use {Error, Errno, Result}; use std::os::unix::io::RawFd; use libc::{c_void, off_t, size_t}; use libc; use std::marker::PhantomData; use std::mem; use std::ptr::{null, null_mut}; use sys::signal::*; use sys::time::TimeSpec; /// Mode for `aio_fsync`. Controls whether only data or both data and metadata /// are synced. #[repr(i32)] #[derive(Clone, Copy, Debug, PartialEq)] pub enum AioFsyncMode { /// do it like `fsync` O_SYNC = libc::O_SYNC, /// on supported operating systems only, do it like `fdatasync` #[cfg(any(target_os = "openbsd", target_os = "bitrig", target_os = "netbsd", target_os = "macos", target_os = "ios", target_os = "linux"))] O_DSYNC = libc::O_DSYNC } /// When used with `lio_listio`, determines whether a given `aiocb` should be /// used for a read operation, a write operation, or ignored. Has no effect for /// any other aio functions. #[repr(i32)] #[derive(Clone, Copy, Debug, PartialEq)] pub enum LioOpcode { LIO_NOP = libc::LIO_NOP, LIO_WRITE = libc::LIO_WRITE, LIO_READ = libc::LIO_READ } /// Mode for `lio_listio`. #[repr(i32)] #[derive(Clone, Copy, Debug, PartialEq)] pub enum LioMode { /// Requests that `lio_listio` block until all requested operations have /// been completed LIO_WAIT = libc::LIO_WAIT, /// Requests that `lio_listio` return immediately LIO_NOWAIT = libc::LIO_NOWAIT, } /// Return values for `aio_cancel` #[repr(i32)] #[derive(Clone, Copy, Debug, PartialEq)] pub enum AioCancelStat { /// All outstanding requests were canceled AioCanceled = libc::AIO_CANCELED, /// Some requests were not canceled. Their status should be checked with /// `aio_error` AioNotCanceled = libc::AIO_NOTCANCELED, /// All of the requests have already finished AioAllDone = libc::AIO_ALLDONE, } /// The basic structure used by all aio functions. Each `aiocb` represents one /// I/O request. #[repr(C)] pub struct AioCb<'a> { aiocb: libc::aiocb, phantom: PhantomData<&'a mut [u8]> } impl<'a> AioCb<'a> { /// Constructs a new `AioCb` with no associated buffer. /// /// The resulting `AioCb` structure is suitable for use with `aio_fsync`. /// * `fd` File descriptor. Required for all aio functions. /// * `prio` If POSIX Prioritized IO is supported, then the operation will /// be prioritized at the process's priority level minus `prio` /// * `sigev_notify` Determines how you will be notified of event /// completion. pub fn from_fd(fd: RawFd, prio: ::c_int, sigev_notify: SigevNotify) -> AioCb<'a> { let mut a = AioCb::common_init(fd, prio, sigev_notify); a.aio_offset = 0; a.aio_nbytes = 0; a.aio_buf = null_mut(); let aiocb = AioCb { aiocb: a, phantom: PhantomData}; aiocb } /// Constructs a new `AioCb`. /// /// * `fd` File descriptor. Required for all aio functions. /// * `offs` File offset /// * `buf` A memory buffer /// * `prio` If POSIX Prioritized IO is supported, then the operation will /// be prioritized at the process's priority level minus `prio` /// * `sigev_notify` Determines how you will be notified of event /// completion. /// * `opcode` This field is only used for `lio_listio`. It determines /// which operation to use for this individual aiocb pub fn from_mut_slice(fd: RawFd, offs: off_t, buf: &'a mut [u8], prio: ::c_int, sigev_notify: SigevNotify, opcode: LioOpcode) -> AioCb { let mut a = AioCb::common_init(fd, prio, sigev_notify); a.aio_offset = offs; a.aio_nbytes = buf.len() as size_t; a.aio_buf = buf.as_ptr() as *mut c_void; a.aio_lio_opcode = opcode as ::c_int; let aiocb = AioCb { aiocb: a, phantom: PhantomData}; aiocb } /// Like `from_mut_slice`, but works on constant slices rather than /// mutable slices. /// /// This is technically unsafe, but in practice it's fine /// to use with any aio functions except `aio_read` and `lio_listio` (with /// `opcode` set to `LIO_READ`). This method is useful when writing a const /// buffer with `aio_write`, since from_mut_slice can't work with const /// buffers. // Note: another solution to the problem of writing const buffers would be // to genericize AioCb for both &mut [u8] and &[u8] buffers. aio_read could // take the former and aio_write could take the latter. However, then // lio_listio wouldn't work, because that function needs a slice of AioCb, // and they must all be the same type. We're basically stuck with using an // unsafe function, since aio (as designed in C) is an unsafe API. pub unsafe fn from_slice(fd: RawFd, offs: off_t, buf: &'a [u8], prio: ::c_int, sigev_notify: SigevNotify, opcode: LioOpcode) -> AioCb { let mut a = AioCb::common_init(fd, prio, sigev_notify); a.aio_offset = offs; a.aio_nbytes = buf.len() as size_t; a.aio_buf = buf.as_ptr() as *mut c_void; a.aio_lio_opcode = opcode as ::c_int; let aiocb = AioCb { aiocb: a, phantom: PhantomData}; aiocb } fn common_init(fd: RawFd, prio: ::c_int, sigev_notify: SigevNotify) -> libc::aiocb { // Use mem::zeroed instead of explicitly zeroing each field, because the // number and name of reserved fields is OS-dependent. On some OSes, // some reserved fields are used the kernel for state, and must be // explicitly zeroed when allocated. let mut a = unsafe { mem::zeroed::()}; a.aio_fildes = fd; a.aio_reqprio = prio; a.aio_sigevent = SigEvent::new(sigev_notify).sigevent(); a } /// Update the notification settings for an existing `aiocb` pub fn set_sigev_notify(&mut self, sigev_notify: SigevNotify) { self.aiocb.aio_sigevent = SigEvent::new(sigev_notify).sigevent(); } } /// Cancels outstanding AIO requests. If `aiocb` is `None`, then all requests /// for `fd` will be cancelled. Otherwise, only the given `AioCb` will be /// cancelled. pub fn aio_cancel(fd: RawFd, aiocb: Option<&mut AioCb>) -> Result { let p: *mut libc::aiocb = match aiocb { None => null_mut(), Some(x) => &mut x.aiocb }; match unsafe { libc::aio_cancel(fd, p) } { libc::AIO_CANCELED => Ok(AioCancelStat::AioCanceled), libc::AIO_NOTCANCELED => Ok(AioCancelStat::AioNotCanceled), libc::AIO_ALLDONE => Ok(AioCancelStat::AioAllDone), -1 => Err(Error::last()), _ => panic!("unknown aio_cancel return value") } } /// Retrieve error status of an asynchronous operation. If the request has not /// yet completed, returns `EINPROGRESS`. Otherwise, returns `Ok` or any other /// error. pub fn aio_error(aiocb: &mut AioCb) -> Result<()> { let p: *mut libc::aiocb = &mut aiocb.aiocb; match unsafe { libc::aio_error(p) } { 0 => Ok(()), num if num > 0 => Err(Error::from_errno(Errno::from_i32(num))), -1 => Err(Error::last()), num => panic!("unknown aio_error return value {:?}", num) } } /// An asynchronous version of `fsync`. pub fn aio_fsync(mode: AioFsyncMode, aiocb: &mut AioCb) -> Result<()> { let p: *mut libc::aiocb = &mut aiocb.aiocb; Errno::result(unsafe { libc::aio_fsync(mode as ::c_int, p) }).map(drop) } /// Asynchronously reads from a file descriptor into a buffer pub fn aio_read(aiocb: &mut AioCb) -> Result<()> { let p: *mut libc::aiocb = &mut aiocb.aiocb; Errno::result(unsafe { libc::aio_read(p) }).map(drop) } /// Retrieve return status of an asynchronous operation. Should only be called /// once for each `AioCb`, after `aio_error` indicates that it has completed. /// The result the same as for `read`, `write`, of `fsync`. pub fn aio_return(aiocb: &mut AioCb) -> Result { let p: *mut libc::aiocb = &mut aiocb.aiocb; Errno::result(unsafe { libc::aio_return(p) }) } /// Suspends the calling process until at least one of the specified `AioCb`s /// has completed, a signal is delivered, or the timeout has passed. If /// `timeout` is `None`, `aio_suspend` will block indefinitely. pub fn aio_suspend(list: &[&AioCb], timeout: Option) -> Result<()> { // We must use transmute because Rust doesn't understand that a pointer to a // Struct is the same as a pointer to its first element. let plist = unsafe { mem::transmute::<&[&AioCb], *const [*const libc::aiocb]>(list) }; let p = plist as *const *const libc::aiocb; let timep = match timeout { None => null::(), Some(x) => x.as_ref() as *const libc::timespec }; Errno::result(unsafe { libc::aio_suspend(p, list.len() as i32, timep) }).map(drop) } /// Asynchronously writes from a buffer to a file descriptor pub fn aio_write(aiocb: &mut AioCb) -> Result<()> { let p: *mut libc::aiocb = &mut aiocb.aiocb; Errno::result(unsafe { libc::aio_write(p) }).map(drop) } /// Submits multiple asynchronous I/O requests with a single system call. The /// order in which the requests are carried out is not specified. #[cfg(not(any(target_os = "ios", target_os = "macos")))] pub fn lio_listio(mode: LioMode, list: &[&mut AioCb], sigev_notify: SigevNotify) -> Result<()> { let sigev = SigEvent::new(sigev_notify); let sigevp = &mut sigev.sigevent() as *mut libc::sigevent; // We must use transmute because Rust doesn't understand that a pointer to a // Struct is the same as a pointer to its first element. let plist = unsafe { mem::transmute::<&[&mut AioCb], *const [*mut libc::aiocb]>(list) }; let p = plist as *const *mut libc::aiocb; Errno::result(unsafe { libc::lio_listio(mode as i32, p, list.len() as i32, sigevp) }).map(drop) }