summaryrefslogtreecommitdiff
path: root/translate-all.c
diff options
context:
space:
mode:
Diffstat (limited to 'translate-all.c')
-rw-r--r--translate-all.c1719
1 files changed, 1719 insertions, 0 deletions
diff --git a/translate-all.c b/translate-all.c
index f22e3eedd2..b958342a99 100644
--- a/translate-all.c
+++ b/translate-all.c
@@ -16,6 +16,12 @@
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
+#ifdef _WIN32
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
@@ -24,15 +30,119 @@
#include "config.h"
+#include "qemu-common.h"
#define NO_CPU_IO_DEFS
#include "cpu.h"
#include "disas.h"
#include "tcg.h"
#include "qemu-timer.h"
+#include "memory.h"
+#include "exec-memory.h"
+#if defined(CONFIG_USER_ONLY)
+#include "qemu.h"
+#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
+#include <sys/param.h>
+#if __FreeBSD_version >= 700104
+#define HAVE_KINFO_GETVMMAP
+#define sigqueue sigqueue_freebsd /* avoid redefinition */
+#include <sys/time.h>
+#include <sys/proc.h>
+#include <machine/profile.h>
+#define _KERNEL
+#include <sys/user.h>
+#undef _KERNEL
+#undef sigqueue
+#include <libutil.h>
+#endif
+#endif
+#endif
+
+#include "cputlb.h"
+#include "translate-all.h"
+
+//#define DEBUG_TB_INVALIDATE
+//#define DEBUG_FLUSH
+/* make various TB consistency checks */
+//#define DEBUG_TB_CHECK
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
+
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+/* Code generation and translation blocks */
+static TranslationBlock *tbs;
+static int code_gen_max_blocks;
+TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
+static int nb_tbs;
+/* any access to the tbs or the page table must use this lock */
+spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
+
+uint8_t *code_gen_prologue;
+static uint8_t *code_gen_buffer;
+static size_t code_gen_buffer_size;
+/* threshold to flush the translated code buffer */
+static size_t code_gen_buffer_max_size;
+static uint8_t *code_gen_ptr;
+
+typedef struct PageDesc {
+ /* list of TBs intersecting this ram page */
+ TranslationBlock *first_tb;
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned int code_write_count;
+ uint8_t *code_bitmap;
+#if defined(CONFIG_USER_ONLY)
+ unsigned long flags;
+#endif
+} PageDesc;
+
+/* In system mode we want L1_MAP to be based on ram offsets,
+ while in user mode we want it to be based on virtual addresses. */
+#if !defined(CONFIG_USER_ONLY)
+#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
+# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+#else
+# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
+#endif
+
+/* The bits remaining after N lower levels of page tables. */
+#define V_L1_BITS_REM \
+ ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
+
+#if V_L1_BITS_REM < 4
+#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
+#else
+#define V_L1_BITS V_L1_BITS_REM
+#endif
+
+#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
+
+#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
+
+uintptr_t qemu_real_host_page_size;
+uintptr_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
+
+/* This is a multi-level map on the virtual address space.
+ The bottom level has pointers to PageDesc. */
+static void *l1_map[V_L1_SIZE];
+
+/* statistics */
+static int tb_flush_count;
+static int tb_phys_invalidate_count;
/* code generation context */
TCGContext tcg_ctx;
+static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2);
+
void cpu_gen_init(void)
{
tcg_context_init(&tcg_ctx);
@@ -155,3 +265,1612 @@ int cpu_restore_state(TranslationBlock *tb,
#endif
return 0;
}
+
+#ifdef _WIN32
+static inline void map_exec(void *addr, long size)
+{
+ DWORD old_protect;
+ VirtualProtect(addr, size,
+ PAGE_EXECUTE_READWRITE, &old_protect);
+}
+#else
+static inline void map_exec(void *addr, long size)
+{
+ unsigned long start, end, page_size;
+
+ page_size = getpagesize();
+ start = (unsigned long)addr;
+ start &= ~(page_size - 1);
+
+ end = (unsigned long)addr + size;
+ end += page_size - 1;
+ end &= ~(page_size - 1);
+
+ mprotect((void *)start, end - start,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+#endif
+
+static void page_init(void)
+{
+ /* NOTE: we can always suppose that qemu_host_page_size >=
+ TARGET_PAGE_SIZE */
+#ifdef _WIN32
+ {
+ SYSTEM_INFO system_info;
+
+ GetSystemInfo(&system_info);
+ qemu_real_host_page_size = system_info.dwPageSize;
+ }
+#else
+ qemu_real_host_page_size = getpagesize();
+#endif
+ if (qemu_host_page_size == 0) {
+ qemu_host_page_size = qemu_real_host_page_size;
+ }
+ if (qemu_host_page_size < TARGET_PAGE_SIZE) {
+ qemu_host_page_size = TARGET_PAGE_SIZE;
+ }
+ qemu_host_page_mask = ~(qemu_host_page_size - 1);
+
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+ {
+#ifdef HAVE_KINFO_GETVMMAP
+ struct kinfo_vmentry *freep;
+ int i, cnt;
+
+ freep = kinfo_getvmmap(getpid(), &cnt);
+ if (freep) {
+ mmap_lock();
+ for (i = 0; i < cnt; i++) {
+ unsigned long startaddr, endaddr;
+
+ startaddr = freep[i].kve_start;
+ endaddr = freep[i].kve_end;
+ if (h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ } else {
+#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
+ endaddr = ~0ul;
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+#endif
+ }
+ }
+ }
+ free(freep);
+ mmap_unlock();
+ }
+#else
+ FILE *f;
+
+ last_brk = (unsigned long)sbrk(0);
+
+ f = fopen("/compat/linux/proc/self/maps", "r");
+ if (f) {
+ mmap_lock();
+
+ do {
+ unsigned long startaddr, endaddr;
+ int n;
+
+ n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
+
+ if (n == 2 && h2g_valid(startaddr)) {
+ startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
+
+ if (h2g_valid(endaddr)) {
+ endaddr = h2g(endaddr);
+ } else {
+ endaddr = ~0ul;
+ }
+ page_set_flags(startaddr, endaddr, PAGE_RESERVED);
+ }
+ } while (!feof(f));
+
+ fclose(f);
+ mmap_unlock();
+ }
+#endif
+ }
+#endif
+}
+
+static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
+{
+ PageDesc *pd;
+ void **lp;
+ int i;
+
+#if defined(CONFIG_USER_ONLY)
+ /* We can't use g_malloc because it may recurse into a locked mutex. */
+# define ALLOC(P, SIZE) \
+ do { \
+ P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
+ } while (0)
+#else
+# define ALLOC(P, SIZE) \
+ do { P = g_malloc0(SIZE); } while (0)
+#endif
+
+ /* Level 1. Always allocated. */
+ lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
+
+ /* Level 2..N-1. */
+ for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
+ void **p = *lp;
+
+ if (p == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ ALLOC(p, sizeof(void *) * L2_SIZE);
+ *lp = p;
+ }
+
+ lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
+ }
+
+ pd = *lp;
+ if (pd == NULL) {
+ if (!alloc) {
+ return NULL;
+ }
+ ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
+ *lp = pd;
+ }
+
+#undef ALLOC
+
+ return pd + (index & (L2_SIZE - 1));
+}
+
+static inline PageDesc *page_find(tb_page_addr_t index)
+{
+ return page_find_alloc(index, 0);
+}
+
+#if !defined(CONFIG_USER_ONLY)
+#define mmap_lock() do { } while (0)
+#define mmap_unlock() do { } while (0)
+#endif
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommended to allocate big chunks of data in
+ user mode. It will change when a dedicated libc will be used. */
+/* ??? 64-bit hosts ought to have no problem mmaping data outside the
+ region in which the guest needs to run. Revisit this. */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+/* ??? Should configure for this, not list operating systems here. */
+#if (defined(__linux__) \
+ || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
+ || defined(__DragonFly__) || defined(__OpenBSD__) \
+ || defined(__NetBSD__))
+# define USE_MMAP
+#endif
+
+/* Minimum size of the code gen buffer. This number is randomly chosen,
+ but not so small that we can't have a fair number of TB's live. */
+#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
+
+/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
+ indicated, this is constrained by the range of direct branches on the
+ host cpu, as used by the TCG implementation of goto_tb. */
+#if defined(__x86_64__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__sparc__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__arm__)
+# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
+#elif defined(__s390x__)
+ /* We have a +- 4GB range on the branches; leave some slop. */
+# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
+#else
+# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
+#endif
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE \
+ (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
+ ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
+
+static inline size_t size_code_gen_buffer(size_t tb_size)
+{
+ /* Size the buffer. */
+ if (tb_size == 0) {
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* ??? Needs adjustments. */
+ /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
+ static buffer, we could size this on RESERVED_VA, on the text
+ segment size of the executable, or continue to use the default. */
+ tb_size = (unsigned long)(ram_size / 4);
+#endif
+ }
+ if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MIN_CODE_GEN_BUFFER_SIZE;
+ }
+ if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MAX_CODE_GEN_BUFFER_SIZE;
+ }
+ code_gen_buffer_size = tb_size;
+ return tb_size;
+}
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
+ __attribute__((aligned(CODE_GEN_ALIGN)));
+
+static inline void *alloc_code_gen_buffer(void)
+{
+ map_exec(static_code_gen_buffer, code_gen_buffer_size);
+ return static_code_gen_buffer;
+}
+#elif defined(USE_MMAP)
+static inline void *alloc_code_gen_buffer(void)
+{
+ int flags = MAP_PRIVATE | MAP_ANONYMOUS;
+ uintptr_t start = 0;
+ void *buf;
+
+ /* Constrain the position of the buffer based on the host cpu.
+ Note that these addresses are chosen in concert with the
+ addresses assigned in the relevant linker script file. */
+# if defined(__PIE__) || defined(__PIC__)
+ /* Don't bother setting a preferred location if we're building
+ a position-independent executable. We're more likely to get
+ an address near the main executable if we let the kernel
+ choose the address. */
+# elif defined(__x86_64__) && defined(MAP_32BIT)
+ /* Force the memory down into low memory with the executable.
+ Leave the choice of exact location with the kernel. */
+ flags |= MAP_32BIT;
+ /* Cannot expect to map more than 800MB in low memory. */
+ if (code_gen_buffer_size > 800u * 1024 * 1024) {
+ code_gen_buffer_size = 800u * 1024 * 1024;
+ }
+# elif defined(__sparc__)
+ start = 0x40000000ul;
+# elif defined(__s390x__)
+ start = 0x90000000ul;
+# endif
+
+ buf = mmap((void *)start, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
+ return buf == MAP_FAILED ? NULL : buf;
+}
+#else
+static inline void *alloc_code_gen_buffer(void)
+{
+ void *buf = g_malloc(code_gen_buffer_size);
+
+ if (buf) {
+ map_exec(buf, code_gen_buffer_size);
+ }
+ return buf;
+}
+#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
+
+static inline void code_gen_alloc(size_t tb_size)
+{
+ code_gen_buffer_size = size_code_gen_buffer(tb_size);
+ code_gen_buffer = alloc_code_gen_buffer();
+ if (code_gen_buffer == NULL) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+
+ qemu_madvise(code_gen_buffer, code_gen_buffer_size, QEMU_MADV_HUGEPAGE);
+
+ /* Steal room for the prologue at the end of the buffer. This ensures
+ (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
+ from TB's to the prologue are going to be in range. It also means
+ that we don't need to mark (additional) portions of the data segment
+ as executable. */
+ code_gen_prologue = code_gen_buffer + code_gen_buffer_size - 1024;
+ code_gen_buffer_size -= 1024;
+
+ code_gen_buffer_max_size = code_gen_buffer_size -
+ (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
+ code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+ tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+ (in bytes) allocated to the translation buffer. Zero means default
+ size. */
+void tcg_exec_init(unsigned long tb_size)
+{
+ cpu_gen_init();
+ code_gen_alloc(tb_size);
+ code_gen_ptr = code_gen_buffer;
+ tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
+ page_init();
+#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
+ /* There's no guest base to take into account, so go ahead and
+ initialize the prologue now. */
+ tcg_prologue_init(&tcg_ctx);
+#endif
+}
+
+bool tcg_enabled(void)
+{
+ return code_gen_buffer != NULL;
+}
+
+/* Allocate a new translation block. Flush the translation buffer if
+ too many translation blocks or too much generated code. */
+static TranslationBlock *tb_alloc(target_ulong pc)
+{
+ TranslationBlock *tb;
+
+ if (nb_tbs >= code_gen_max_blocks ||
+ (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size) {
+ return NULL;
+ }
+ tb = &tbs[nb_tbs++];
+ tb->pc = pc;
+ tb->cflags = 0;
+ return tb;
+}
+
+void tb_free(TranslationBlock *tb)
+{
+ /* In practice this is mostly used for single use temporary TB
+ Ignore the hard cases and just back up if this TB happens to
+ be the last one generated. */
+ if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
+ code_gen_ptr = tb->tc_ptr;
+ nb_tbs--;
+ }
+}
+
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+ if (p->code_bitmap) {
+ g_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ }
+ p->code_write_count = 0;
+}
+
+/* Set to NULL all the 'first_tb' fields in all PageDescs. */
+static void page_flush_tb_1(int level, void **lp)
+{
+ int i;
+
+ if (*lp == NULL) {
+ return;
+ }
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < L2_SIZE; ++i) {
+ pd[i].first_tb = NULL;
+ invalidate_page_bitmap(pd + i);
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < L2_SIZE; ++i) {
+ page_flush_tb_1(level - 1, pp + i);
+ }
+ }
+}
+
+static void page_flush_tb(void)
+{
+ int i;
+
+ for (i = 0; i < V_L1_SIZE; i++) {
+ page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
+ }
+}
+
+/* flush all the translation blocks */
+/* XXX: tb_flush is currently not thread safe */
+void tb_flush(CPUArchState *env1)
+{
+ CPUArchState *env;
+
+#if defined(DEBUG_FLUSH)
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(code_gen_ptr - code_gen_buffer),
+ nb_tbs, nb_tbs > 0 ?
+ ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
+#endif
+ if ((unsigned long)(code_gen_ptr - code_gen_buffer)
+ > code_gen_buffer_size) {
+ cpu_abort(env1, "Internal error: code buffer overflow\n");
+ }
+ nb_tbs = 0;
+
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof(void *));
+ }
+
+ memset(tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof(void *));
+ page_flush_tb();
+
+ code_gen_ptr = code_gen_buffer;
+ /* XXX: flush processor icache at this point if cache flush is
+ expensive */
+ tb_flush_count++;
+}
+
+#ifdef DEBUG_TB_CHECK
+
+static void tb_invalidate_check(target_ulong address)
+{
+ TranslationBlock *tb;
+ int i;
+
+ address &= TARGET_PAGE_MASK;
+ for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for (tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
+ address >= tb->pc + tb->size)) {
+ printf("ERROR invalidate: address=" TARGET_FMT_lx
+ " PC=%08lx size=%04x\n",
+ address, (long)tb->pc, tb->size);
+ }
+ }
+ }
+}
+
+/* verify that all the pages have correct rights for code */
+static void tb_page_check(void)
+{
+ TranslationBlock *tb;
+ int i, flags1, flags2;
+
+ for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for (tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
+ flags1 = page_get_flags(tb->pc);
+ flags2 = page_get_flags(tb->pc + tb->size - 1);
+ if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
+ printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
+ (long)tb->pc, tb->size, flags1, flags2);
+ }
+ }
+ }
+}
+
+#endif
+
+/* invalidate one TB */
+static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
+ int next_offset)
+{
+ TranslationBlock *tb1;
+
+ for (;;) {
+ tb1 = *ptb;
+ if (tb1 == tb) {
+ *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
+ break;
+ }
+ ptb = (TranslationBlock **)((char *)tb1 + next_offset);
+ }
+}
+
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ for (;;) {
+ tb1 = *ptb;
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ if (tb1 == tb) {
+ *ptb = tb1->page_next[n1];
+ break;
+ }
+ ptb = &tb1->page_next[n1];
+ }
+}
+
+static inline void tb_jmp_remove(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, **ptb;
+ unsigned int n1;
+
+ ptb = &tb->jmp_next[n];
+ tb1 = *ptb;
+ if (tb1) {
+ /* find tb(n) in circular list */
+ for (;;) {
+ tb1 = *ptb;
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ if (n1 == n && tb1 == tb) {
+ break;
+ }
+ if (n1 == 2) {
+ ptb = &tb1->jmp_first;
+ } else {
+ ptb = &tb1->jmp_next[n1];
+ }
+ }
+ /* now we can suppress tb(n) from the list */
+ *ptb = tb->jmp_next[n];
+
+ tb->jmp_next[n] = NULL;
+ }
+}
+
+/* reset the jump entry 'n' of a TB so that it is not chained to
+ another TB */
+static inline void tb_reset_jump(TranslationBlock *tb, int n)
+{
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
+}
+
+void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
+{
+ CPUArchState *env;
+ PageDesc *p;
+ unsigned int h, n1;
+ tb_page_addr_t phys_pc;
+ TranslationBlock *tb1, *tb2;
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_phys_hash_func(phys_pc);
+ tb_remove(&tb_phys_hash[h], tb,
+ offsetof(TranslationBlock, phys_hash_next));
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
+ tb_invalidated_flag = 1;
+
+ /* remove the TB from the hash list */
+ h = tb_jmp_cache_hash_func(tb->pc);
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (env->tb_jmp_cache[h] == tb) {
+ env->tb_jmp_cache[h] = NULL;
+ }
+ }
+
+ /* suppress this TB from the two jump lists */
+ tb_jmp_remove(tb, 0);
+ tb_jmp_remove(tb, 1);
+
+ /* suppress any remaining jumps to this TB */
+ tb1 = tb->jmp_first;
+ for (;;) {
+ n1 = (uintptr_t)tb1 & 3;
+ if (n1 == 2) {
+ break;
+ }
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ tb2 = tb1->jmp_next[n1];
+ tb_reset_jump(tb1, n1);
+ tb1->jmp_next[n1] = NULL;
+ tb1 = tb2;
+ }
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
+
+ tb_phys_invalidate_count++;
+}
+
+static inline void set_bits(uint8_t *tab, int start, int len)
+{
+ int end, mask, end1;
+
+ end = start + len;
+ tab += start >> 3;
+ mask = 0xff << (start & 7);
+ if ((start & ~7) == (end & ~7)) {
+ if (start < end) {
+ mask &= ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ } else {
+ *tab++ |= mask;
+ start = (start + 8) & ~7;
+ end1 = end & ~7;
+ while (start < end1) {
+ *tab++ = 0xff;
+ start += 8;
+ }
+ if (start < end) {
+ mask = ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ }
+}
+
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
+
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE) {
+ tb_end = TARGET_PAGE_SIZE;
+ }
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
+ tb = tb->page_next[n];
+ }
+}
+
+TranslationBlock *tb_gen_code(CPUArchState *env,
+ target_ulong pc, target_ulong cs_base,
+ int flags, int cflags)
+{
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+ tb_page_addr_t phys_pc, phys_page2;
+ target_ulong virt_page2;
+ int code_gen_size;
+
+ phys_pc = get_page_addr_code(env, pc);
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* Don't forget to invalidate previous TB info. */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+ cpu_gen_code(env, tb, &code_gen_size);
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
+ CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_page_addr_code(env, virt_page2);
+ }
+ tb_link_page(tb, phys_pc, phys_page2);
+ return tb;
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ while (start < end) {
+ tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
+ start &= TARGET_PAGE_MASK;
+ start += TARGET_PAGE_SIZE;
+ }
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
+void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ TranslationBlock *tb, *tb_next, *saved_tb;
+ CPUArchState *env = cpu_single_env;
+ tb_page_addr_t tb_start, tb_end;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ int current_tb_not_found = is_cpu_write_access;
+ TranslationBlock *current_tb = NULL;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ int current_flags = 0;
+#endif /* TARGET_HAS_PRECISE_SMC */
+
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
+ is_cpu_write_access) {
+ /* build code bitmap */
+ build_page_bitmap(p);
+ }
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all
+ the code */
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+ tb_next = tb->page_next[n];
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = 0;
+ current_tb = NULL;
+ if (env->mem_io_pc) {
+ /* now we have a real cpu fault */
+ current_tb = tb_find_pc(env->mem_io_pc);
+ }
+ }
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env, env->mem_io_pc);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ /* we need to do that to handle the case where a signal
+ occurs while doing tb_phys_invalidate() */
+ saved_tb = NULL;
+ if (env) {
+ saved_tb = env->current_tb;
+ env->current_tb = NULL;
+ }
+ tb_phys_invalidate(tb, -1);
+ if (env) {
+ env->current_tb = saved_tb;
+ if (env->interrupt_request && env->current_tb) {
+ cpu_interrupt(env, env->interrupt_request);
+ }
+ }
+ }
+ tb = tb_next;
+ }
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ if (is_cpu_write_access) {
+ tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
+ }
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, NULL);
+ }
+#endif
+}
+
+/* len must be <= 8 and start must be a multiple of len */
+void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
+{
+ PageDesc *p;
+ int offset, b;
+
+#if 0
+ if (1) {
+ qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_io_vaddr, len,
+ cpu_single_env->eip,
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
+ }
+#endif
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+ if (p->code_bitmap) {
+ offset = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[offset >> 3] >> (offset & 7);
+ if (b & ((1 << len) - 1)) {
+ goto do_invalidate;
+ }
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range(start, start + len, 1);
+ }
+}
+
+#if !defined(CONFIG_SOFTMMU)
+static void tb_invalidate_phys_page(tb_page_addr_t addr,
+ uintptr_t pc, void *puc)
+{
+ TranslationBlock *tb;
+ PageDesc *p;
+ int n;
+#ifdef TARGET_HAS_PRECISE_SMC
+ TranslationBlock *current_tb = NULL;
+ CPUArchState *env = cpu_single_env;
+ int current_tb_modified = 0;
+ target_ulong current_pc = 0;
+ target_ulong current_cs_base = 0;
+ int current_flags = 0;
+#endif
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return;
+ }
+ tb = p->first_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (tb && pc != 0) {
+ current_tb = tb_find_pc(pc);
+ }
+#endif
+ while (tb != NULL) {
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env, pc);
+ cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
+ &current_flags);
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ tb = tb->page_next[n];
+ }
+ p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
+ cpu_resume_from_signal(env, puc);
+ }
+#endif
+}
+#endif
+
+/* add the tb in the target page and protect it if necessary */
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, tb_page_addr_t page_addr)
+{
+ PageDesc *p;
+#ifndef CONFIG_USER_ONLY
+ bool page_already_protected;
+#endif
+
+ tb->page_addr[n] = page_addr;
+ p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
+ tb->page_next[n] = p->first_tb;
+#ifndef CONFIG_USER_ONLY
+ page_already_protected = p->first_tb != NULL;
+#endif
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
+ invalidate_page_bitmap(p);
+
+#if defined(TARGET_HAS_SMC) || 1
+
+#if defined(CONFIG_USER_ONLY)
+ if (p->flags & PAGE_WRITE) {
+ target_ulong addr;
+ PageDesc *p2;
+ int prot;
+
+ /* force the host page as non writable (writes will have a
+ page fault + mprotect overhead) */
+ page_addr &= qemu_host_page_mask;
+ prot = 0;
+ for (addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p2 = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p2) {
+ continue;
+ }
+ prot |= p2->flags;
+ p2->flags &= ~PAGE_WRITE;
+ }
+ mprotect(g2h(page_addr), qemu_host_page_size,
+ (prot & PAGE_BITS) & ~PAGE_WRITE);
+#ifdef DEBUG_TB_INVALIDATE
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+ page_addr);
+#endif
+ }
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!page_already_protected) {
+ tlb_protect_code(page_addr);
+ }
+#endif
+
+#endif /* TARGET_HAS_SMC */
+}
+
+/* add a new TB and link it to the physical page tables. phys_page2 is
+ (-1) to indicate that only one page contains the TB. */
+static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2)
+{
+ unsigned int h;
+ TranslationBlock **ptb;
+
+ /* Grab the mmap lock to stop another thread invalidating this TB
+ before we are done. */
+ mmap_lock();
+ /* add in the physical hash table */
+ h = tb_phys_hash_func(phys_pc);
+ ptb = &tb_phys_hash[h];
+ tb->phys_hash_next = *ptb;
+ *ptb = tb;
+
+ /* add in the page list */
+ tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (phys_page2 != -1) {
+ tb_alloc_page(tb, 1, phys_page2);
+ } else {
+ tb->page_addr[1] = -1;
+ }
+
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
+ tb->jmp_next[0] = NULL;
+ tb->jmp_next[1] = NULL;
+
+ /* init original jump addresses */
+ if (tb->tb_next_offset[0] != 0xffff) {
+ tb_reset_jump(tb, 0);
+ }
+ if (tb->tb_next_offset[1] != 0xffff) {
+ tb_reset_jump(tb, 1);
+ }
+
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
+ mmap_unlock();
+}
+
+#if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
+/* check whether the given addr is in TCG generated code buffer or not */
+bool is_tcg_gen_code(uintptr_t tc_ptr)
+{
+ /* This can be called during code generation, code_gen_buffer_max_size
+ is used instead of code_gen_ptr for upper boundary checking */
+ return (tc_ptr >= (uintptr_t)code_gen_buffer &&
+ tc_ptr < (uintptr_t)(code_gen_buffer + code_gen_buffer_max_size));
+}
+#endif
+
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+ tb[1].tc_ptr. Return NULL if not found */
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
+{
+ int m_min, m_max, m;
+ uintptr_t v;
+ TranslationBlock *tb;
+
+ if (nb_tbs <= 0) {
+ return NULL;
+ }
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr) {
+ return NULL;
+ }
+ /* binary search (cf Knuth) */
+ m_min = 0;
+ m_max = nb_tbs - 1;
+ while (m_min <= m_max) {
+ m = (m_min + m_max) >> 1;
+ tb = &tbs[m];
+ v = (uintptr_t)tb->tc_ptr;
+ if (v == tc_ptr) {
+ return tb;
+ } else if (tc_ptr < v) {
+ m_max = m - 1;
+ } else {
+ m_min = m + 1;
+ }
+ }
+ return &tbs[m_max];
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb);
+
+static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, *tb_next, **ptb;
+ unsigned int n1;
+
+ tb1 = tb->jmp_next[n];
+ if (tb1 != NULL) {
+ /* find head of list */
+ for (;;) {
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ if (n1 == 2) {
+ break;
+ }
+ tb1 = tb1->jmp_next[n1];
+ }
+ /* we are now sure now that tb jumps to tb1 */
+ tb_next = tb1;
+
+ /* remove tb from the jmp_first list */
+ ptb = &tb_next->jmp_first;
+ for (;;) {
+ tb1 = *ptb;
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
+ if (n1 == n && tb1 == tb) {
+ break;
+ }
+ ptb = &tb1->jmp_next[n1];
+ }
+ *ptb = tb->jmp_next[n];
+ tb->jmp_next[n] = NULL;
+
+ /* suppress the jump to next tb in generated code */
+ tb_reset_jump(tb, n);
+
+ /* suppress jumps in the tb on which we could have jumped */
+ tb_reset_jump_recursive(tb_next);
+ }
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb)
+{
+ tb_reset_jump_recursive2(tb, 0);
+ tb_reset_jump_recursive2(tb, 1);
+}
+
+#if defined(TARGET_HAS_ICE) && !defined(CONFIG_USER_ONLY)
+void tb_invalidate_phys_addr(hwaddr addr)
+{
+ ram_addr_t ram_addr;
+ MemoryRegionSection *section;
+
+ section = phys_page_find(address_space_memory.dispatch,
+ addr >> TARGET_PAGE_BITS);
+ if (!(memory_region_is_ram(section->mr)
+ || (section->mr->rom_device && section->mr->readable))) {
+ return;
+ }
+ ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
+ tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
+}
+#endif /* TARGET_HAS_ICE && !defined(CONFIG_USER_ONLY) */
+
+void cpu_unlink_tb(CPUArchState *env)
+{
+ /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
+ problem and hope the cpu will stop of its own accord. For userspace
+ emulation this often isn't actually as bad as it sounds. Often
+ signals are used primarily to interrupt blocking syscalls. */
+ TranslationBlock *tb;
+ static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
+
+ spin_lock(&interrupt_lock);
+ tb = env->current_tb;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ if (tb) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ }
+ spin_unlock(&interrupt_lock);
+}
+
+void tb_check_watchpoint(CPUArchState *env)
+{
+ TranslationBlock *tb;
+
+ tb = tb_find_pc(env->mem_io_pc);
+ if (!tb) {
+ cpu_abort(env, "check_watchpoint: could not find TB for pc=%p",
+ (void *)env->mem_io_pc);
+ }
+ cpu_restore_state(tb, env, env->mem_io_pc);
+ tb_phys_invalidate(tb, -1);
+}
+
+#ifndef CONFIG_USER_ONLY
+/* mask must never be zero, except for A20 change call */
+static void tcg_handle_interrupt(CPUArchState *env, int mask)
+{
+ CPUState *cpu = ENV_GET_CPU(env);
+ int old_mask;
+
+ old_mask = env->interrupt_request;
+ env->interrupt_request |= mask;
+
+ /*
+ * If called from iothread context, wake the target cpu in
+ * case its halted.
+ */
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
+ return;
+ }
+
+ if (use_icount) {
+ env->icount_decr.u16.high = 0xffff;
+ if (!can_do_io(env)
+ && (mask & ~old_mask) != 0) {
+ cpu_abort(env, "Raised interrupt while not in I/O function");
+ }
+ } else {
+ cpu_unlink_tb(env);
+ }
+}
+
+CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
+
+/* in deterministic execution mode, instructions doing device I/Os
+ must be at the end of the TB */
+void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
+{
+ TranslationBlock *tb;
+ uint32_t n, cflags;
+ target_ulong pc, cs_base;
+ uint64_t flags;
+
+ tb = tb_find_pc(retaddr);
+ if (!tb) {
+ cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
+ (void *)retaddr);
+ }
+ n = env->icount_decr.u16.low + tb->icount;
+ cpu_restore_state(tb, env, retaddr);
+ /* Calculate how many instructions had been executed before the fault
+ occurred. */
+ n = n - env->icount_decr.u16.low;
+ /* Generate a new TB ending on the I/O insn. */
+ n++;
+ /* On MIPS and SH, delay slot instructions can only be restarted if
+ they were already the first instruction in the TB. If this is not
+ the first instruction in a TB then re-execute the preceding
+ branch. */
+#if defined(TARGET_MIPS)
+ if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+ env->active_tc.PC -= 4;
+ env->icount_decr.u16.low++;
+ env->hflags &= ~MIPS_HFLAG_BMASK;
+ }
+#elif defined(TARGET_SH4)
+ if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+ && n > 1) {
+ env->pc -= 2;
+ env->icount_decr.u16.low++;
+ env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+ }
+#endif
+ /* This should never happen. */
+ if (n > CF_COUNT_MASK) {
+ cpu_abort(env, "TB too big during recompile");
+ }
+
+ cflags = n | CF_LAST_IO;
+ pc = tb->pc;
+ cs_base = tb->cs_base;
+ flags = tb->flags;
+ tb_phys_invalidate(tb, -1);
+ /* FIXME: In theory this could raise an exception. In practice
+ we have already translated the block once so it's probably ok. */
+ tb_gen_code(env, pc, cs_base, flags, cflags);
+ /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
+ the first in the TB) then we end up generating a whole new TB and
+ repeating the fault, which is horribly inefficient.
+ Better would be to execute just this insn uncached, or generate a
+ second new TB. */
+ cpu_resume_from_signal(env, NULL);
+}
+
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
+{
+ unsigned int i;
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset(&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset(&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+}
+
+void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
+{
+ int i, target_code_size, max_target_code_size;
+ int direct_jmp_count, direct_jmp2_count, cross_page;
+ TranslationBlock *tb;
+
+ target_code_size = 0;
+ max_target_code_size = 0;
+ cross_page = 0;
+ direct_jmp_count = 0;
+ direct_jmp2_count = 0;
+ for (i = 0; i < nb_tbs; i++) {
+ tb = &tbs[i];
+ target_code_size += tb->size;
+ if (tb->size > max_target_code_size) {
+ max_target_code_size = tb->size;
+ }
+ if (tb->page_addr[1] != -1) {
+ cross_page++;
+ }
+ if (tb->tb_next_offset[0] != 0xffff) {
+ direct_jmp_count++;
+ if (tb->tb_next_offset[1] != 0xffff) {
+ direct_jmp2_count++;
+ }
+ }
+ }
+ /* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "Translation buffer state:\n");
+ cpu_fprintf(f, "gen code size %td/%zd\n",
+ code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
+ cpu_fprintf(f, "TB count %d/%d\n",
+ nb_tbs, code_gen_max_blocks);
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ nb_tbs ? target_code_size / nb_tbs : 0,
+ max_target_code_size);
+ cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
+ nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
+ target_code_size ? (double) (code_gen_ptr - code_gen_buffer)
+ / target_code_size : 0);
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+ cross_page,
+ nb_tbs ? (cross_page * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
+ direct_jmp_count,
+ nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
+ direct_jmp2_count,
+ nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "\nStatistics:\n");
+ cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
+ cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
+ cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+ tcg_dump_info(f, cpu_fprintf);
+}
+
+#else /* CONFIG_USER_ONLY */
+
+void cpu_interrupt(CPUArchState *env, int mask)
+{
+ env->interrupt_request |= mask;
+ cpu_unlink_tb(env);
+}
+
+/*
+ * Walks guest process memory "regions" one by one
+ * and calls callback function 'fn' for each region.
+ */
+struct walk_memory_regions_data {
+ walk_memory_regions_fn fn;
+ void *priv;
+ uintptr_t start;
+ int prot;
+};
+
+static int walk_memory_regions_end(struct walk_memory_regions_data *data,
+ abi_ulong end, int new_prot)
+{
+ if (data->start != -1ul) {
+ int rc = data->fn(data->priv, data->start, end, data->prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ data->start = (new_prot ? end : -1ul);
+ data->prot = new_prot;
+
+ return 0;
+}
+
+static int walk_memory_regions_1(struct walk_memory_regions_data *data,
+ abi_ulong base, int level, void **lp)
+{
+ abi_ulong pa;
+ int i, rc;
+
+ if (*lp == NULL) {
+ return walk_memory_regions_end(data, base, 0);
+ }
+
+ if (level == 0) {
+ PageDesc *pd = *lp;
+
+ for (i = 0; i < L2_SIZE; ++i) {
+ int prot = pd[i].flags;
+
+ pa = base | (i << TARGET_PAGE_BITS);
+ if (prot != data->prot) {
+ rc = walk_memory_regions_end(data, pa, prot);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+ } else {
+ void **pp = *lp;
+
+ for (i = 0; i < L2_SIZE; ++i) {
+ pa = base | ((abi_ulong)i <<
+ (TARGET_PAGE_BITS + L2_BITS * level));
+ rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
+{
+ struct walk_memory_regions_data data;
+ uintptr_t i;
+
+ data.fn = fn;
+ data.priv = priv;
+ data.start = -1ul;
+ data.prot = 0;
+
+ for (i = 0; i < V_L1_SIZE; i++) {
+ int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
+ V_L1_SHIFT / L2_BITS - 1, l1_map + i);
+
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return walk_memory_regions_end(&data, 0, 0);
+}
+
+static int dump_region(void *priv, abi_ulong start,
+ abi_ulong end, unsigned long prot)
+{
+ FILE *f = (FILE *)priv;
+
+ (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
+ " "TARGET_ABI_FMT_lx" %c%c%c\n",
+ start, end, end - start,
+ ((prot & PAGE_READ) ? 'r' : '-'),
+ ((prot & PAGE_WRITE) ? 'w' : '-'),
+ ((prot & PAGE_EXEC) ? 'x' : '-'));
+
+ return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ (void) fprintf(f, "%-8s %-8s %-8s %s\n",
+ "start", "end", "size", "prot");
+ walk_memory_regions(f, dump_region);
+}
+
+int page_get_flags(target_ulong address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ return 0;
+ }
+ return p->flags;
+}
+
+/* Modify the flags of a page and invalidate the code if necessary.
+ The flag PAGE_WRITE_ORG is positioned automatically depending
+ on PAGE_WRITE. The mmap_lock should already be held. */
+void page_set_flags(target_ulong start, target_ulong end, int flags)
+{
+ target_ulong addr, len;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+ assert(start < end);
+
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ if (flags & PAGE_WRITE) {
+ flags |= PAGE_WRITE_ORG;
+ }
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+
+ /* If the write protection bit is set, then we invalidate
+ the code inside. */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0, NULL);
+ }
+ p->flags = flags;
+ }
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ /* This function should never be called with addresses outside the
+ guest address space. If this assert fires, it probably indicates
+ a missing call to h2g_valid. */
+#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
+ assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
+#endif
+
+ if (len == 0) {
+ return 0;
+ }
+ if (start + len - 1 < start) {
+ /* We've wrapped around. */
+ return -1;
+ }
+
+ /* must do before we loose bits in the next step */
+ end = TARGET_PAGE_ALIGN(start + len);
+ start = start & TARGET_PAGE_MASK;
+
+ for (addr = start, len = end - start;
+ len != 0;
+ len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ return -1;
+ }
+ if (!(p->flags & PAGE_VALID)) {
+ return -1;
+ }
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
+ return -1;
+ }
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG)) {
+ return -1;
+ }
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0, NULL)) {
+ return -1;
+ }
+ }
+ return 0;
+ }
+ }
+ return 0;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ page. Return TRUE if the fault was successfully handled. */
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
+{
+ unsigned int prot;
+ PageDesc *p;
+ target_ulong host_start, host_end, addr;
+
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p) {
+ mmap_unlock();
+ return 0;
+ }
+
+ /* if the page was really writable, then we change its
+ protection back to writable */
+ if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
+ host_start = address & qemu_host_page_mask;
+ host_end = host_start + qemu_host_page_size;
+
+ prot = 0;
+ for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ p->flags |= PAGE_WRITE;
+ prot |= p->flags;
+
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ tb_invalidate_phys_page(addr, pc, puc);
+#ifdef DEBUG_TB_CHECK
+ tb_invalidate_check(addr);
+#endif
+ }
+ mprotect((void *)g2h(host_start), qemu_host_page_size,
+ prot & PAGE_BITS);
+
+ mmap_unlock();
+ return 1;
+ }
+ mmap_unlock();
+ return 0;
+}
+#endif /* CONFIG_USER_ONLY */