use crate::{Errno, Result}; #[cfg(any(target_os = "android", target_os = "linux"))] pub use self::sched_linux_like::*; #[cfg(any(target_os = "android", target_os = "linux"))] mod sched_linux_like { use crate::errno::Errno; use libc::{self, c_int, c_void}; use std::mem; use std::option::Option; use std::os::unix::io::RawFd; use crate::unistd::Pid; use crate::{Error, Result}; // For some functions taking with a parameter of type CloneFlags, // only a subset of these flags have an effect. libc_bitflags! { pub struct CloneFlags: c_int { CLONE_VM; CLONE_FS; CLONE_FILES; CLONE_SIGHAND; CLONE_PTRACE; CLONE_VFORK; CLONE_PARENT; CLONE_THREAD; CLONE_NEWNS; CLONE_SYSVSEM; CLONE_SETTLS; CLONE_PARENT_SETTID; CLONE_CHILD_CLEARTID; CLONE_DETACHED; CLONE_UNTRACED; CLONE_CHILD_SETTID; CLONE_NEWCGROUP; CLONE_NEWUTS; CLONE_NEWIPC; CLONE_NEWUSER; CLONE_NEWPID; CLONE_NEWNET; CLONE_IO; } } pub type CloneCb<'a> = Box isize + 'a>; /// CpuSet represent a bit-mask of CPUs. /// CpuSets are used by sched_setaffinity and /// sched_getaffinity for example. /// /// This is a wrapper around `libc::cpu_set_t`. #[repr(C)] #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] pub struct CpuSet { cpu_set: libc::cpu_set_t, } impl CpuSet { /// Create a new and empty CpuSet. pub fn new() -> CpuSet { CpuSet { cpu_set: unsafe { mem::zeroed() }, } } /// Test to see if a CPU is in the CpuSet. /// `field` is the CPU id to test pub fn is_set(&self, field: usize) -> Result { if field >= CpuSet::count() { Err(Error::Sys(Errno::EINVAL)) } else { Ok(unsafe { libc::CPU_ISSET(field, &self.cpu_set) }) } } /// Add a CPU to CpuSet. /// `field` is the CPU id to add pub fn set(&mut self, field: usize) -> Result<()> { if field >= CpuSet::count() { Err(Error::Sys(Errno::EINVAL)) } else { unsafe { libc::CPU_SET(field, &mut self.cpu_set); } Ok(()) } } /// Remove a CPU from CpuSet. /// `field` is the CPU id to remove pub fn unset(&mut self, field: usize) -> Result<()> { if field >= CpuSet::count() { Err(Error::Sys(Errno::EINVAL)) } else { unsafe { libc::CPU_CLR(field, &mut self.cpu_set);} Ok(()) } } /// Return the maximum number of CPU in CpuSet pub fn count() -> usize { 8 * mem::size_of::() } } impl Default for CpuSet { fn default() -> Self { Self::new() } } /// `sched_setaffinity` set a thread's CPU affinity mask /// ([`sched_setaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html)) /// /// `pid` is the thread ID to update. /// If pid is zero, then the calling thread is updated. /// /// The `cpuset` argument specifies the set of CPUs on which the thread /// will be eligible to run. /// /// # Example /// /// Binding the current thread to CPU 0 can be done as follows: /// /// ```rust,no_run /// use nix::sched::{CpuSet, sched_setaffinity}; /// use nix::unistd::Pid; /// /// let mut cpu_set = CpuSet::new(); /// cpu_set.set(0); /// sched_setaffinity(Pid::from_raw(0), &cpu_set); /// ``` pub fn sched_setaffinity(pid: Pid, cpuset: &CpuSet) -> Result<()> { let res = unsafe { libc::sched_setaffinity( pid.into(), mem::size_of::() as libc::size_t, &cpuset.cpu_set, ) }; Errno::result(res).map(drop) } /// `sched_getaffinity` get a thread's CPU affinity mask /// ([`sched_getaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_getaffinity.2.html)) /// /// `pid` is the thread ID to check. /// If pid is zero, then the calling thread is checked. /// /// Returned `cpuset` is the set of CPUs on which the thread /// is eligible to run. /// /// # Example /// /// Checking if the current thread can run on CPU 0 can be done as follows: /// /// ```rust,no_run /// use nix::sched::sched_getaffinity; /// use nix::unistd::Pid; /// /// let cpu_set = sched_getaffinity(Pid::from_raw(0)).unwrap(); /// if cpu_set.is_set(0).unwrap() { /// println!("Current thread can run on CPU 0"); /// } /// ``` pub fn sched_getaffinity(pid: Pid) -> Result { let mut cpuset = CpuSet::new(); let res = unsafe { libc::sched_getaffinity( pid.into(), mem::size_of::() as libc::size_t, &mut cpuset.cpu_set, ) }; Errno::result(res).and(Ok(cpuset)) } /// `clone` create a child process /// ([`clone(2)`](https://man7.org/linux/man-pages/man2/clone.2.html)) /// /// `stack` is a reference to an array which will hold the stack of the new /// process. Unlike when calling `clone(2)` from C, the provided stack /// address need not be the highest address of the region. Nix will take /// care of that requirement. The user only needs to provide a reference to /// a normally allocated buffer. pub fn clone( mut cb: CloneCb, stack: &mut [u8], flags: CloneFlags, signal: Option, ) -> Result { extern "C" fn callback(data: *mut CloneCb) -> c_int { let cb: &mut CloneCb = unsafe { &mut *data }; (*cb)() as c_int } let res = unsafe { let combined = flags.bits() | signal.unwrap_or(0); let ptr = stack.as_mut_ptr().add(stack.len()); let ptr_aligned = ptr.sub(ptr as usize % 16); libc::clone( mem::transmute( callback as extern "C" fn(*mut Box isize>) -> i32, ), ptr_aligned as *mut c_void, combined, &mut cb as *mut _ as *mut c_void, ) }; Errno::result(res).map(Pid::from_raw) } pub fn unshare(flags: CloneFlags) -> Result<()> { let res = unsafe { libc::unshare(flags.bits()) }; Errno::result(res).map(drop) } pub fn setns(fd: RawFd, nstype: CloneFlags) -> Result<()> { let res = unsafe { libc::setns(fd, nstype.bits()) }; Errno::result(res).map(drop) } } /// Explicitly yield the processor to other threads. /// /// [Further reading](https://pubs.opengroup.org/onlinepubs/9699919799/functions/sched_yield.html) pub fn sched_yield() -> Result<()> { let res = unsafe { libc::sched_yield() }; Errno::result(res).map(drop) }