1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
|
/* Copyright (c) 2006-2013 by OpenLayers Contributors (see authors.txt for
* full list of contributors). Published under the 2-clause BSD license.
* See license.txt in the OpenLayers distribution or repository for the
* full text of the license. */
/**
* @requires OpenLayers/BaseTypes/Class.js
*/
/**
* Class: OpenLayers.Geometry
* A Geometry is a description of a geographic object. Create an instance of
* this class with the <OpenLayers.Geometry> constructor. This is a base class,
* typical geometry types are described by subclasses of this class.
*
* Note that if you use the <OpenLayers.Geometry.fromWKT> method, you must
* explicitly include the OpenLayers.Format.WKT in your build.
*/
OpenLayers.Geometry = OpenLayers.Class({
/**
* Property: id
* {String} A unique identifier for this geometry.
*/
id: null,
/**
* Property: parent
* {<OpenLayers.Geometry>}This is set when a Geometry is added as component
* of another geometry
*/
parent: null,
/**
* Property: bounds
* {<OpenLayers.Bounds>} The bounds of this geometry
*/
bounds: null,
/**
* Constructor: OpenLayers.Geometry
* Creates a geometry object.
*/
initialize: function() {
this.id = OpenLayers.Util.createUniqueID(this.CLASS_NAME+ "_");
},
/**
* Method: destroy
* Destroy this geometry.
*/
destroy: function() {
this.id = null;
this.bounds = null;
},
/**
* APIMethod: clone
* Create a clone of this geometry. Does not set any non-standard
* properties of the cloned geometry.
*
* Returns:
* {<OpenLayers.Geometry>} An exact clone of this geometry.
*/
clone: function() {
return new OpenLayers.Geometry();
},
/**
* Method: setBounds
* Set the bounds for this Geometry.
*
* Parameters:
* bounds - {<OpenLayers.Bounds>}
*/
setBounds: function(bounds) {
if (bounds) {
this.bounds = bounds.clone();
}
},
/**
* Method: clearBounds
* Nullify this components bounds and that of its parent as well.
*/
clearBounds: function() {
this.bounds = null;
if (this.parent) {
this.parent.clearBounds();
}
},
/**
* Method: extendBounds
* Extend the existing bounds to include the new bounds.
* If geometry's bounds is not yet set, then set a new Bounds.
*
* Parameters:
* newBounds - {<OpenLayers.Bounds>}
*/
extendBounds: function(newBounds){
var bounds = this.getBounds();
if (!bounds) {
this.setBounds(newBounds);
} else {
this.bounds.extend(newBounds);
}
},
/**
* APIMethod: getBounds
* Get the bounds for this Geometry. If bounds is not set, it
* is calculated again, this makes queries faster.
*
* Returns:
* {<OpenLayers.Bounds>}
*/
getBounds: function() {
if (this.bounds == null) {
this.calculateBounds();
}
return this.bounds;
},
/**
* APIMethod: calculateBounds
* Recalculate the bounds for the geometry.
*/
calculateBounds: function() {
//
// This should be overridden by subclasses.
//
},
/**
* APIMethod: distanceTo
* Calculate the closest distance between two geometries (on the x-y plane).
*
* Parameters:
* geometry - {<OpenLayers.Geometry>} The target geometry.
* options - {Object} Optional properties for configuring the distance
* calculation.
*
* Valid options depend on the specific geometry type.
*
* Returns:
* {Number | Object} The distance between this geometry and the target.
* If details is true, the return will be an object with distance,
* x0, y0, x1, and x2 properties. The x0 and y0 properties represent
* the coordinates of the closest point on this geometry. The x1 and y1
* properties represent the coordinates of the closest point on the
* target geometry.
*/
distanceTo: function(geometry, options) {
},
/**
* APIMethod: getVertices
* Return a list of all points in this geometry.
*
* Parameters:
* nodes - {Boolean} For lines, only return vertices that are
* endpoints. If false, for lines, only vertices that are not
* endpoints will be returned. If not provided, all vertices will
* be returned.
*
* Returns:
* {Array} A list of all vertices in the geometry.
*/
getVertices: function(nodes) {
},
/**
* Method: atPoint
* Note - This is only an approximation based on the bounds of the
* geometry.
*
* Parameters:
* lonlat - {<OpenLayers.LonLat>|Object} OpenLayers.LonLat or an
* object with a 'lon' and 'lat' properties.
* toleranceLon - {float} Optional tolerance in Geometric Coords
* toleranceLat - {float} Optional tolerance in Geographic Coords
*
* Returns:
* {Boolean} Whether or not the geometry is at the specified location
*/
atPoint: function(lonlat, toleranceLon, toleranceLat) {
var atPoint = false;
var bounds = this.getBounds();
if ((bounds != null) && (lonlat != null)) {
var dX = (toleranceLon != null) ? toleranceLon : 0;
var dY = (toleranceLat != null) ? toleranceLat : 0;
var toleranceBounds =
new OpenLayers.Bounds(this.bounds.left - dX,
this.bounds.bottom - dY,
this.bounds.right + dX,
this.bounds.top + dY);
atPoint = toleranceBounds.containsLonLat(lonlat);
}
return atPoint;
},
/**
* Method: getLength
* Calculate the length of this geometry. This method is defined in
* subclasses.
*
* Returns:
* {Float} The length of the collection by summing its parts
*/
getLength: function() {
//to be overridden by geometries that actually have a length
//
return 0.0;
},
/**
* Method: getArea
* Calculate the area of this geometry. This method is defined in subclasses.
*
* Returns:
* {Float} The area of the collection by summing its parts
*/
getArea: function() {
//to be overridden by geometries that actually have an area
//
return 0.0;
},
/**
* APIMethod: getCentroid
* Calculate the centroid of this geometry. This method is defined in subclasses.
*
* Returns:
* {<OpenLayers.Geometry.Point>} The centroid of the collection
*/
getCentroid: function() {
return null;
},
/**
* Method: toString
* Returns a text representation of the geometry. If the WKT format is
* included in a build, this will be the Well-Known Text
* representation.
*
* Returns:
* {String} String representation of this geometry.
*/
toString: function() {
var string;
if (OpenLayers.Format && OpenLayers.Format.WKT) {
string = OpenLayers.Format.WKT.prototype.write(
new OpenLayers.Feature.Vector(this)
);
} else {
string = Object.prototype.toString.call(this);
}
return string;
},
CLASS_NAME: "OpenLayers.Geometry"
});
/**
* Function: OpenLayers.Geometry.fromWKT
* Generate a geometry given a Well-Known Text string. For this method to
* work, you must include the OpenLayers.Format.WKT in your build
* explicitly.
*
* Parameters:
* wkt - {String} A string representing the geometry in Well-Known Text.
*
* Returns:
* {<OpenLayers.Geometry>} A geometry of the appropriate class.
*/
OpenLayers.Geometry.fromWKT = function(wkt) {
var geom;
if (OpenLayers.Format && OpenLayers.Format.WKT) {
var format = OpenLayers.Geometry.fromWKT.format;
if (!format) {
format = new OpenLayers.Format.WKT();
OpenLayers.Geometry.fromWKT.format = format;
}
var result = format.read(wkt);
if (result instanceof OpenLayers.Feature.Vector) {
geom = result.geometry;
} else if (OpenLayers.Util.isArray(result)) {
var len = result.length;
var components = new Array(len);
for (var i=0; i<len; ++i) {
components[i] = result[i].geometry;
}
geom = new OpenLayers.Geometry.Collection(components);
}
}
return geom;
};
/**
* Method: OpenLayers.Geometry.segmentsIntersect
* Determine whether two line segments intersect. Optionally calculates
* and returns the intersection point. This function is optimized for
* cases where seg1.x2 >= seg2.x1 || seg2.x2 >= seg1.x1. In those
* obvious cases where there is no intersection, the function should
* not be called.
*
* Parameters:
* seg1 - {Object} Object representing a segment with properties x1, y1, x2,
* and y2. The start point is represented by x1 and y1. The end point
* is represented by x2 and y2. Start and end are ordered so that x1 < x2.
* seg2 - {Object} Object representing a segment with properties x1, y1, x2,
* and y2. The start point is represented by x1 and y1. The end point
* is represented by x2 and y2. Start and end are ordered so that x1 < x2.
* options - {Object} Optional properties for calculating the intersection.
*
* Valid options:
* point - {Boolean} Return the intersection point. If false, the actual
* intersection point will not be calculated. If true and the segments
* intersect, the intersection point will be returned. If true and
* the segments do not intersect, false will be returned. If true and
* the segments are coincident, true will be returned.
* tolerance - {Number} If a non-null value is provided, if the segments are
* within the tolerance distance, this will be considered an intersection.
* In addition, if the point option is true and the calculated intersection
* is within the tolerance distance of an end point, the endpoint will be
* returned instead of the calculated intersection. Further, if the
* intersection is within the tolerance of endpoints on both segments, or
* if two segment endpoints are within the tolerance distance of eachother
* (but no intersection is otherwise calculated), an endpoint on the
* first segment provided will be returned.
*
* Returns:
* {Boolean | <OpenLayers.Geometry.Point>} The two segments intersect.
* If the point argument is true, the return will be the intersection
* point or false if none exists. If point is true and the segments
* are coincident, return will be true (and the instersection is equal
* to the shorter segment).
*/
OpenLayers.Geometry.segmentsIntersect = function(seg1, seg2, options) {
var point = options && options.point;
var tolerance = options && options.tolerance;
var intersection = false;
var x11_21 = seg1.x1 - seg2.x1;
var y11_21 = seg1.y1 - seg2.y1;
var x12_11 = seg1.x2 - seg1.x1;
var y12_11 = seg1.y2 - seg1.y1;
var y22_21 = seg2.y2 - seg2.y1;
var x22_21 = seg2.x2 - seg2.x1;
var d = (y22_21 * x12_11) - (x22_21 * y12_11);
var n1 = (x22_21 * y11_21) - (y22_21 * x11_21);
var n2 = (x12_11 * y11_21) - (y12_11 * x11_21);
if(d == 0) {
// parallel
if(n1 == 0 && n2 == 0) {
// coincident
intersection = true;
}
} else {
var along1 = n1 / d;
var along2 = n2 / d;
if(along1 >= 0 && along1 <= 1 && along2 >=0 && along2 <= 1) {
// intersect
if(!point) {
intersection = true;
} else {
// calculate the intersection point
var x = seg1.x1 + (along1 * x12_11);
var y = seg1.y1 + (along1 * y12_11);
intersection = new OpenLayers.Geometry.Point(x, y);
}
}
}
if(tolerance) {
var dist;
if(intersection) {
if(point) {
var segs = [seg1, seg2];
var seg, x, y;
// check segment endpoints for proximity to intersection
// set intersection to first endpoint within the tolerance
outer: for(var i=0; i<2; ++i) {
seg = segs[i];
for(var j=1; j<3; ++j) {
x = seg["x" + j];
y = seg["y" + j];
dist = Math.sqrt(
Math.pow(x - intersection.x, 2) +
Math.pow(y - intersection.y, 2)
);
if(dist < tolerance) {
intersection.x = x;
intersection.y = y;
break outer;
}
}
}
}
} else {
// no calculated intersection, but segments could be within
// the tolerance of one another
var segs = [seg1, seg2];
var source, target, x, y, p, result;
// check segment endpoints for proximity to intersection
// set intersection to first endpoint within the tolerance
outer: for(var i=0; i<2; ++i) {
source = segs[i];
target = segs[(i+1)%2];
for(var j=1; j<3; ++j) {
p = {x: source["x"+j], y: source["y"+j]};
result = OpenLayers.Geometry.distanceToSegment(p, target);
if(result.distance < tolerance) {
if(point) {
intersection = new OpenLayers.Geometry.Point(p.x, p.y);
} else {
intersection = true;
}
break outer;
}
}
}
}
}
return intersection;
};
/**
* Function: OpenLayers.Geometry.distanceToSegment
*
* Parameters:
* point - {Object} An object with x and y properties representing the
* point coordinates.
* segment - {Object} An object with x1, y1, x2, and y2 properties
* representing endpoint coordinates.
*
* Returns:
* {Object} An object with distance, along, x, and y properties. The distance
* will be the shortest distance between the input point and segment.
* The x and y properties represent the coordinates along the segment
* where the shortest distance meets the segment. The along attribute
* describes how far between the two segment points the given point is.
*/
OpenLayers.Geometry.distanceToSegment = function(point, segment) {
var result = OpenLayers.Geometry.distanceSquaredToSegment(point, segment);
result.distance = Math.sqrt(result.distance);
return result;
};
/**
* Function: OpenLayers.Geometry.distanceSquaredToSegment
*
* Usually the distanceToSegment function should be used. This variant however
* can be used for comparisons where the exact distance is not important.
*
* Parameters:
* point - {Object} An object with x and y properties representing the
* point coordinates.
* segment - {Object} An object with x1, y1, x2, and y2 properties
* representing endpoint coordinates.
*
* Returns:
* {Object} An object with squared distance, along, x, and y properties.
* The distance will be the shortest distance between the input point and
* segment. The x and y properties represent the coordinates along the
* segment where the shortest distance meets the segment. The along
* attribute describes how far between the two segment points the given
* point is.
*/
OpenLayers.Geometry.distanceSquaredToSegment = function(point, segment) {
var x0 = point.x;
var y0 = point.y;
var x1 = segment.x1;
var y1 = segment.y1;
var x2 = segment.x2;
var y2 = segment.y2;
var dx = x2 - x1;
var dy = y2 - y1;
var along = ((dx * (x0 - x1)) + (dy * (y0 - y1))) /
(Math.pow(dx, 2) + Math.pow(dy, 2));
var x, y;
if(along <= 0.0) {
x = x1;
y = y1;
} else if(along >= 1.0) {
x = x2;
y = y2;
} else {
x = x1 + along * dx;
y = y1 + along * dy;
}
return {
distance: Math.pow(x - x0, 2) + Math.pow(y - y0, 2),
x: x, y: y,
along: along
};
};
|