summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/postrunner/ActivitySummary.rb16
-rw-r--r--lib/postrunner/ChartView.rb31
-rw-r--r--lib/postrunner/HRV_Analyzer.rb147
-rw-r--r--lib/postrunner/LinearPredictor.rb10
4 files changed, 100 insertions, 104 deletions
diff --git a/lib/postrunner/ActivitySummary.rb b/lib/postrunner/ActivitySummary.rb
index fb01623..95d776e 100644
--- a/lib/postrunner/ActivitySummary.rb
+++ b/lib/postrunner/ActivitySummary.rb
@@ -159,12 +159,16 @@ module PostRunner
t.row([ 'Suggested Recovery Time:',
rec_time ? secsToDHMS(rec_time * 60) : '-' ])
- rr_intervals = @activity.fit_activity.hrv.map do |hrv|
- hrv.time.compact
- end.flatten
- hrv = HRV_Analyzer.new(rr_intervals)
- if hrv.has_hrv_data?
- t.row([ 'HRV Score:', "%.1f" % hrv.one_sigma(:hrv_score) ])
+ hrv = HRV_Analyzer.new(@activity)
+ # If we have HRV data for more than 120s we compute the PostRunner HRV
+ # Score for the 2nd and 3rd minute. The first minute is ignored as it
+ # often contains erratic data due to body movements and HRM adjustments.
+ # Clinical tests usually recommend a 5 minute measure time, but that's
+ # probably too long for daily tests.
+ if hrv.has_hrv_data? && hrv.duration > 180
+ if (hrv_score = hrv.hrv_score(60, 120)) > 0.0 && hrv_score < 100.0
+ t.row([ 'PostRunner HRV Score:', "%.1f" % hrv_score ])
+ end
end
t
diff --git a/lib/postrunner/ChartView.rb b/lib/postrunner/ChartView.rb
index d5f47d7..94bd407 100644
--- a/lib/postrunner/ChartView.rb
+++ b/lib/postrunner/ChartView.rb
@@ -21,10 +21,7 @@ module PostRunner
@sport = activity.sport
@unit_system = unit_system
@empty_charts = {}
- rr_intervals = @activity.fit_activity.hrv.map do |hrv|
- hrv.time.compact
- end.flatten
- @hrv_analyzer = HRV_Analyzer.new(rr_intervals)
+ @hrv_analyzer = HRV_Analyzer.new(activity)
@charts = [
{
@@ -66,14 +63,12 @@ module PostRunner
:unit => 'ms',
:graph => :line_graph,
:colors => '#900000',
- :show => @hrv_analyzer.has_hrv_data?,
- :min_y => -30,
- :max_y => 30
+ :show => @hrv_analyzer.has_hrv_data?
},
{
:id => 'hrv_score',
- :label => 'HRV Score (30s Window)',
- :short_label => 'HRV Score',
+ :label => 'rMSSD (30s Window)',
+ :short_label => 'rMSSD',
:graph => :line_graph,
:colors => '#900000',
:show => false
@@ -273,22 +268,18 @@ EOT
start_time = @activity.fit_activity.sessions[0].start_time.to_i
min_value = nil
if chart[:id] == 'hrv_score'
- 0.upto(@hrv_analyzer.total_duration.to_i - 30) do |t|
- next unless (hrv_score = @hrv_analyzer.lnrmssdx20(t, 30)) > 0.0
+ window_time = 120
+ 0.upto(@hrv_analyzer.total_duration.to_i - window_time) do |t|
+ next unless (hrv_score = @hrv_analyzer.rmssd(t, window_time)) >= 0.0
min_value = hrv_score if min_value.nil? || min_value > hrv_score
data_set << [ t * 1000, hrv_score ]
end
elsif chart[:id] == 'hrv'
- 1.upto(@hrv_analyzer.rr_intervals.length - 1) do |idx|
- curr_intvl = @hrv_analyzer.rr_intervals[idx]
- prev_intvl = @hrv_analyzer.rr_intervals[idx - 1]
- next unless curr_intvl && prev_intvl
-
- # Convert the R-R interval duration to ms.
- dt = (curr_intvl - prev_intvl) * 1000.0
- min_value = dt if min_value.nil? || min_value > dt
- data_set << [ @hrv_analyzer.timestamps[idx] * 1000, dt ]
+ @hrv_analyzer.hrv.each_with_index do |dt, i|
+ next unless dt
+ data_set << [ @hrv_analyzer.timestamps[i] * 1000, dt * 1000 ]
end
+ min_value = 0
else
@activity.fit_activity.records.each do |r|
value = r.get_as(chart[:id], chart[:unit] || '')
diff --git a/lib/postrunner/HRV_Analyzer.rb b/lib/postrunner/HRV_Analyzer.rb
index 77162bd..ff3eb74 100644
--- a/lib/postrunner/HRV_Analyzer.rb
+++ b/lib/postrunner/HRV_Analyzer.rb
@@ -3,14 +3,14 @@
#
# = HRV_Analyzer.rb -- PostRunner - Manage the data from your Garmin sport devices.
#
-# Copyright (c) 2015 by Chris Schlaeger <cs@taskjuggler.org>
+# Copyright (c) 2015, 2016, 2017 by Chris Schlaeger <cs@taskjuggler.org>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of version 2 of the GNU General Public License as
# published by the Free Software Foundation.
#
-require 'postrunner/LinearPredictor'
+require 'postrunner/FFS_Activity'
module PostRunner
@@ -19,7 +19,7 @@ module PostRunner
# quality is good enough.
class HRV_Analyzer
- attr_reader :rr_intervals, :timestamps, :errors
+ attr_reader :hrv, :timestamps, :duration, :errors
# According to Nunan et. al. 2010
# (http://www.qeeg.co.uk/HRV/NUNAN-2010-A%20Quantitative%20Systematic%20Review%20of%20Normal%20Values%20for.pdf)
@@ -31,9 +31,24 @@ module PostRunner
LN_RMSSD_MAX = 4.4
# Create a new HRV_Analyzer object.
- # @param rr_intervals [Array of Float] R-R (or NN) time delta in seconds.
- def initialize(rr_intervals)
- @errors = 0
+ # @param arg [Activity, Array<Float>] R-R (or NN) time delta in seconds.
+ def initialize(arg)
+ if arg.is_a?(Array)
+ rr_intervals = arg
+ else
+ activity = arg
+ # Gather the RR interval list from the activity. Note that HRV data
+ # still gets recorded after the activity has been stoped until the
+ # activity gets saved.
+ # Each Fit4Ruby::HRV object has an Array called 'time' that contains up
+ # to 5 R-R interval durations. If less than 5 values are present the
+ # remaining are filled with nil entries.
+ rr_intervals = activity.fit_activity.hrv.map do |hrv|
+ hrv.time.compact
+ end.flatten
+ end
+ #$stderr.puts rr_intervals.inspect
+
cleanup_rr_intervals(rr_intervals)
end
@@ -41,7 +56,11 @@ module PostRunner
# must have HRV data and the measurement duration must be at least 30
# seconds.
def has_hrv_data?
- !@rr_intervals.empty? && total_duration > 30.0
+ @hrv && !@hrv.empty? && total_duration > 30.0
+ end
+
+ def data_quality
+ (@hrv.size - @errors).to_f / @hrv.size * 100.0
end
# Return the total duration of all measured intervals in seconds.
@@ -74,17 +93,15 @@ module PostRunner
end_idx = -1
end
- last_i = nil
sum = 0.0
cnt = 0
- @rr_intervals[start_idx..end_idx].each do |i|
- if i && last_i
+ @hrv[start_idx..end_idx].each do |i|
+ if i
# Input values are in seconds, but rmssd is usually computed from
# milisecond values.
- sum += ((last_i - i) * 1000) ** 2.0
+ sum += (i * 1000) ** 2.0
cnt += 1
end
- last_i = i
end
Math.sqrt(sum / cnt)
@@ -113,84 +130,66 @@ module PostRunner
(ssd - LN_RMSSD_MIN) * (100.0 / (LN_RMSSD_MAX - LN_RMSSD_MIN))
end
- # This method tries to find a window of values that all lie within the
- # TP84 range and then calls the given block for that range.
- def one_sigma(calc_method)
- # Create a new Array that consists of rr_intervals and timestamps
- # tuples.
- set = []
- 0.upto(@rr_intervals.length - 1) do |i|
- set << [ @rr_intervals[i] || 0.0, @timestamps[i] ]
- end
-
- percentiles = Percentiles.new(set)
- # Compile a list of all tuples with rr_intervals that are outside of the
- # PT84 (aka +1sigma range. Sort the list by time.
- not_1sigma = percentiles.not_tp_x(84.13).sort { |e1, e2| e1[1] <=> e2[1] }
-
- # Then find the largest window RR interval list so that all the values
- # in that window are within TP84.
- window_start = window_end = 0
- last = nil
- not_1sigma.each do |e|
- if last
- if (e[1] - last) > (window_end - window_start)
- window_start = last + 1
- window_end = e[1] - 1
- end
- end
- last = e[1]
- end
-
- # That window should be at least 30 seconds long. Otherwise we'll just use
- # all the values.
- if window_end - window_start < 30 || window_end < window_start
- return send(calc_method, 0.0, nil)
- end
-
- send(calc_method, window_start, window_end - window_start)
- end
-
private
def cleanup_rr_intervals(rr_intervals)
- # The rr_intervals Array stores the beat-to-beat time intervals (R-R).
- # If one or move beats have been skipped during measurement, a nil value
- # is inserted.
- @rr_intervals = []
# The timestamps Array stores the relative (to start of sequence) time
# for each interval in the rr_intervals Array.
@timestamps = []
- # Each Fit4Ruby::HRV object has an Array called 'time' that contains up
- # to 5 R-R interval durations. If less than 5 are present, they are
- # filled with nil.
return if rr_intervals.empty?
- window = [ rr_intervals.length / 4, 20 ].min
- intro_mean = rr_intervals[0..4 * window].reduce(:+) / (4 * window)
- predictor = LinearPredictor.new(window, intro_mean)
-
- # The timer accumulates the interval durations.
+ # The timer accumulates the interval durations and keeps track of the
+ # timestamp of the current value with respect to the beging of the
+ # series.
timer = 0.0
- rr_intervals.each do |dt|
- timer += dt
+ clean_rr_intervals = []
+ @errors = 0
+ rr_intervals.each_with_index do |rr, i|
@timestamps << timer
- # Sometimes the hrv data is missing one or more beats. The next
- # detected beat is than listed with the time interval since the last
- # detected beat. We try to detect these skipped beats by looking for
- # time intervals that are 1.5 or more times larger than the predicted
- # value for this interval.
- if (next_dt = predictor.predict) && dt > 1.5 * next_dt
- @rr_intervals << nil
+ # The biggest source of errors are missed beats resulting in intervals
+ # that are twice or more as large as the regular intervals. We look at
+ # a window of values surrounding the current interval to determine
+ # what's normal. We assume that at least half the values are normal.
+ # When we sort the values by size, the middle value must be a good
+ # proxy for a normal value.
+ # Any values that are 1.8 times larger than the normal proxy value
+ # will be discarded and replaced by nil.
+ if rr > 1.8 * median_value(rr_intervals, i, 21)
+ clean_rr_intervals << nil
@errors += 1
else
- @rr_intervals << dt
- # Feed the value into the predictor.
- predictor.insert(dt)
+ clean_rr_intervals << rr
end
+
+ timer += rr
end
+
+ # This array holds the cleanedup heart rate variability values.
+ @hrv = []
+ 0.upto(clean_rr_intervals.length - 2) do |i|
+ rr1 = clean_rr_intervals[i]
+ rr2 = clean_rr_intervals[i + 1]
+ if rr1.nil? || rr2.nil?
+ @hrv << nil
+ else
+ @hrv << (rr1 - rr2).abs
+ end
+ end
+
+ # Save the overall duration of the HRV samples.
+ @duration = timer
+ end
+
+ def median_value(ary, index, half_window_size)
+ low_i = index - half_window_size
+ low_i = 0 if low_i < 0
+ high_i = index + half_window_size
+ high_i = ary.length - 1 if high_i > ary.length - 1
+ values = ary[low_i..high_i].delete_if{ |v| v.nil? }.sort
+
+ median = values[values.length / 2]
end
end
diff --git a/lib/postrunner/LinearPredictor.rb b/lib/postrunner/LinearPredictor.rb
index 6a15407..4ff6da5 100644
--- a/lib/postrunner/LinearPredictor.rb
+++ b/lib/postrunner/LinearPredictor.rb
@@ -18,8 +18,8 @@ module PostRunner
# Create a new LinearPredictor object.
# @param n [Fixnum] The number of coefficients the predictor should use.
- def initialize(n, default = nil)
- @values = Array.new(n, default)
+ def initialize(n)
+ @values = []
@size = n
@next = nil
end
@@ -29,10 +29,12 @@ module PostRunner
def insert(value)
@values << value
- if @values.length > @size
+ if @values.length >= @size
@values.shift
- @next = @values.reduce(:+) / @size
end
+
+ @next = @values.reduce(:+) / @values.size
+ $stderr.puts "insert(#{value}) next: #{@next}"
end
# @return [Float] The predicted value of the next sample.