/* Copyright (c) 2006-2013 by OpenLayers Contributors (see authors.txt for * full list of contributors). Published under the 2-clause BSD license. * See license.txt in the OpenLayers distribution or repository for the * full text of the license. */ /** * @requires OpenLayers/Geometry/LineString.js */ /** * Class: OpenLayers.Geometry.LinearRing * * A Linear Ring is a special LineString which is closed. It closes itself * automatically on every addPoint/removePoint by adding a copy of the first * point as the last point. * * Also, as it is the first in the line family to close itself, a getArea() * function is defined to calculate the enclosed area of the linearRing * * Inherits: * - <OpenLayers.Geometry.LineString> */ OpenLayers.Geometry.LinearRing = OpenLayers.Class( OpenLayers.Geometry.LineString, { /** * Property: componentTypes * {Array(String)} An array of class names representing the types of * components that the collection can include. A null * value means the component types are not restricted. */ componentTypes: ["OpenLayers.Geometry.Point"], /** * Constructor: OpenLayers.Geometry.LinearRing * Linear rings are constructed with an array of points. This array * can represent a closed or open ring. If the ring is open (the last * point does not equal the first point), the constructor will close * the ring. If the ring is already closed (the last point does equal * the first point), it will be left closed. * * Parameters: * points - {Array(<OpenLayers.Geometry.Point>)} points */ /** * APIMethod: addComponent * Adds a point to geometry components. If the point is to be added to * the end of the components array and it is the same as the last point * already in that array, the duplicate point is not added. This has * the effect of closing the ring if it is not already closed, and * doing the right thing if it is already closed. This behavior can * be overridden by calling the method with a non-null index as the * second argument. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * index - {Integer} Index into the array to insert the component * * Returns: * {Boolean} Was the Point successfully added? */ addComponent: function(point, index) { var added = false; //remove last point var lastPoint = this.components.pop(); // given an index, add the point // without an index only add non-duplicate points if(index != null || !point.equals(lastPoint)) { added = OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, arguments); } //append copy of first point var firstPoint = this.components[0]; OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, [firstPoint]); return added; }, /** * APIMethod: removeComponent * Removes a point from geometry components. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * * Returns: * {Boolean} The component was removed. */ removeComponent: function(point) { var removed = this.components && (this.components.length > 3); if (removed) { //remove last point this.components.pop(); //remove our point OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this, arguments); //append copy of first point var firstPoint = this.components[0]; OpenLayers.Geometry.Collection.prototype.addComponent.apply(this, [firstPoint]); } return removed; }, /** * APIMethod: move * Moves a geometry by the given displacement along positive x and y axes. * This modifies the position of the geometry and clears the cached * bounds. * * Parameters: * x - {Float} Distance to move geometry in positive x direction. * y - {Float} Distance to move geometry in positive y direction. */ move: function(x, y) { for(var i = 0, len=this.components.length; i<len - 1; i++) { this.components[i].move(x, y); } }, /** * APIMethod: rotate * Rotate a geometry around some origin * * Parameters: * angle - {Float} Rotation angle in degrees (measured counterclockwise * from the positive x-axis) * origin - {<OpenLayers.Geometry.Point>} Center point for the rotation */ rotate: function(angle, origin) { for(var i=0, len=this.components.length; i<len - 1; ++i) { this.components[i].rotate(angle, origin); } }, /** * APIMethod: resize * Resize a geometry relative to some origin. Use this method to apply * a uniform scaling to a geometry. * * Parameters: * scale - {Float} Factor by which to scale the geometry. A scale of 2 * doubles the size of the geometry in each dimension * (lines, for example, will be twice as long, and polygons * will have four times the area). * origin - {<OpenLayers.Geometry.Point>} Point of origin for resizing * ratio - {Float} Optional x:y ratio for resizing. Default ratio is 1. * * Returns: * {<OpenLayers.Geometry>} - The current geometry. */ resize: function(scale, origin, ratio) { for(var i=0, len=this.components.length; i<len - 1; ++i) { this.components[i].resize(scale, origin, ratio); } return this; }, /** * APIMethod: transform * Reproject the components geometry from source to dest. * * Parameters: * source - {<OpenLayers.Projection>} * dest - {<OpenLayers.Projection>} * * Returns: * {<OpenLayers.Geometry>} */ transform: function(source, dest) { if (source && dest) { for (var i=0, len=this.components.length; i<len - 1; i++) { var component = this.components[i]; component.transform(source, dest); } this.bounds = null; } return this; }, /** * APIMethod: getCentroid * * Returns: * {<OpenLayers.Geometry.Point>} The centroid of the collection */ getCentroid: function() { if (this.components) { var len = this.components.length; if (len > 0 && len <= 2) { return this.components[0].clone(); } else if (len > 2) { var sumX = 0.0; var sumY = 0.0; var x0 = this.components[0].x; var y0 = this.components[0].y; var area = -1 * this.getArea(); if (area != 0) { for (var i = 0; i < len - 1; i++) { var b = this.components[i]; var c = this.components[i+1]; sumX += (b.x + c.x - 2 * x0) * ((b.x - x0) * (c.y - y0) - (c.x - x0) * (b.y - y0)); sumY += (b.y + c.y - 2 * y0) * ((b.x - x0) * (c.y - y0) - (c.x - x0) * (b.y - y0)); } var x = x0 + sumX / (6 * area); var y = y0 + sumY / (6 * area); } else { for (var i = 0; i < len - 1; i++) { sumX += this.components[i].x; sumY += this.components[i].y; } var x = sumX / (len - 1); var y = sumY / (len - 1); } return new OpenLayers.Geometry.Point(x, y); } else { return null; } } }, /** * APIMethod: getArea * Note - The area is positive if the ring is oriented CW, otherwise * it will be negative. * * Returns: * {Float} The signed area for a ring. */ getArea: function() { var area = 0.0; if ( this.components && (this.components.length > 2)) { var sum = 0.0; for (var i=0, len=this.components.length; i<len - 1; i++) { var b = this.components[i]; var c = this.components[i+1]; sum += (b.x + c.x) * (c.y - b.y); } area = - sum / 2.0; } return area; }, /** * APIMethod: getGeodesicArea * Calculate the approximate area of the polygon were it projected onto * the earth. Note that this area will be positive if ring is oriented * clockwise, otherwise it will be negative. * * Parameters: * projection - {<OpenLayers.Projection>} The spatial reference system * for the geometry coordinates. If not provided, Geographic/WGS84 is * assumed. * * Reference: * Robert. G. Chamberlain and William H. Duquette, "Some Algorithms for * Polygons on a Sphere", JPL Publication 07-03, Jet Propulsion * Laboratory, Pasadena, CA, June 2007 http://trs-new.jpl.nasa.gov/dspace/handle/2014/40409 * * Returns: * {float} The approximate signed geodesic area of the polygon in square * meters. */ getGeodesicArea: function(projection) { var ring = this; // so we can work with a clone if needed if(projection) { var gg = new OpenLayers.Projection("EPSG:4326"); if(!gg.equals(projection)) { ring = this.clone().transform(projection, gg); } } var area = 0.0; var len = ring.components && ring.components.length; if(len > 2) { var p1, p2; for(var i=0; i<len-1; i++) { p1 = ring.components[i]; p2 = ring.components[i+1]; area += OpenLayers.Util.rad(p2.x - p1.x) * (2 + Math.sin(OpenLayers.Util.rad(p1.y)) + Math.sin(OpenLayers.Util.rad(p2.y))); } area = area * 6378137.0 * 6378137.0 / 2.0; } return area; }, /** * Method: containsPoint * Test if a point is inside a linear ring. For the case where a point * is coincident with a linear ring edge, returns 1. Otherwise, * returns boolean. * * Parameters: * point - {<OpenLayers.Geometry.Point>} * * Returns: * {Boolean | Number} The point is inside the linear ring. Returns 1 if * the point is coincident with an edge. Returns boolean otherwise. */ containsPoint: function(point) { var approx = OpenLayers.Number.limitSigDigs; var digs = 14; var px = approx(point.x, digs); var py = approx(point.y, digs); function getX(y, x1, y1, x2, y2) { return (y - y2) * ((x2 - x1) / (y2 - y1)) + x2; } var numSeg = this.components.length - 1; var start, end, x1, y1, x2, y2, cx, cy; var crosses = 0; for(var i=0; i<numSeg; ++i) { start = this.components[i]; x1 = approx(start.x, digs); y1 = approx(start.y, digs); end = this.components[i + 1]; x2 = approx(end.x, digs); y2 = approx(end.y, digs); /** * The following conditions enforce five edge-crossing rules: * 1. points coincident with edges are considered contained; * 2. an upward edge includes its starting endpoint, and * excludes its final endpoint; * 3. a downward edge excludes its starting endpoint, and * includes its final endpoint; * 4. horizontal edges are excluded; and * 5. the edge-ray intersection point must be strictly right * of the point P. */ if(y1 == y2) { // horizontal edge if(py == y1) { // point on horizontal line if(x1 <= x2 && (px >= x1 && px <= x2) || // right or vert x1 >= x2 && (px <= x1 && px >= x2)) { // left or vert // point on edge crosses = -1; break; } } // ignore other horizontal edges continue; } cx = approx(getX(py, x1, y1, x2, y2), digs); if(cx == px) { // point on line if(y1 < y2 && (py >= y1 && py <= y2) || // upward y1 > y2 && (py <= y1 && py >= y2)) { // downward // point on edge crosses = -1; break; } } if(cx <= px) { // no crossing to the right continue; } if(x1 != x2 && (cx < Math.min(x1, x2) || cx > Math.max(x1, x2))) { // no crossing continue; } if(y1 < y2 && (py >= y1 && py < y2) || // upward y1 > y2 && (py < y1 && py >= y2)) { // downward ++crosses; } } var contained = (crosses == -1) ? // on edge 1 : // even (out) or odd (in) !!(crosses & 1); return contained; }, /** * APIMethod: intersects * Determine if the input geometry intersects this one. * * Parameters: * geometry - {<OpenLayers.Geometry>} Any type of geometry. * * Returns: * {Boolean} The input geometry intersects this one. */ intersects: function(geometry) { var intersect = false; if(geometry.CLASS_NAME == "OpenLayers.Geometry.Point") { intersect = this.containsPoint(geometry); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LineString") { intersect = geometry.intersects(this); } else if(geometry.CLASS_NAME == "OpenLayers.Geometry.LinearRing") { intersect = OpenLayers.Geometry.LineString.prototype.intersects.apply( this, [geometry] ); } else { // check for component intersections for(var i=0, len=geometry.components.length; i<len; ++ i) { intersect = geometry.components[i].intersects(this); if(intersect) { break; } } } return intersect; }, /** * APIMethod: getVertices * Return a list of all points in this geometry. * * Parameters: * nodes - {Boolean} For lines, only return vertices that are * endpoints. If false, for lines, only vertices that are not * endpoints will be returned. If not provided, all vertices will * be returned. * * Returns: * {Array} A list of all vertices in the geometry. */ getVertices: function(nodes) { return (nodes === true) ? [] : this.components.slice(0, this.components.length-1); }, CLASS_NAME: "OpenLayers.Geometry.LinearRing" });