summaryrefslogtreecommitdiff
path: root/hw
diff options
context:
space:
mode:
authorAlexey Kardashevskiy <aik@ozlabs.ru>2018-12-14 15:21:22 +1100
committerDavid Gibson <david@gibson.dropbear.id.au>2018-12-21 09:37:38 +1100
commit8994e91e963ed8ba6abd9c2afbb3d6be6f323ab5 (patch)
tree20396b864850cfd483825ef7b7689c47349da3c4 /hw
parent0cddee8d488667a7de60e75f76ead8cffe613d75 (diff)
downloadqemu-8994e91e963ed8ba6abd9c2afbb3d6be6f323ab5.zip
spapr-iommu: Always advertise the maximum possible DMA window size
When deciding about the huge DMA window, the typical Linux pseries guest uses the maximum allowed RAM size as the upper limit. We did the same on QEMU side to match that logic. Now we are going to support a GPU RAM pass through which is not available at the guest boot time as it requires the guest driver interaction. As the result, the guest requests a smaller window than it should. Therefore the guest needs to be patched to understand this new memory and so does QEMU. Instead of reimplementing here whatever solution we choose for the guest, this advertises the biggest possible window size limited by 32 bit (as defined by LoPAPR). Since the window size has to be power-of-two (the create rtas call receives a window shift, not a size), this uses 0x8000.0000 as the maximum number of TCEs possible (rather than 32bit maximum of 0xffff.ffff). This is safe as: 1. The guest visible emulated table is allocated in KVM (actual pages are allocated in page fault handler) and QEMU (actual pages are allocated when updated); 2. The hardware table (and corresponding userspace address table) supports sparse allocation and also checks for locked_vm limit so it is unable to cause the host any damage. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Diffstat (limited to 'hw')
-rw-r--r--hw/ppc/spapr_rtas_ddw.c19
1 files changed, 3 insertions, 16 deletions
diff --git a/hw/ppc/spapr_rtas_ddw.c b/hw/ppc/spapr_rtas_ddw.c
index 329feb148f..cb8a410359 100644
--- a/hw/ppc/spapr_rtas_ddw.c
+++ b/hw/ppc/spapr_rtas_ddw.c
@@ -96,9 +96,8 @@ static void rtas_ibm_query_pe_dma_window(PowerPCCPU *cpu,
uint32_t nret, target_ulong rets)
{
sPAPRPHBState *sphb;
- uint64_t buid, max_window_size;
+ uint64_t buid;
uint32_t avail, addr, pgmask = 0;
- MachineState *machine = MACHINE(spapr);
if ((nargs != 3) || (nret != 5)) {
goto param_error_exit;
@@ -114,27 +113,15 @@ static void rtas_ibm_query_pe_dma_window(PowerPCCPU *cpu,
/* Translate page mask to LoPAPR format */
pgmask = spapr_page_mask_to_query_mask(sphb->page_size_mask);
- /*
- * This is "Largest contiguous block of TCEs allocated specifically
- * for (that is, are reserved for) this PE".
- * Return the maximum number as maximum supported RAM size was in 4K pages.
- */
- if (machine->ram_size == machine->maxram_size) {
- max_window_size = machine->ram_size;
- } else {
- max_window_size = machine->device_memory->base +
- memory_region_size(&machine->device_memory->mr);
- }
-
avail = SPAPR_PCI_DMA_MAX_WINDOWS - spapr_phb_get_active_win_num(sphb);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, avail);
- rtas_st(rets, 2, max_window_size >> SPAPR_TCE_PAGE_SHIFT);
+ rtas_st(rets, 2, 0x80000000); /* The largest window we can possibly have */
rtas_st(rets, 3, pgmask);
rtas_st(rets, 4, 0); /* DMA migration mask, not supported */
- trace_spapr_iommu_ddw_query(buid, addr, avail, max_window_size, pgmask);
+ trace_spapr_iommu_ddw_query(buid, addr, avail, 0x80000000, pgmask);
return;
param_error_exit: