick(void * opaque) { nvic_state *s = (nvic_state *)opaque; s->systick.control |= SYSTICK_COUNTFLAG; if (s->systick.control & SYSTICK_TICKINT) { /* Trigger the interrupt. */ armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); } if (s->systick.reload == 0) { s->systick.control &= ~SYSTICK_ENABLE; } else { systick_reload(s, 0); } } static void systick_reset(nvic_state *s) { s->systick.control = 0; s->systick.reload = 0; s->systick.tick = 0; qemu_del_timer(s->systick.timer); } /* The external routines use the hardware vector numbering, ie. the first IRQ is #16. The internal GIC routines use #32 as the first IRQ. */ void armv7m_nvic_set_pending(void *opaque, int irq) { nvic_state *s = (nvic_state *)opaque; if (irq >= 16) irq += 16; gic_set_pending_private(&s->gic, 0, irq); } /* Make pending IRQ active. */ int armv7m_nvic_acknowledge_irq(void *opaque) { nvic_state *s = (nvic_state *)opaque; uint32_t irq; irq = gic_acknowledge_irq(&s->gic, 0); if (irq == 1023) hw_error("Interrupt but no vector\n"); if (irq >= 32) irq -= 16; return irq; } void armv7m_nvic_complete_irq(void *opaque, int irq) { nvic_state *s = (nvic_state *)opaque; if (irq >= 16) irq += 16; gic_complete_irq(&s->gic, 0, irq); } static uint32_t nvic_readl(void *opaque, uint32_t offset) { nvic_state *s = (nvic_state *)opaque; uint32_t val; int irq; switch (offset) { case 4: /* Interrupt Control Type. */ return (s->num_irq / 32) - 1; case 0x10: /* SysTick Control and Status. */ val = s->systick.control; s->systick.control &= ~SYSTICK_COUNTFLAG; return val; case 0x14: /* SysTick Reload Value. */ return s->systick.reload; case 0x18: /* SysTick Current Value. */ { int64_t t; if ((s->systick.control & SYSTICK_ENABLE) == 0) return 0; t = qemu_get_clock_ns(vm_clock); if (t >= s->systick.tick) return 0; val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1; /* The interrupt in triggered when the timer reaches zero. However the counter is not reloaded until the next clock tick. This is a hack to return zero during the first tick. */ if (val > s->systick.reload) val = 0; return val; } case 0x1c: /* SysTick Calibration Value. */ return 10000; case 0xd00: /* CPUID Base. */ return cpu_single_env->cp15.c0_cpuid; case 0xd04: /* Interrypt Control State. */ /* VECTACTIVE */ val = s->gic.running_irq[0]; if (val == 1023) { val = 0; } else if (val >= 32) { val -= 16; } /* RETTOBASE */ if (s->gic.running_irq[0] == 1023 || s->gic.last_active[s->gic.running_irq[0]][0] == 1023) { val |= (1 << 11); } /* VECTPENDING */ if (s->gic.current_pending[0] != 1023) val |= (s->gic.current_pending[0] << 12); /* ISRPENDING */ for (irq = 32; irq < s->num_irq; irq++) { if (s->gic.irq_state[irq].pending) { val |= (1 << 22); break; } } /* PENDSTSET */ if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending) val |= (1 << 26); /* PENDSVSET */ if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending) val |= (1 << 28); /* NMIPENDSET */ if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending) val |= (1 << 31); return val; case 0xd08: /* Vector Table Offset. */ return cpu_single_env->v7m.vecbase; case 0xd0c: /* Application Interrupt/Reset Control. */ return 0xfa05000; case 0xd10: /* System Control. */ /* TODO: Implement SLEEPONEXIT. */ return 0; case 0xd14: /* Configuration Control. */ /* TODO: Implement Configuration Control bits. */ return 0; case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ irq = offset - 0xd14; val = 0; val |= s->gic.priority1[irq++][0]; val |= s->gic.priority1[irq++][0] << 8; val |= s->gic.priority1[irq++][0] << 16; val |= s->gic.priority1[irq][0] << 24; return val; case 0xd24: /* System Handler Status. */ val = 0; if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0); if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1); if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3); if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7); if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8); if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10); if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11); if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12); if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13); if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14); if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15); if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16); if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17); if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18); return val; case 0xd28: /* Configurable Fault Status. */ /* TODO: Implement Fault Status. */ hw_error("Not implemented: Configurable Fault Status."); return 0; case 0xd2c: /* Hard Fault Status. */ case 0xd30: /* Debug Fault Status. */ case 0xd34: /* Mem Manage Address. */ case 0xd38: /* Bus Fault Address. */ case 0xd3c: /* Aux Fault Status. */ /* TODO: Implement fault status registers. */ goto bad_reg; case 0xd40: /* PFR0. */ return 0x00000030; case 0xd44: /* PRF1. */ return 0x00000200; case 0xd48: /* DFR0. */ return 0x00100000; case 0xd4c: /* AFR0. */ return 0x00000000; case 0xd50: /* MMFR0. */ return 0x00000030; case 0xd54: /* MMFR1. */ return 0x00000000; case 0xd58: /* MMFR2. */ return 0x00000000; case 0xd5c: /* MMFR3. */ return 0x00000000; case 0xd60: /* ISAR0. */ return 0x01141110; case 0xd64: /* ISAR1. */ return 0x02111000; case 0xd68: /* ISAR2. */ return 0x21112231; case 0xd6c: /* ISAR3. */ return 0x01111110; case 0xd70: /* ISAR4. */ return 0x01310102; /* TODO: Implement debug registers. */ default: bad_reg: hw_error("NVIC: Bad read offset 0x%x\n", offset); } } static void nvic_writel(void *opaque, uint32_t offset, uint32_t value) { nvic_state *s = (nvic_state *)opaque; uint32_t oldval; switch (offset) { case 0x10: /* SysTick Control and Status. */ oldval = s->systick.control; s->systick.control &= 0xfffffff8; s->systick.control |= value & 7; if ((oldval ^ value) & SYSTICK_ENABLE) { int64_t now = qemu_get_clock_ns(vm_clock); if (value & SYSTICK_ENABLE) { if (s->systick.tick) { s->systick.tick += now; qemu_mod_timer(s->systick.timer, s->systick.tick); } else { systick_reload(s, 1); } } else { qemu_del_timer(s->systick.timer); s->systick.tick -= now; if (s->systick.tick < 0) s->systick.tick = 0; } } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) { /* This is a hack. Force the timer to be reloaded when the reference clock is changed. */ systick_reload(s, 1); } break; case 0x14: /* SysTick Reload Value. */ s->systick.reload = value; break; case 0x18: /* SysTick Current Value. Writes reload the timer. */ systick_reload(s, 1); s->systick.control &= ~SYSTICK_COUNTFLAG; break; case 0xd04: /* Interrupt Control State. */ if (value & (1 << 31)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); } if (value & (1 << 28)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); } else if (value & (1 << 27)) { s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0; gic_update(&s->gic); } if (value & (1 << 26)) { armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); } else if (value & (1 << 25)) { s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0; gic_update(&s->gic); } break; case 0xd08: /* Vector Table Offset. */ cpu_single_env->v7m.vecbase = value & 0xffffff80; break; case 0xd0c: /* Application Interrupt/Reset Control. */ if ((value >> 16) == 0x05fa) { if (value & 2) { hw_error("VECTCLRACTIVE not implemented"); } if (value & 5) { hw_error("System reset"); } } break; case 0xd10: /* System Control. */ case 0xd14: /* Configuration Control. */ /* TODO: Implement control registers. */ goto bad_reg; case 0xd18: case 0xd1c: case 0xd20: /* System Handler Priority. */ { int irq; irq = offset - 0xd14; s->gic.priority1[irq++][0] = value & 0xff; s->gic.priority1[irq++][0] = (value >> 8) & 0xff; s->gic.priority1[irq++][0] = (value >> 16) & 0xff; s->gic.priority1[irq][0] = (value >> 24) & 0xff; gic_update(&s->gic); } break; case 0xd24: /* System Handler Control. */ /* TODO: Real hardware allows you to set/clear the active bits under some circumstances. We don't implement this. */ s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; break; case 0xd28: /* Configurable Fault Status. */ case 0xd2c: /* Hard Fault Status. */ case 0xd30: /* Debug Fault Status. */ case 0xd34: /* Mem Manage Address. */ case 0xd38: /* Bus Fault Address. */ case 0xd3c: /* Aux Fault Status. */ goto bad_reg; case 0xf00: /* Software Triggered Interrupt Register */ if ((value & 0x1ff) < s->num_irq) { gic_set_pending_private(&s->gic, 0, value & 0x1ff); } break; default: bad_reg: hw_error("NVIC: Bad write offset 0x%x\n", offset); } } static uint64_t nvic_sysreg_read(void *opaque, target_phys_addr_t addr, unsigned size) { /* At the moment we only support the ID registers for byte/word access. * This is not strictly correct as a few of the other registers also * allow byte access. */ uint32_t offset = addr; if (offset >= 0xfe0) { if (offset & 3) { return 0; } return nvic_id[(offset - 0xfe0) >> 2]; } if (size == 4) { return nvic_readl(opaque, offset); } hw_error("NVIC: Bad read of size %d at offset 0x%x\n", size, offset); } static void nvic_sysreg_write(void *opaque, target_phys_addr_t addr, uint64_t value, unsigned size) { uint32_t offset = addr; if (size == 4) { nvic_writel(opaque, offset, value); return; } hw_error("NVIC: Bad write of size %d at offset 0x%x\n", size, offset); } static const MemoryRegionOps nvic_sysreg_ops = { .read = nvic_sysreg_read, .write = nvic_sysreg_write, .endianness = DEVICE_NATIVE_ENDIAN, }; static const VMStateDescription vmstate_nvic = { .name = "armv7m_nvic", .version_id = 1, .minimum_version_id = 1, .minimum_version_id_old = 1, .fields = (VMStateField[]) { VMSTATE_UINT32(systick.control, nvic_state), VMSTATE_UINT32(systick.reload, nvic_state), VMSTATE_INT64(systick.tick, nvic_state), VMSTATE_TIMER(systick.timer, nvic_state), VMSTATE_END_OF_LIST() } }; static void armv7m_nvic_reset(DeviceState *dev) { nvic_state *s = FROM_SYSBUSGIC(nvic_state, sysbus_from_qdev(dev)); gic_reset(&s->gic.busdev.qdev); /* Common GIC reset resets to disabled; the NVIC doesn't have * per-CPU interfaces so mark our non-existent CPU interface * as enabled by default. */ s->gic.cpu_enabled[0] = 1; /* The NVIC as a whole is always enabled. */ s->gic.enabled = 1; systick_reset(s); } static int armv7m_nvic_init(SysBusDevice *dev) { nvic_state *s= FROM_SYSBUSGIC(nvic_state, dev); /* The NVIC always has only one CPU */ s->gic.num_cpu = 1; /* Tell the common code we're an NVIC */ s->gic.revision = 0xffffffff; gic_init_irqs_and_distributor(&s->gic, s->num_irq); /* The NVIC and system controller register area looks like this: * 0..0xff : system control registers, including systick * 0x100..0xcff : GIC-like registers * 0xd00..0xfff : system control registers * We use overlaying to put the GIC like registers * over the top of the system control register region. */ memory_region_init(&s->container, "nvic", 0x1000); /* The system register region goes at the bottom of the priority * stack as it covers the whole page. */ memory_region_init_io(&s->sysregmem, &nvic_sysreg_ops, s, "nvic_sysregs", 0x1000); memory_region_add_subregion(&s->container, 0, &s->sysregmem); /* Alias the GIC region so we can get only the section of it * we need, and layer it on top of the system register region. */ memory_region_init_alias(&s->gic_iomem_alias, "nvic-gic", &s->gic.iomem, 0x100, 0xc00); memory_region_add_subregion_overlap(&s->container, 0x100, &s->gic.iomem, 1); /* Map the whole thing into system memory at the location required * by the v7M architecture. */ memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container); s->systick.timer = qemu_new_timer_ns(vm_clock, systick_timer_tick, s); return 0; } static Property armv7m_nvic_properties[] = { /* The ARM v7m may have anything from 0 to 496 external interrupt * IRQ lines. We default to 64. Other boards may differ and should * set this property appropriately. */ DEFINE_PROP_UINT32("num-irq", nvic_state, num_irq, 64), DEFINE_PROP_END_OF_LIST(), }; static void armv7m_nvic_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass); sdc->init = armv7m_nvic_init; dc->vmsd = &vmstate_nvic; dc->reset = armv7m_nvic_reset; dc->props = armv7m_nvic_properties; } static TypeInfo armv7m_nvic_info = { .name = "armv7m_nvic", .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(nvic_state), .class_init = armv7m_nvic_class_init, }; static void armv7m_nvic_register_types(void) { type_register_static(&armv7m_nvic_info); } type_init(armv7m_nvic_register_types)