diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/postrunner/ActivitySummary.rb | 3 | ||||
-rw-r--r-- | lib/postrunner/ChartView.rb | 59 | ||||
-rw-r--r-- | lib/postrunner/HRV_Analyzer.rb | 150 | ||||
-rw-r--r-- | lib/postrunner/LinearPredictor.rb | 46 | ||||
-rw-r--r-- | lib/postrunner/Percentiles.rb | 45 |
5 files changed, 248 insertions, 55 deletions
diff --git a/lib/postrunner/ActivitySummary.rb b/lib/postrunner/ActivitySummary.rb index b01dfed..d7aa8dd 100644 --- a/lib/postrunner/ActivitySummary.rb +++ b/lib/postrunner/ActivitySummary.rb @@ -15,6 +15,7 @@ require 'fit4ruby' require 'postrunner/FlexiTable' require 'postrunner/ViewFrame' require 'postrunner/HRV_Analyzer' +require 'postrunner/Percentiles' module PostRunner @@ -115,7 +116,7 @@ module PostRunner hrv = HRV_Analyzer.new(@fit_activity) if hrv.has_hrv_data? - t.row([ 'HRV Score:', hrv.lnrmssdx20 ]) + t.row([ 'HRV Score:', "%.1f" % hrv.lnrmssdx20_1sigma ]) end t diff --git a/lib/postrunner/ChartView.rb b/lib/postrunner/ChartView.rb index 1208511..b146ea4 100644 --- a/lib/postrunner/ChartView.rb +++ b/lib/postrunner/ChartView.rb @@ -10,6 +10,8 @@ # published by the Free Software Foundation. # +require 'postrunner/HRV_Analyzer' + module PostRunner class ChartView @@ -19,6 +21,7 @@ module PostRunner @sport = activity.sport @unit_system = unit_system @empty_charts = {} + @hrv_analyzer = HRV_Analyzer.new(@activity.fit_activity) end def to_html(doc) @@ -42,6 +45,10 @@ module PostRunner end chart_div(doc, 'altitude', "Elevation (#{select_unit('m')})") chart_div(doc, 'heart_rate', 'Heart Rate (bpm)') + if @hrv_analyzer.has_hrv_data? + chart_div(doc, 'hrv', 'Heart Rate Variability (s)') + #chart_div(doc, 'hrv_score', 'HRV Score (30s Window)') + end chart_div(doc, 'run_cadence', 'Run Cadence (spm)') chart_div(doc, 'vertical_oscillation', "Vertical Oscillation (#{select_unit('cm')})") @@ -105,6 +112,10 @@ EOT end s << line_graph('altitude', 'Elevation', 'm', '#5AAA44') s << line_graph('heart_rate', 'Heart Rate', 'bpm', '#900000') + if @hrv_analyzer.has_hrv_data? + s << line_graph('hrv', 's', '', '#900000') + #s << line_graph('hrv_score', 'HRV Score', '', '#900000') + end s << point_graph('run_cadence', 'Run Cadence', 'spm', [ [ '#EE3F2D', 151 ], [ '#F79666', 163 ], @@ -164,24 +175,42 @@ EOT data_set = [] start_time = @activity.fit_activity.sessions[0].start_time.to_i min_value = nil - @activity.fit_activity.records.each do |r| - value = r.get_as(field, select_unit(unit)) - - next unless value - - if field == 'pace' - # Slow speeds lead to very large pace values that make the graph - # hard to read. We cap the pace at 20.0 min/km to keep it readable. - if value > (@unit_system == :metric ? 20.0 : 36.0 ) - value = nil + if field == 'hrv_score' + 0.upto(@hrv_analyzer.total_duration.to_i - 30) do |t| + next unless (hrv_score = @hrv_analyzer.lnrmssdx20(t, 30)) > 0.0 + min_value = hrv_score if min_value.nil? || min_value > hrv_score + data_set << [ t * 1000, hrv_score ] + end + elsif field == 'hrv' + 1.upto(@hrv_analyzer.rr_intervals.length - 1) do |idx| + curr_intvl = @hrv_analyzer.rr_intervals[idx] + prev_intvl = @hrv_analyzer.rr_intervals[idx - 1] + next unless curr_intvl && prev_intvl + + dt = curr_intvl - prev_intvl + min_value = dt if min_value.nil? || min_value > dt + data_set << [ @hrv_analyzer.timestamps[idx] * 1000, dt] + end + else + @activity.fit_activity.records.each do |r| + value = r.get_as(field, select_unit(unit)) + + next unless value + + if field == 'pace' + # Slow speeds lead to very large pace values that make the graph + # hard to read. We cap the pace at 20.0 min/km to keep it readable. + if value > (@unit_system == :metric ? 20.0 : 36.0 ) + value = nil + else + value = (value * 3600.0 * 1000).to_i + end + min_value = 0.0 else - value = (value * 3600.0 * 1000).to_i + min_value = value if (min_value.nil? || min_value > value) end - min_value = 0.0 - else - min_value = value if (min_value.nil? || min_value > value) + data_set << [ ((r.timestamp.to_i - start_time) * 1000).to_i, value ] end - data_set << [ ((r.timestamp.to_i - start_time) * 1000).to_i, value ] end # We don't want to plot charts with all nil values. diff --git a/lib/postrunner/HRV_Analyzer.rb b/lib/postrunner/HRV_Analyzer.rb index 60d6134..8375a9b 100644 --- a/lib/postrunner/HRV_Analyzer.rb +++ b/lib/postrunner/HRV_Analyzer.rb @@ -10,6 +10,8 @@ # published by the Free Software Foundation. # +require 'postrunner/LinearPredictor' + module PostRunner # This class analyzes the heart rate variablity based on the R-R intervals @@ -17,85 +19,155 @@ module PostRunner # quality is good enough. class HRV_Analyzer + attr_reader :rr_intervals, :timestamps + + # Create a new HRV_Analyzer object. + # @param fit_file [Fit4Ruby::Activity] FIT file to analyze. def initialize(fit_file) @fit_file = fit_file collect_rr_intervals end # The method can be used to check if we have valid HRV data. The FIT file - # must have HRV data, it must have correctly measured 90% of the beats and - # the measurement duration must be at least 30 seconds. + # must have HRV data and the measurement duration must be at least 30 + # seconds. def has_hrv_data? - !@fit_file.hrv.empty? && - @missed_beats < (0.1 * @rr_intervals.length) && - total_duration > 30.0 + !@fit_file.hrv.empty? && total_duration > 30.0 end # Return the total duration of all measured intervals in seconds. def total_duration - @rr_intervals.inject(:+) + @timestamps[-1] end - # root mean square of successive differences - def rmssd + # Compute the root mean square of successive differences. + # @param start_time [Float] Determines at what time mark (in seconds) the + # computation should start. + # @param duration [Float] The duration of the total inteval in seconds to + # be considered for the computation. This value should be larger + # then 30 seconds to produce meaningful values. + def rmssd(start_time = 0.0, duration = nil) + # Find the start index based on the requested interval start time. + start_idx = 0 + @timestamps.each do |ts| + break if ts >= start_time + start_idx += 1 + end + # Find the end index based on the requested interval duration. + if duration + end_time = start_time + duration + end_idx = start_idx + while end_idx < (@timestamps.length - 1) && + @timestamps[end_idx] < end_time + end_idx += 1 + end + else + end_idx = -1 + end + last_i = nil sum = 0.0 - @rr_intervals.each do |i| - if last_i + cnt = 0 + @rr_intervals[start_idx..end_idx].each do |i| + if i && last_i sum += (last_i - i) ** 2.0 + cnt += 1 end last_i = i end - Math.sqrt(sum / (@rr_intervals.length - 1)) + + Math.sqrt(sum / cnt) end # The RMSSD value is not very easy to memorize. Alternatively, we can # multiply the natural logarithm of RMSSD by -20. This usually results in - # values between 40 (for untrained) and 100 (for higly trained) athletes. - def lnrmssdx20 - (-20.0 * Math.log(rmssd)).round.to_i + # values between 1.0 (for untrained) and 100.0 (for higly trained) + # athletes. Values larger than 100.0 are rare but possible. + # @param start_time [Float] Determines at what time mark (in seconds) the + # computation should start. + # @param duration [Float] The duration of the total inteval in seconds to + # be considered for the computation. This value should be larger + # then 30 seconds to produce meaningful values. + def lnrmssdx20(start_time = 0.0, duration = nil) + -20.0 * Math.log(rmssd(start_time, duration)) + end + + # This method is similar to lnrmssdx20 but it tries to search the data for + # the best time period to compute the lnrmssdx20 value from. + def lnrmssdx20_1sigma + # Create a new Array that consists of rr_intervals and timestamps + # tuples. + set = [] + 0.upto(@rr_intervals.length - 1) do |i| + set << [ @rr_intervals[i] ? @rr_intervals[i] : 0.0, @timestamps[i] ] + end + + percentiles = Percentiles.new(set) + # Compile a list of all tuples with rr_intervals that are outside of the + # PT84 (aka +1sigma range. Sort the list by time. + not_1sigma = percentiles.not_tp_x(84.13).sort { |e1, e2| e1[1] <=> e2[1] } + + # Then find the largest time gap in that list. So all the values in that + # gap are within TP84. + gap_start = gap_end = 0 + last = nil + not_1sigma.each do |e| + if last + if (e[1] - last) > (gap_end - gap_start) + gap_start = last + gap_end = e[1] + end + end + last = e[1] + end + # That gap should be at least 30 seconds long. Otherwise we'll just use + # all the values. + return lnrmssdx20 if gap_end - gap_start < 30 + + lnrmssdx20(gap_start, gap_end - gap_start) end private def collect_rr_intervals + # Each Fit4Ruby::HRV object has an Array called 'time' that contains up + # to 5 R-R interval durations. If less than 5 are present, they are + # filled with nil. raw_rr_intervals = [] @fit_file.hrv.each do |hrv| raw_rr_intervals += hrv.time.compact end - prev_dts = [] - avg_dt = nil - @missed_beats = 0 + window = 20 + intro_mean = raw_rr_intervals[0..4 * window].reduce(:+) / (4 * window) + predictor = LinearPredictor.new(window, intro_mean) + + # The rr_intervals Array stores the beat-to-beat time intervals (R-R). + # If one or move beats have been skipped during measurement, a nil value + # is inserted. @rr_intervals = [] + # The timestamps Array stores the relative (to start of sequence) time + # for each interval in the rr_intervals Array. + @timestamps = [] + + # The timer accumulates the interval durations. + timer = 0.0 raw_rr_intervals.each do |dt| + timer += dt + @timestamps << timer + # Sometimes the hrv data is missing one or more beats. The next - # detected beat is then listed with a time interval since the last + # detected beat is than listed with the time interval since the last # detected beat. We try to detect these skipped beats by looking for - # time intervals that are 1.8 or more times larger than the average of - # the last 5 good intervals. - if avg_dt && dt > 1.8 * avg_dt - # If we have found skipped beats we calcluate how many beats were - # skipped. - skip = (dt / avg_dt).round.to_i - # We count the total number of skipped beats. We don't use the HRV - # data if too many beats were skipped. - @missed_beats += skip - # Insert skip times the average skipped beat intervals. - skip.times do - new_dt = dt / skip - @rr_intervals << new_dt - prev_dts << new_dt - prev_dts.shift if prev_dts.length > 5 - end + # time intervals that are 1.5 or more times larger than the predicted + # value for this interval. + if (next_dt = predictor.predict) && dt > 1.5 * next_dt + @rr_intervals << nil else @rr_intervals << dt - # We keep a list of the previous 5 good intervals and compute the - # average value of them. - prev_dts << dt - prev_dts.shift if prev_dts.length > 5 + # Feed the value into the predictor. + predictor.insert(dt) end - avg_dt = prev_dts.inject(:+) / prev_dts.length end end diff --git a/lib/postrunner/LinearPredictor.rb b/lib/postrunner/LinearPredictor.rb new file mode 100644 index 0000000..6a15407 --- /dev/null +++ b/lib/postrunner/LinearPredictor.rb @@ -0,0 +1,46 @@ +#!/usr/bin/env ruby -w +# encoding: UTF-8 +# +# = LinearPredictor.rb -- PostRunner - Manage the data from your Garmin sport devices. +# +# Copyright (c) 2015 by Chris Schlaeger <cs@taskjuggler.org> +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of version 2 of the GNU General Public License as +# published by the Free Software Foundation. +# + +module PostRunner + + # For now we use a trivial adaptive linear predictor that just uses the + # average of past values to predict the next value. + class LinearPredictor + + # Create a new LinearPredictor object. + # @param n [Fixnum] The number of coefficients the predictor should use. + def initialize(n, default = nil) + @values = Array.new(n, default) + @size = n + @next = nil + end + + # Tell the predictor about the actual next value. + # @param value [Float] next value + def insert(value) + @values << value + + if @values.length > @size + @values.shift + @next = @values.reduce(:+) / @size + end + end + + # @return [Float] The predicted value of the next sample. + def predict + @next + end + + end + +end + diff --git a/lib/postrunner/Percentiles.rb b/lib/postrunner/Percentiles.rb new file mode 100644 index 0000000..f2d6e78 --- /dev/null +++ b/lib/postrunner/Percentiles.rb @@ -0,0 +1,45 @@ +#!/usr/bin/env ruby -w +# encoding: UTF-8 +# +# = Percentiles.rb -- PostRunner - Manage the data from your Garmin sport devices. +# +# Copyright (c) 2015 by Chris Schlaeger <cs@taskjuggler.org> +# +# This program is free software; you can redistribute it and/or modify +# it under the terms of version 2 of the GNU General Public License as +# published by the Free Software Foundation. +# + +module PostRunner + + # This class can be used to partition sets according to a given percentile. + class Percentiles + + # Create a Percentiles object for the given data set. + # @param set [Array] It must be an Array of tuples (2 element Array). The + # first element is the actual value, the second does not matter for + # the computation. It is usually a reference to the context of the + # value. + def initialize(set) + @set = set.sort { |e1, e2| e1[0] <=> e2[0] } + end + + # @return [Array] Return the tuples that are within the given percentile. + # @param x [Float] Percentage value + def tp_x(x) + split_idx = (x / 100.0 * @set.size).to_i + @set[0..split_idx] + end + + # @return [Array] Return the tuples that are not within the given + # percentile. + # @param x [Float] Percentage value + def not_tp_x(x) + split_idx = (x / 100.0 * @set.size).to_i + @set[split_idx..-1] + end + + end + +end + |