diff options
Diffstat (limited to 'lib/postrunner/HRV_Analyzer.rb')
-rw-r--r-- | lib/postrunner/HRV_Analyzer.rb | 93 |
1 files changed, 57 insertions, 36 deletions
diff --git a/lib/postrunner/HRV_Analyzer.rb b/lib/postrunner/HRV_Analyzer.rb index 664f7c9..c240046 100644 --- a/lib/postrunner/HRV_Analyzer.rb +++ b/lib/postrunner/HRV_Analyzer.rb @@ -19,20 +19,25 @@ module PostRunner # quality is good enough. class HRV_Analyzer - attr_reader :rr_intervals, :timestamps + attr_reader :rr_intervals, :timestamps, :errors + + # Typical values for healthy, adult humans are between 2.94 and 4.32. We + # use a slighly broader interval. + LN_RMSSD_MIN = 2.9 + LN_RMSSD_MAX = 4.4 # Create a new HRV_Analyzer object. - # @param fit_file [Fit4Ruby::Activity] FIT file to analyze. - def initialize(fit_file) - @fit_file = fit_file - collect_rr_intervals + # @param rr_intervals [Array of Float] R-R (or NN) time delta in seconds. + def initialize(rr_intervals) + @errors = 0 + cleanup_rr_intervals(rr_intervals) end # The method can be used to check if we have valid HRV data. The FIT file # must have HRV data and the measurement duration must be at least 30 # seconds. def has_hrv_data? - !@fit_file.hrv.empty? && total_duration > 30.0 + !@rr_intervals.empty? && total_duration > 30.0 end # Return the total duration of all measured intervals in seconds. @@ -40,7 +45,11 @@ module PostRunner @timestamps[-1] end - # Compute the root mean square of successive differences. + # Compute the root mean square of successive differences. According to + # Nunan et. al. 2010 + # (http://www.qeeg.co.uk/HRV/NUNAN-2010-A%20Quantitative%20Systematic%20Review%20of%20Normal%20Values%20for.pdf) + # rMSSD (ms) are expected to be in the rage of 19 to 75 in healthy, adult + # humans. # @param start_time [Float] Determines at what time mark (in seconds) the # computation should start. # @param duration [Float] The duration of the total inteval in seconds to @@ -70,7 +79,9 @@ module PostRunner cnt = 0 @rr_intervals[start_idx..end_idx].each do |i| if i && last_i - sum += (last_i - i) ** 2.0 + # Input values are in seconds, but rmssd is usually computed from + # milisecond values. + sum += ((last_i - i) * 1000) ** 2.0 cnt += 1 end last_i = i @@ -79,27 +90,37 @@ module PostRunner Math.sqrt(sum / cnt) end - # The RMSSD value is not very easy to memorize. Alternatively, we can - # multiply the natural logarithm of RMSSD by -20. This usually results in - # values between 1.0 (for untrained) and 100.0 (for higly trained) - # athletes. Values larger than 100.0 are rare but possible. + # The natural logarithm of rMSSD. # @param start_time [Float] Determines at what time mark (in seconds) the # computation should start. # @param duration [Float] The duration of the total inteval in seconds to # be considered for the computation. This value should be larger # then 30 seconds to produce meaningful values. - def lnrmssdx20(start_time = 0.0, duration = nil) - -20.0 * Math.log(rmssd(start_time, duration)) + def ln_rmssd(start_time = 0.0, duration = nil) + Math.log(rmssd(start_time, duration)) + end + + # The ln_rmssd values are hard to interpret. Since we know the expected + # range we'll transform it into a value in the range 0 - 100. If the HRV + # is measured early in the morning while standing upright and with a + # regular 3s in/3s out breathing pattern the HRV Score is a performance + # indicator. The higher it is, the better the performance condition. + def hrv_score(start_time = 0.0, duration = nil) + ssd = ln_rmssd(start_time, duration) + ssd = LN_RMSSD_MIN if ssd < LN_RMSSD_MIN + ssd = LN_RMSSD_MAX if ssd > LN_RMSSD_MAX + + (ssd - LN_RMSSD_MIN) * (100.0 / (LN_RMSSD_MAX - LN_RMSSD_MIN)) end - # This method is similar to lnrmssdx20 but it tries to search the data for - # the best time period to compute the lnrmssdx20 value from. - def lnrmssdx20_1sigma + # This method tries to find a window of values that all lie within the + # TP84 range and then calls the given block for that range. + def one_sigma(calc_method) # Create a new Array that consists of rr_intervals and timestamps # tuples. set = [] 0.upto(@rr_intervals.length - 1) do |i| - set << [ @rr_intervals[i] ? @rr_intervals[i] : 0.0, @timestamps[i] ] + set << [ @rr_intervals[i] || 0.0, @timestamps[i] ] end percentiles = Percentiles.new(set) @@ -107,29 +128,32 @@ module PostRunner # PT84 (aka +1sigma range. Sort the list by time. not_1sigma = percentiles.not_tp_x(84.13).sort { |e1, e2| e1[1] <=> e2[1] } - # Then find the largest time gap in that list. So all the values in that - # gap are within TP84. - gap_start = gap_end = 0 + # Then find the largest window RR interval list so that all the values + # in that window are within TP84. + window_start = window_end = 0 last = nil not_1sigma.each do |e| if last - if (e[1] - last) > (gap_end - gap_start) - gap_start = last - gap_end = e[1] + if (e[1] - last) > (window_end - window_start) + window_start = last + 1 + window_end = e[1] - 1 end end last = e[1] end - # That gap should be at least 30 seconds long. Otherwise we'll just use + + # That window should be at least 30 seconds long. Otherwise we'll just use # all the values. - return lnrmssdx20 if gap_end - gap_start < 30 + if window_end - window_start < 30 || window_end < window_start + return send(calc_method, 0.0, nil) + end - lnrmssdx20(gap_start, gap_end - gap_start) + send(calc_method, window_start, window_end - window_start) end private - def collect_rr_intervals + def cleanup_rr_intervals(rr_intervals) # The rr_intervals Array stores the beat-to-beat time intervals (R-R). # If one or move beats have been skipped during measurement, a nil value # is inserted. @@ -141,19 +165,15 @@ module PostRunner # Each Fit4Ruby::HRV object has an Array called 'time' that contains up # to 5 R-R interval durations. If less than 5 are present, they are # filled with nil. - raw_rr_intervals = [] - @fit_file.hrv.each do |hrv| - raw_rr_intervals += hrv.time.compact - end - return if raw_rr_intervals.empty? + return if rr_intervals.empty? - window = 20 - intro_mean = raw_rr_intervals[0..4 * window].reduce(:+) / (4 * window) + window = [ rr_intervals.length / 4, 20 ].min + intro_mean = rr_intervals[0..4 * window].reduce(:+) / (4 * window) predictor = LinearPredictor.new(window, intro_mean) # The timer accumulates the interval durations. timer = 0.0 - raw_rr_intervals.each do |dt| + rr_intervals.each do |dt| timer += dt @timestamps << timer @@ -164,6 +184,7 @@ module PostRunner # value for this interval. if (next_dt = predictor.predict) && dt > 1.5 * next_dt @rr_intervals << nil + @errors += 1 else @rr_intervals << dt # Feed the value into the predictor. |