1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
#[macro_use]
extern crate hlist_macro;
extern crate rlua;
use std::f32;
use rlua::*;
fn examples() -> LuaResult<()> {
// Create a Lua context with Lua::new(). Eventually, this will allow
// further control on the lua std library, and will specifically allow
// limiting Lua to a subset of "safe" functionality.
let lua = Lua::new();
// You can get and set global variables. Notice that the globals table here
// is a permanent reference to _G, and it is mutated behind the scenes as
// lua code is loaded. This API is based heavily around internal mutation
// (just like lua itself).
let globals = lua.globals();
globals.set("string_var", "hello")?;
globals.set("int_var", 42)?;
assert_eq!(globals.get::<_, String>("string_var")?, "hello");
assert_eq!(globals.get::<_, i64>("int_var")?, 42);
// You can load and evaluate lua code. The second parameter here gives the
// chunk a better name when lua error messages are printed.
lua.exec::<()>(
r#"
global = 'foo'..'bar'
"#,
Some("example code"),
)?;
assert_eq!(globals.get::<_, String>("global")?, "foobar");
assert_eq!(lua.eval::<i32>("1 + 1")?, 2);
assert_eq!(lua.eval::<bool>("false == false")?, true);
assert_eq!(lua.eval::<i32>("return 1 + 2")?, 3);
// You can create and manage lua tables
let array_table = lua.create_table();
array_table.set(1, "one")?;
array_table.set(2, "two")?;
array_table.set(3, "three")?;
assert_eq!(array_table.len()?, 3);
let map_table = lua.create_table();
map_table.set("one", 1)?;
map_table.set("two", 2)?;
map_table.set("three", 3)?;
let v: i64 = map_table.get("two")?;
assert_eq!(v, 2);
// You can pass values like LuaTable back into Lua
globals.set("array_table", array_table)?;
globals.set("map_table", map_table)?;
lua.eval::<()>(
r#"
for k, v in pairs(array_table) do
print(k, v)
end
for k, v in pairs(map_table) do
print(k, v)
end
"#,
)?;
// You can load lua functions
let print: LuaFunction = globals.get("print")?;
print.call::<_, ()>("hello from rust")?;
// This API handles variadics using Heterogeneous Lists. This is one way to
// call a function with multiple parameters:
print.call::<_, ()>(
hlist!["hello", "again", "from", "rust"],
)?;
// You can bind rust functions to lua as well
let check_equal = lua.create_function(|lua, args| {
// Functions wrapped in lua receive their arguments packed together as
// LuaMultiValue. The first thing that most wrapped functions will do
// is "unpack" this LuaMultiValue into its parts. Due to lifetime type
// signature limitations, this cannot be done automatically from the
// function signature, but this will be fixed with ATCs. Notice the use
// of the hlist macros again.
let hlist_pat![list1, list2] = lua.unpack::<HList![Vec<String>, Vec<String>]>(args)?;
// This function just checks whether two string lists are equal, and in
// an inefficient way. Results are returned with lua.pack, which takes
// any number of values and turns them back into LuaMultiValue. In this
// way, multiple values can also be returned to Lua. Again, this cannot
// be inferred as part of the function signature due to the same
// lifetime type signature limitations.
lua.pack(list1 == list2)
});
globals.set("check_equal", check_equal)?;
// You can also accept variadic arguments to rust callbacks.
let join = lua.create_function(|lua, args| {
let strings = lua.unpack::<LuaVariadic<String>>(args)?.0;
// (This is quadratic!, it's just an example!)
lua.pack(strings.iter().fold("".to_owned(), |a, b| a + b))
});
globals.set("join", join)?;
assert_eq!(
lua.eval::<bool>(
r#"check_equal({"a", "b", "c"}, {"a", "b", "c"})"#,
)?,
true
);
assert_eq!(
lua.eval::<bool>(
r#"check_equal({"a", "b", "c"}, {"d", "e", "f"})"#,
)?,
false
);
assert_eq!(lua.eval::<String>(r#"join("a", "b", "c")"#)?, "abc");
// You can create userdata with methods and metamethods defined on them.
// Here's a worked example that shows many of the features of this API
// together
#[derive(Copy, Clone)]
struct Vec2(f32, f32);
impl LuaUserDataType for Vec2 {
fn add_methods(methods: &mut LuaUserDataMethods<Self>) {
methods.add_method("magnitude", |lua, vec, _| {
let mag_squared = vec.0 * vec.0 + vec.1 * vec.1;
lua.pack(mag_squared.sqrt())
});
methods.add_meta_function(LuaMetaMethod::Add, |lua, params| {
let hlist_pat![vec1, vec2] = lua.unpack::<HList![Vec2, Vec2]>(params)?;
lua.pack(Vec2(vec1.0 + vec2.0, vec1.1 + vec2.1))
});
}
}
let vec2_constructor = lua.create_function(|lua, args| {
let hlist_pat![x, y] = lua.unpack::<HList![f32, f32]>(args)?;
lua.pack(Vec2(x, y))
});
globals.set("vec2", vec2_constructor)?;
assert!(lua.eval::<f32>("(vec2(1, 2) + vec2(2, 2)):magnitude()")? - 5.0 < f32::EPSILON);
Ok(())
}
fn main() {
examples().unwrap();
}
|