/* Copyright (c) 2006-2013 by OpenLayers Contributors (see authors.txt for * full list of contributors). Published under the 2-clause BSD license. * See license.txt in the OpenLayers distribution or repository for the * full text of the license. */ /** * @requires OpenLayers/Geometry/Curve.js */ /** * Class: OpenLayers.Geometry.LineString * A LineString is a Curve which, once two points have been added to it, can * never be less than two points long. * * Inherits from: * - */ OpenLayers.Geometry.LineString = OpenLayers.Class(OpenLayers.Geometry.Curve, { /** * Constructor: OpenLayers.Geometry.LineString * Create a new LineString geometry * * Parameters: * points - {Array()} An array of points used to * generate the linestring * */ /** * APIMethod: removeComponent * Only allows removal of a point if there are three or more points in * the linestring. (otherwise the result would be just a single point) * * Parameters: * point - {} The point to be removed * * Returns: * {Boolean} The component was removed. */ removeComponent: function(point) { var removed = this.components && (this.components.length > 2); if (removed) { OpenLayers.Geometry.Collection.prototype.removeComponent.apply(this, arguments); } return removed; }, /** * APIMethod: intersects * Test for instersection between two geometries. This is a cheapo * implementation of the Bently-Ottmann algorigithm. It doesn't * really keep track of a sweep line data structure. It is closer * to the brute force method, except that segments are sorted and * potential intersections are only calculated when bounding boxes * intersect. * * Parameters: * geometry - {} * * Returns: * {Boolean} The input geometry intersects this geometry. */ intersects: function(geometry) { var intersect = false; var type = geometry.CLASS_NAME; if(type == "OpenLayers.Geometry.LineString" || type == "OpenLayers.Geometry.LinearRing" || type == "OpenLayers.Geometry.Point") { var segs1 = this.getSortedSegments(); var segs2; if(type == "OpenLayers.Geometry.Point") { segs2 = [{ x1: geometry.x, y1: geometry.y, x2: geometry.x, y2: geometry.y }]; } else { segs2 = geometry.getSortedSegments(); } var seg1, seg1x1, seg1x2, seg1y1, seg1y2, seg2, seg2y1, seg2y2; // sweep right outer: for(var i=0, len=segs1.length; i seg1x2) { // seg1 still left of seg2 break; } if(seg2.x2 < seg1x1) { // seg2 still left of seg1 continue; } seg2y1 = seg2.y1; seg2y2 = seg2.y2; if(Math.min(seg2y1, seg2y2) > Math.max(seg1y1, seg1y2)) { // seg2 above seg1 continue; } if(Math.max(seg2y1, seg2y2) < Math.min(seg1y1, seg1y2)) { // seg2 below seg1 continue; } if(OpenLayers.Geometry.segmentsIntersect(seg1, seg2)) { intersect = true; break outer; } } } } else { intersect = geometry.intersects(this); } return intersect; }, /** * Method: getSortedSegments * * Returns: * {Array} An array of segment objects. Segment objects have properties * x1, y1, x2, and y2. The start point is represented by x1 and y1. * The end point is represented by x2 and y2. Start and end are * ordered so that x1 < x2. */ getSortedSegments: function() { var numSeg = this.components.length - 1; var segments = new Array(numSeg), point1, point2; for(var i=0; i 0) { // sort intersections along segment var xDir = seg.x1 < seg.x2 ? 1 : -1; var yDir = seg.y1 < seg.y2 ? 1 : -1; result = { lines: lines, points: intersections.sort(function(p1, p2) { return (xDir * p1.x - xDir * p2.x) || (yDir * p1.y - yDir * p2.y); }) }; } return result; }, /** * Method: split * Use this geometry (the source) to attempt to split a target geometry. * * Parameters: * target - {} The target geometry. * options - {Object} Properties of this object will be used to determine * how the split is conducted. * * Valid options: * mutual - {Boolean} Split the source geometry in addition to the target * geometry. Default is false. * edge - {Boolean} Allow splitting when only edges intersect. Default is * true. If false, a vertex on the source must be within the tolerance * distance of the intersection to be considered a split. * tolerance - {Number} If a non-null value is provided, intersections * within the tolerance distance of an existing vertex on the source * will be assumed to occur at the vertex. * * Returns: * {Array} A list of geometries (of this same type as the target) that * result from splitting the target with the source geometry. The * source and target geometry will remain unmodified. If no split * results, null will be returned. If mutual is true and a split * results, return will be an array of two arrays - the first will be * all geometries that result from splitting the source geometry and * the second will be all geometries that result from splitting the * target geometry. */ split: function(target, options) { var results = null; var mutual = options && options.mutual; var sourceSplit, targetSplit, sourceParts, targetParts; if(target instanceof OpenLayers.Geometry.LineString) { var verts = this.getVertices(); var vert1, vert2, seg, splits, lines, point; var points = []; sourceParts = []; for(var i=0, stop=verts.length-2; i<=stop; ++i) { vert1 = verts[i]; vert2 = verts[i+1]; seg = { x1: vert1.x, y1: vert1.y, x2: vert2.x, y2: vert2.y }; targetParts = targetParts || [target]; if(mutual) { points.push(vert1.clone()); } for(var j=0; j 0) { lines.unshift(j, 1); Array.prototype.splice.apply(targetParts, lines); j += lines.length - 2; } if(mutual) { for(var k=0, len=splits.points.length; k 0 && points.length > 0) { points.push(vert2.clone()); sourceParts.push(new OpenLayers.Geometry.LineString(points)); } } else { results = target.splitWith(this, options); } if(targetParts && targetParts.length > 1) { targetSplit = true; } else { targetParts = []; } if(sourceParts && sourceParts.length > 1) { sourceSplit = true; } else { sourceParts = []; } if(targetSplit || sourceSplit) { if(mutual) { results = [sourceParts, targetParts]; } else { results = targetParts; } } return results; }, /** * Method: splitWith * Split this geometry (the target) with the given geometry (the source). * * Parameters: * geometry - {} A geometry used to split this * geometry (the source). * options - {Object} Properties of this object will be used to determine * how the split is conducted. * * Valid options: * mutual - {Boolean} Split the source geometry in addition to the target * geometry. Default is false. * edge - {Boolean} Allow splitting when only edges intersect. Default is * true. If false, a vertex on the source must be within the tolerance * distance of the intersection to be considered a split. * tolerance - {Number} If a non-null value is provided, intersections * within the tolerance distance of an existing vertex on the source * will be assumed to occur at the vertex. * * Returns: * {Array} A list of geometries (of this same type as the target) that * result from splitting the target with the source geometry. The * source and target geometry will remain unmodified. If no split * results, null will be returned. If mutual is true and a split * results, return will be an array of two arrays - the first will be * all geometries that result from splitting the source geometry and * the second will be all geometries that result from splitting the * target geometry. */ splitWith: function(geometry, options) { return geometry.split(this, options); }, /** * APIMethod: getVertices * Return a list of all points in this geometry. * * Parameters: * nodes - {Boolean} For lines, only return vertices that are * endpoints. If false, for lines, only vertices that are not * endpoints will be returned. If not provided, all vertices will * be returned. * * Returns: * {Array} A list of all vertices in the geometry. */ getVertices: function(nodes) { var vertices; if(nodes === true) { vertices = [ this.components[0], this.components[this.components.length-1] ]; } else if (nodes === false) { vertices = this.components.slice(1, this.components.length-1); } else { vertices = this.components.slice(); } return vertices; }, /** * APIMethod: distanceTo * Calculate the closest distance between two geometries (on the x-y plane). * * Parameters: * geometry - {} The target geometry. * options - {Object} Optional properties for configuring the distance * calculation. * * Valid options: * details - {Boolean} Return details from the distance calculation. * Default is false. * edge - {Boolean} Calculate the distance from this geometry to the * nearest edge of the target geometry. Default is true. If true, * calling distanceTo from a geometry that is wholly contained within * the target will result in a non-zero distance. If false, whenever * geometries intersect, calling distanceTo will return 0. If false, * details cannot be returned. * * Returns: * {Number | Object} The distance between this geometry and the target. * If details is true, the return will be an object with distance, * x0, y0, x1, and x2 properties. The x0 and y0 properties represent * the coordinates of the closest point on this geometry. The x1 and y1 * properties represent the coordinates of the closest point on the * target geometry. */ distanceTo: function(geometry, options) { var edge = !(options && options.edge === false); var details = edge && options && options.details; var result, best = {}; var min = Number.POSITIVE_INFINITY; if(geometry instanceof OpenLayers.Geometry.Point) { var segs = this.getSortedSegments(); var x = geometry.x; var y = geometry.y; var seg; for(var i=0, len=segs.length; i x && ((y > seg.y1 && y < seg.y2) || (y < seg.y1 && y > seg.y2))) { break; } } } if(details) { best = { distance: best.distance, x0: best.x, y0: best.y, x1: x, y1: y }; } else { best = best.distance; } } else if(geometry instanceof OpenLayers.Geometry.LineString) { var segs0 = this.getSortedSegments(); var segs1 = geometry.getSortedSegments(); var seg0, seg1, intersection, x0, y0; var len1 = segs1.length; var interOptions = {point: true}; outer: for(var i=0, len=segs0.length; i maxDistance) { maxDistance = distance; indexFarthest = index; } } if (maxDistance > tolerance && indexFarthest != firstPoint) { //Add the largest point that exceeds the tolerance pointIndexsToKeep.push(indexFarthest); douglasPeuckerReduction(points, firstPoint, indexFarthest, tolerance); douglasPeuckerReduction(points, indexFarthest, lastPoint, tolerance); } }; /** * Private function calculating the perpendicular distance * TODO: check whether OpenLayers.Geometry.LineString::distanceTo() is faster or slower */ var perpendicularDistance = function(point1, point2, point){ //Area = |(1/2)(x1y2 + x2y3 + x3y1 - x2y1 - x3y2 - x1y3)| *Area of triangle //Base = v((x1-x2)²+(x1-x2)²) *Base of Triangle* //Area = .5*Base*H *Solve for height //Height = Area/.5/Base var area = Math.abs(0.5 * (point1.x * point2.y + point2.x * point.y + point.x * point1.y - point2.x * point1.y - point.x * point2.y - point1.x * point.y)); var bottom = Math.sqrt(Math.pow(point1.x - point2.x, 2) + Math.pow(point1.y - point2.y, 2)); var height = area / bottom * 2; return height; }; var firstPoint = 0; var lastPoint = points.length - 1; var pointIndexsToKeep = []; //Add the first and last index to the keepers pointIndexsToKeep.push(firstPoint); pointIndexsToKeep.push(lastPoint); //The first and the last point cannot be the same while (points[firstPoint].equals(points[lastPoint])) { lastPoint--; //Addition: the first point not equal to first point in the LineString is kept as well pointIndexsToKeep.push(lastPoint); } douglasPeuckerReduction(points, firstPoint, lastPoint, tolerance); var returnPoints = []; pointIndexsToKeep.sort(compareNumbers); for (var index = 0; index < pointIndexsToKeep.length; index++) { returnPoints.push(points[pointIndexsToKeep[index]]); } return new OpenLayers.Geometry.LineString(returnPoints); } else { return this; } }, CLASS_NAME: "OpenLayers.Geometry.LineString" });