summaryrefslogtreecommitdiff
path: root/fpu/softfloat-specialize.c.inc
diff options
context:
space:
mode:
Diffstat (limited to 'fpu/softfloat-specialize.c.inc')
-rw-r--r--fpu/softfloat-specialize.c.inc1083
1 files changed, 1083 insertions, 0 deletions
diff --git a/fpu/softfloat-specialize.c.inc b/fpu/softfloat-specialize.c.inc
new file mode 100644
index 0000000000..034d18199c
--- /dev/null
+++ b/fpu/softfloat-specialize.c.inc
@@ -0,0 +1,1083 @@
+/*
+ * QEMU float support
+ *
+ * The code in this source file is derived from release 2a of the SoftFloat
+ * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
+ * some later contributions) are provided under that license, as detailed below.
+ * It has subsequently been modified by contributors to the QEMU Project,
+ * so some portions are provided under:
+ * the SoftFloat-2a license
+ * the BSD license
+ * GPL-v2-or-later
+ *
+ * Any future contributions to this file after December 1st 2014 will be
+ * taken to be licensed under the Softfloat-2a license unless specifically
+ * indicated otherwise.
+ */
+
+/*
+===============================================================================
+This C source fragment is part of the SoftFloat IEC/IEEE Floating-point
+Arithmetic Package, Release 2a.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort
+has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
+TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO
+PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
+AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) they include prominent notice that the work is derivative, and (2) they
+include prominent notice akin to these four paragraphs for those parts of
+this code that are retained.
+
+===============================================================================
+*/
+
+/* BSD licensing:
+ * Copyright (c) 2006, Fabrice Bellard
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. Neither the name of the copyright holder nor the names of its contributors
+ * may be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/* Portions of this work are licensed under the terms of the GNU GPL,
+ * version 2 or later. See the COPYING file in the top-level directory.
+ */
+
+/* Define for architectures which deviate from IEEE in not supporting
+ * signaling NaNs (so all NaNs are treated as quiet).
+ */
+#if defined(TARGET_XTENSA)
+#define NO_SIGNALING_NANS 1
+#endif
+
+/* Define how the architecture discriminates signaling NaNs.
+ * This done with the most significant bit of the fraction.
+ * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
+ * the msb must be zero. MIPS is (so far) unique in supporting both the
+ * 2008 revision and backward compatibility with their original choice.
+ * Thus for MIPS we must make the choice at runtime.
+ */
+static inline bool snan_bit_is_one(float_status *status)
+{
+#if defined(TARGET_MIPS)
+ return status->snan_bit_is_one;
+#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| For the deconstructed floating-point with fraction FRAC, return true
+| if the fraction represents a signalling NaN; otherwise false.
+*----------------------------------------------------------------------------*/
+
+static bool parts_is_snan_frac(uint64_t frac, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return false;
+#else
+ bool msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
+ return msb == snan_bit_is_one(status);
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated deconstructed floating-point NaN.
+*----------------------------------------------------------------------------*/
+
+static FloatParts parts_default_nan(float_status *status)
+{
+ bool sign = 0;
+ uint64_t frac;
+
+#if defined(TARGET_SPARC) || defined(TARGET_M68K)
+ /* !snan_bit_is_one, set all bits */
+ frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
+#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
+ || defined(TARGET_MICROBLAZE)
+ /* !snan_bit_is_one, set sign and msb */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ sign = 1;
+#elif defined(TARGET_HPPA)
+ /* snan_bit_is_one, set msb-1. */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
+#else
+ /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
+ * S390, SH4, TriCore, and Xtensa. I cannot find documentation
+ * for Unicore32; the choice from the original commit is unchanged.
+ * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
+ * do not have floating-point.
+ */
+ if (snan_bit_is_one(status)) {
+ /* set all bits other than msb */
+ frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
+ } else {
+ /* set msb */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ }
+#endif
+
+ return (FloatParts) {
+ .cls = float_class_qnan,
+ .sign = sign,
+ .exp = INT_MAX,
+ .frac = frac
+ };
+}
+
+/*----------------------------------------------------------------------------
+| Returns a quiet NaN from a signalling NaN for the deconstructed
+| floating-point parts.
+*----------------------------------------------------------------------------*/
+
+static FloatParts parts_silence_nan(FloatParts a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ g_assert_not_reached();
+#elif defined(TARGET_HPPA)
+ a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
+ a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
+#else
+ if (snan_bit_is_one(status)) {
+ return parts_default_nan(status);
+ } else {
+ a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ }
+#endif
+ a.cls = float_class_qnan;
+ return a;
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision NaN.
+*----------------------------------------------------------------------------*/
+floatx80 floatx80_default_nan(float_status *status)
+{
+ floatx80 r;
+
+ /* None of the targets that have snan_bit_is_one use floatx80. */
+ assert(!snan_bit_is_one(status));
+#if defined(TARGET_M68K)
+ r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
+ r.high = 0x7FFF;
+#else
+ /* X86 */
+ r.low = UINT64_C(0xC000000000000000);
+ r.high = 0xFFFF;
+#endif
+ return r;
+}
+
+/*----------------------------------------------------------------------------
+| The pattern for a default generated extended double-precision inf.
+*----------------------------------------------------------------------------*/
+
+#define floatx80_infinity_high 0x7FFF
+#if defined(TARGET_M68K)
+#define floatx80_infinity_low UINT64_C(0x0000000000000000)
+#else
+#define floatx80_infinity_low UINT64_C(0x8000000000000000)
+#endif
+
+const floatx80 floatx80_infinity
+ = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
+
+/*----------------------------------------------------------------------------
+| Raises the exceptions specified by `flags'. Floating-point traps can be
+| defined here if desired. It is currently not possible for such a trap
+| to substitute a result value. If traps are not implemented, this routine
+| should be simply `float_exception_flags |= flags;'.
+*----------------------------------------------------------------------------*/
+
+void float_raise(uint8_t flags, float_status *status)
+{
+ status->float_exception_flags |= flags;
+}
+
+/*----------------------------------------------------------------------------
+| Internal canonical NaN format.
+*----------------------------------------------------------------------------*/
+typedef struct {
+ bool sign;
+ uint64_t high, low;
+} commonNaNT;
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the half-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float16_is_quiet_nan(float16 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return float16_is_any_nan(a_);
+#else
+ uint16_t a = float16_val(a_);
+ if (snan_bit_is_one(status)) {
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+ } else {
+ return ((a >> 9) & 0x3F) == 0x3F;
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the half-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float16_is_signaling_nan(float16 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return 0;
+#else
+ uint16_t a = float16_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((a >> 9) & 0x3F) == 0x3F;
+ } else {
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float32_is_quiet_nan(float32 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return float32_is_any_nan(a_);
+#else
+ uint32_t a = float32_val(a_);
+ if (snan_bit_is_one(status)) {
+ return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
+ } else {
+ return ((uint32_t)(a << 1) >= 0xFF800000);
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the single-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float32_is_signaling_nan(float32 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return 0;
+#else
+ uint32_t a = float32_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((uint32_t)(a << 1) >= 0xFF800000);
+ } else {
+ return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point NaN
+| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
+{
+ commonNaNT z;
+
+ if (float32_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = float32_val(a) >> 31;
+ z.low = 0;
+ z.high = ((uint64_t)float32_val(a)) << 41;
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the single-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
+{
+ uint32_t mantissa = a.high >> 41;
+
+ if (status->default_nan_mode) {
+ return float32_default_nan(status);
+ }
+
+ if (mantissa) {
+ return make_float32(
+ (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
+ } else {
+ return float32_default_nan(status);
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Select which NaN to propagate for a two-input operation.
+| IEEE754 doesn't specify all the details of this, so the
+| algorithm is target-specific.
+| The routine is passed various bits of information about the
+| two NaNs and should return 0 to select NaN a and 1 for NaN b.
+| Note that signalling NaNs are always squashed to quiet NaNs
+| by the caller, by calling floatXX_silence_nan() before
+| returning them.
+|
+| aIsLargerSignificand is only valid if both a and b are NaNs
+| of some kind, and is true if a has the larger significand,
+| or if both a and b have the same significand but a is
+| positive but b is negative. It is only needed for the x87
+| tie-break rule.
+*----------------------------------------------------------------------------*/
+
+static int pickNaN(FloatClass a_cls, FloatClass b_cls,
+ bool aIsLargerSignificand)
+{
+#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
+ /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
+ * the first of:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always quietened before returning it.
+ */
+ /* According to MIPS specifications, if one of the two operands is
+ * a sNaN, a new qNaN has to be generated. This is done in
+ * floatXX_silence_nan(). For qNaN inputs the specifications
+ * says: "When possible, this QNaN result is one of the operand QNaN
+ * values." In practice it seems that most implementations choose
+ * the first operand if both operands are qNaN. In short this gives
+ * the following rules:
+ * 1. A if it is signaling
+ * 2. B if it is signaling
+ * 3. A (quiet)
+ * 4. B (quiet)
+ * A signaling NaN is always silenced before returning it.
+ */
+ if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
+#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
+ /* PowerPC propagation rules:
+ * 1. A if it sNaN or qNaN
+ * 2. B if it sNaN or qNaN
+ * A signaling NaN is always silenced before returning it.
+ */
+ /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
+ * 3.4 FLOATING-POINT INSTRUCTION DETAILS
+ * If either operand, but not both operands, of an operation is a
+ * nonsignaling NaN, then that NaN is returned as the result. If both
+ * operands are nonsignaling NaNs, then the destination operand
+ * nonsignaling NaN is returned as the result.
+ * If either operand to an operation is a signaling NaN (SNaN), then the
+ * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
+ * is set in the FPCR ENABLE byte, then the exception is taken and the
+ * destination is not modified. If the SNaN exception enable bit is not
+ * set, setting the SNaN bit in the operand to a one converts the SNaN to
+ * a nonsignaling NaN. The operation then continues as described in the
+ * preceding paragraph for nonsignaling NaNs.
+ */
+ if (is_nan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
+#else
+ /* This implements x87 NaN propagation rules:
+ * SNaN + QNaN => return the QNaN
+ * two SNaNs => return the one with the larger significand, silenced
+ * two QNaNs => return the one with the larger significand
+ * SNaN and a non-NaN => return the SNaN, silenced
+ * QNaN and a non-NaN => return the QNaN
+ *
+ * If we get down to comparing significands and they are the same,
+ * return the NaN with the positive sign bit (if any).
+ */
+ if (is_snan(a_cls)) {
+ if (is_snan(b_cls)) {
+ return aIsLargerSignificand ? 0 : 1;
+ }
+ return is_qnan(b_cls) ? 1 : 0;
+ } else if (is_qnan(a_cls)) {
+ if (is_snan(b_cls) || !is_qnan(b_cls)) {
+ return 0;
+ } else {
+ return aIsLargerSignificand ? 0 : 1;
+ }
+ } else {
+ return 1;
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Select which NaN to propagate for a three-input operation.
+| For the moment we assume that no CPU needs the 'larger significand'
+| information.
+| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
+*----------------------------------------------------------------------------*/
+static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
+ bool infzero, float_status *status)
+{
+#if defined(TARGET_ARM)
+ /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
+ * the default NaN
+ */
+ if (infzero && is_qnan(c_cls)) {
+ float_raise(float_flag_invalid, status);
+ return 3;
+ }
+
+ /* This looks different from the ARM ARM pseudocode, because the ARM ARM
+ * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
+ */
+ if (is_snan(c_cls)) {
+ return 2;
+ } else if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_qnan(c_cls)) {
+ return 2;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
+#elif defined(TARGET_MIPS)
+ if (snan_bit_is_one(status)) {
+ /*
+ * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
+ * case sets InvalidOp and returns the default NaN
+ */
+ if (infzero) {
+ float_raise(float_flag_invalid, status);
+ return 3;
+ }
+ /* Prefer sNaN over qNaN, in the a, b, c order. */
+ if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_snan(c_cls)) {
+ return 2;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else if (is_qnan(b_cls)) {
+ return 1;
+ } else {
+ return 2;
+ }
+ } else {
+ /*
+ * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
+ * case sets InvalidOp and returns the input value 'c'
+ */
+ if (infzero) {
+ float_raise(float_flag_invalid, status);
+ return 2;
+ }
+ /* Prefer sNaN over qNaN, in the c, a, b order. */
+ if (is_snan(c_cls)) {
+ return 2;
+ } else if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_qnan(c_cls)) {
+ return 2;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
+ }
+#elif defined(TARGET_PPC)
+ /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
+ * to return an input NaN if we have one (ie c) rather than generating
+ * a default NaN
+ */
+ if (infzero) {
+ float_raise(float_flag_invalid, status);
+ return 2;
+ }
+
+ /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
+ * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
+ */
+ if (is_nan(a_cls)) {
+ return 0;
+ } else if (is_nan(c_cls)) {
+ return 2;
+ } else {
+ return 1;
+ }
+#else
+ /* A default implementation: prefer a to b to c.
+ * This is unlikely to actually match any real implementation.
+ */
+ if (is_nan(a_cls)) {
+ return 0;
+ } else if (is_nan(b_cls)) {
+ return 1;
+ } else {
+ return 2;
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Takes two single-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
+{
+ bool aIsLargerSignificand;
+ uint32_t av, bv;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float32_is_any_nan(a)
+ ? float_class_normal
+ : float32_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float32_is_any_nan(b)
+ ? float_class_normal
+ : float32_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ av = float32_val(a);
+ bv = float32_val(b);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
+
+ if (status->default_nan_mode) {
+ return float32_default_nan(status);
+ }
+
+ if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
+ aIsLargerSignificand = 0;
+ } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (av < bv) ? 1 : 0;
+ }
+
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float32_silence_nan(b, status);
+ }
+ return b;
+ } else {
+ if (is_snan(a_cls)) {
+ return float32_silence_nan(a, status);
+ }
+ return a;
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float64_is_quiet_nan(float64 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return float64_is_any_nan(a_);
+#else
+ uint64_t a = float64_val(a_);
+ if (snan_bit_is_one(status)) {
+ return (((a >> 51) & 0xFFF) == 0xFFE)
+ && (a & 0x0007FFFFFFFFFFFFULL);
+ } else {
+ return ((a << 1) >= 0xFFF0000000000000ULL);
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the double-precision floating-point value `a' is a signaling
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float64_is_signaling_nan(float64 a_, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return 0;
+#else
+ uint64_t a = float64_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((a << 1) >= 0xFFF0000000000000ULL);
+ } else {
+ return (((a >> 51) & 0xFFF) == 0xFFE)
+ && (a & UINT64_C(0x0007FFFFFFFFFFFF));
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point NaN
+| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
+{
+ commonNaNT z;
+
+ if (float64_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = float64_val(a) >> 63;
+ z.low = 0;
+ z.high = float64_val(a) << 12;
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the double-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
+{
+ uint64_t mantissa = a.high >> 12;
+
+ if (status->default_nan_mode) {
+ return float64_default_nan(status);
+ }
+
+ if (mantissa) {
+ return make_float64(
+ (((uint64_t) a.sign) << 63)
+ | UINT64_C(0x7FF0000000000000)
+ | (a.high >> 12));
+ } else {
+ return float64_default_nan(status);
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Takes two double-precision floating-point values `a' and `b', one of which
+| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
+| signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
+{
+ bool aIsLargerSignificand;
+ uint64_t av, bv;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float64_is_any_nan(a)
+ ? float_class_normal
+ : float64_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float64_is_any_nan(b)
+ ? float_class_normal
+ : float64_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ av = float64_val(a);
+ bv = float64_val(b);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
+
+ if (status->default_nan_mode) {
+ return float64_default_nan(status);
+ }
+
+ if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
+ aIsLargerSignificand = 0;
+ } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (av < bv) ? 1 : 0;
+ }
+
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float64_silence_nan(b, status);
+ }
+ return b;
+ } else {
+ if (is_snan(a_cls)) {
+ return float64_silence_nan(a, status);
+ }
+ return a;
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| quiet NaN; otherwise returns 0. This slightly differs from the same
+| function for other types as floatx80 has an explicit bit.
+*----------------------------------------------------------------------------*/
+
+int floatx80_is_quiet_nan(floatx80 a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return floatx80_is_any_nan(a);
+#else
+ if (snan_bit_is_one(status)) {
+ uint64_t aLow;
+
+ aLow = a.low & ~0x4000000000000000ULL;
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (aLow << 1)
+ && (a.low == aLow);
+ } else {
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (UINT64_C(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0. This slightly differs from the same
+| function for other types as floatx80 has an explicit bit.
+*----------------------------------------------------------------------------*/
+
+int floatx80_is_signaling_nan(floatx80 a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return 0;
+#else
+ if (snan_bit_is_one(status)) {
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && ((a.low << 1) >= 0x8000000000000000ULL);
+ } else {
+ uint64_t aLow;
+
+ aLow = a.low & ~UINT64_C(0x4000000000000000);
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (uint64_t)(aLow << 1)
+ && (a.low == aLow);
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns a quiet NaN from a signalling NaN for the extended double-precision
+| floating point value `a'.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
+{
+ /* None of the targets that have snan_bit_is_one use floatx80. */
+ assert(!snan_bit_is_one(status));
+ a.low |= UINT64_C(0xC000000000000000);
+ return a;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point NaN `a' to the canonical NaN format. If `a' is a signaling NaN, the
+| invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
+{
+ floatx80 dflt;
+ commonNaNT z;
+
+ if (floatx80_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ if (a.low >> 63) {
+ z.sign = a.high >> 15;
+ z.low = 0;
+ z.high = a.low << 1;
+ } else {
+ dflt = floatx80_default_nan(status);
+ z.sign = dflt.high >> 15;
+ z.low = 0;
+ z.high = dflt.low << 1;
+ }
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the extended
+| double-precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
+{
+ floatx80 z;
+
+ if (status->default_nan_mode) {
+ return floatx80_default_nan(status);
+ }
+
+ if (a.high >> 1) {
+ z.low = UINT64_C(0x8000000000000000) | a.high >> 1;
+ z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
+ } else {
+ z = floatx80_default_nan(status);
+ }
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Takes two extended double-precision floating-point values `a' and `b', one
+| of which is a NaN, and returns the appropriate NaN result. If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
+{
+ bool aIsLargerSignificand;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!floatx80_is_any_nan(a)
+ ? float_class_normal
+ : floatx80_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!floatx80_is_any_nan(b)
+ ? float_class_normal
+ : floatx80_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
+
+ if (status->default_nan_mode) {
+ return floatx80_default_nan(status);
+ }
+
+ if (a.low < b.low) {
+ aIsLargerSignificand = 0;
+ } else if (b.low < a.low) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
+ }
+
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return floatx80_silence_nan(b, status);
+ }
+ return b;
+ } else {
+ if (is_snan(a_cls)) {
+ return floatx80_silence_nan(a, status);
+ }
+ return a;
+ }
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float128_is_quiet_nan(float128 a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return float128_is_any_nan(a);
+#else
+ if (snan_bit_is_one(status)) {
+ return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
+ && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
+ } else {
+ return ((a.high << 1) >= 0xFFFF000000000000ULL)
+ && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is a
+| signaling NaN; otherwise returns 0.
+*----------------------------------------------------------------------------*/
+
+bool float128_is_signaling_nan(float128 a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return 0;
+#else
+ if (snan_bit_is_one(status)) {
+ return ((a.high << 1) >= 0xFFFF000000000000ULL)
+ && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
+ } else {
+ return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
+ && (a.low || (a.high & UINT64_C(0x00007FFFFFFFFFFF)));
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns a quiet NaN from a signalling NaN for the quadruple-precision
+| floating point value `a'.
+*----------------------------------------------------------------------------*/
+
+float128 float128_silence_nan(float128 a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ g_assert_not_reached();
+#else
+ if (snan_bit_is_one(status)) {
+ return float128_default_nan(status);
+ } else {
+ a.high |= UINT64_C(0x0000800000000000);
+ return a;
+ }
+#endif
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point NaN
+| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
+| exception is raised.
+*----------------------------------------------------------------------------*/
+
+static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
+{
+ commonNaNT z;
+
+ if (float128_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = a.high >> 63;
+ shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the canonical NaN `a' to the quadruple-
+| precision floating-point format.
+*----------------------------------------------------------------------------*/
+
+static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
+{
+ float128 z;
+
+ if (status->default_nan_mode) {
+ return float128_default_nan(status);
+ }
+
+ shift128Right(a.high, a.low, 16, &z.high, &z.low);
+ z.high |= (((uint64_t)a.sign) << 63) | UINT64_C(0x7FFF000000000000);
+ return z;
+}
+
+/*----------------------------------------------------------------------------
+| Takes two quadruple-precision floating-point values `a' and `b', one of
+| which is a NaN, and returns the appropriate NaN result. If either `a' or
+| `b' is a signaling NaN, the invalid exception is raised.
+*----------------------------------------------------------------------------*/
+
+static float128 propagateFloat128NaN(float128 a, float128 b,
+ float_status *status)
+{
+ bool aIsLargerSignificand;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float128_is_any_nan(a)
+ ? float_class_normal
+ : float128_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float128_is_any_nan(b)
+ ? float_class_normal
+ : float128_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
+
+ if (status->default_nan_mode) {
+ return float128_default_nan(status);
+ }
+
+ if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
+ aIsLargerSignificand = 0;
+ } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
+ aIsLargerSignificand = 1;
+ } else {
+ aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
+ }
+
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float128_silence_nan(b, status);
+ }
+ return b;
+ } else {
+ if (is_snan(a_cls)) {
+ return float128_silence_nan(a, status);
+ }
+ return a;
+ }
+}