use std::any::{Any, TypeId}; use std::fmt::Write; use std::os::raw::{c_char, c_int, c_void}; use std::panic::{catch_unwind, resume_unwind, AssertUnwindSafe}; use std::sync::Arc; use std::{mem, ptr, slice}; use once_cell::sync::Lazy; use rustc_hash::FxHashMap; use crate::error::{Error, Result}; use crate::ffi; static METATABLE_CACHE: Lazy> = Lazy::new(|| { let mut map = FxHashMap::with_capacity_and_hasher(32, Default::default()); crate::lua::init_metatable_cache(&mut map); map.insert(TypeId::of::(), 0); map.insert(TypeId::of::(), 0); map }); // Checks that Lua has enough free stack space for future stack operations. On failure, this will // panic with an internal error message. #[inline] pub unsafe fn assert_stack(state: *mut ffi::lua_State, amount: c_int) { // TODO: This should only be triggered when there is a logic error in `mlua`. In the future, // when there is a way to be confident about stack safety and test it, this could be enabled // only when `cfg!(debug_assertions)` is true. mlua_assert!( ffi::lua_checkstack(state, amount) != 0, "out of stack space" ); } // Checks that Lua has enough free stack space and returns `Error::StackError` on failure. #[inline] pub unsafe fn check_stack(state: *mut ffi::lua_State, amount: c_int) -> Result<()> { if ffi::lua_checkstack(state, amount) == 0 { Err(Error::StackError) } else { Ok(()) } } pub struct StackGuard { state: *mut ffi::lua_State, top: c_int, extra: c_int, } impl StackGuard { // Creates a StackGuard instance with record of the stack size, and on Drop will check the // stack size and drop any extra elements. If the stack size at the end is *smaller* than at // the beginning, this is considered a fatal logic error and will result in a panic. #[inline] pub unsafe fn new(state: *mut ffi::lua_State) -> StackGuard { StackGuard { state, top: ffi::lua_gettop(state), extra: 0, } } // Similar to `new`, but checks and keeps `extra` elements from top of the stack on Drop. #[inline] pub unsafe fn new_extra(state: *mut ffi::lua_State, extra: c_int) -> StackGuard { StackGuard { state, top: ffi::lua_gettop(state), extra, } } } impl Drop for StackGuard { fn drop(&mut self) { unsafe { let top = ffi::lua_gettop(self.state); if top < self.top + self.extra { mlua_panic!("{} too many stack values popped", self.top - top) } if top > self.top + self.extra { if self.extra > 0 { ffi::lua_rotate(self.state, self.top + 1, self.extra); } ffi::lua_settop(self.state, self.top + self.extra); } } } } // Call a function that calls into the Lua API and may trigger a Lua error (longjmp) in a safe way. // Wraps the inner function in a call to `lua_pcall`, so the inner function only has access to a // limited lua stack. `nargs` is the same as the the parameter to `lua_pcall`, and `nresults` is // always `LUA_MULTRET`. Provided function must *not* panic, and since it will generally be lonjmping, // should not contain any values that implements Drop. // Internally uses 2 extra stack spaces, and does not call checkstack. pub unsafe fn protect_lua_call( state: *mut ffi::lua_State, nargs: c_int, f: unsafe extern "C" fn(*mut ffi::lua_State) -> c_int, ) -> Result<()> { let stack_start = ffi::lua_gettop(state) - nargs; ffi::lua_pushcfunction(state, error_traceback); ffi::lua_pushcfunction(state, f); if nargs > 0 { ffi::lua_rotate(state, stack_start + 1, 2); } let ret = ffi::lua_pcall(state, nargs, ffi::LUA_MULTRET, stack_start + 1); ffi::lua_remove(state, stack_start + 1); if ret == ffi::LUA_OK { Ok(()) } else { Err(pop_error(state, ret)) } } // Call a function that calls into the Lua API and may trigger a Lua error (longjmp) in a safe way. // Wraps the inner function in a call to `lua_pcall`, so the inner function only has access to a // limited lua stack. `nargs` and `nresults` are similar to the parameters of `lua_pcall`, but the // given function return type is not the return value count, instead the inner function return // values are assumed to match the `nresults` param. Provided function must *not* panic, and since it // will generally be lonjmping, should not contain any values that implements Drop. // Internally uses 3 extra stack spaces, and does not call checkstack. pub unsafe fn protect_lua_closure( state: *mut ffi::lua_State, nargs: c_int, nresults: c_int, f: F, ) -> Result where F: Fn(*mut ffi::lua_State) -> R, R: Copy, { union URes { uninit: (), init: R, } struct Params { function: F, result: URes, nresults: c_int, } unsafe extern "C" fn do_call(state: *mut ffi::lua_State) -> c_int where R: Copy, F: Fn(*mut ffi::lua_State) -> R, { let params = ffi::lua_touserdata(state, -1) as *mut Params; ffi::lua_pop(state, 1); (*params).result.init = ((*params).function)(state); if (*params).nresults == ffi::LUA_MULTRET { ffi::lua_gettop(state) } else { (*params).nresults } } let stack_start = ffi::lua_gettop(state) - nargs; ffi::lua_pushcfunction(state, error_traceback); ffi::lua_pushcfunction(state, do_call::); if nargs > 0 { ffi::lua_rotate(state, stack_start + 1, 2); } let mut params = Params { function: f, result: URes { uninit: () }, nresults, }; ffi::lua_pushlightuserdata(state, &mut params as *mut Params as *mut c_void); let ret = ffi::lua_pcall(state, nargs + 1, nresults, stack_start + 1); ffi::lua_remove(state, stack_start + 1); if ret == ffi::LUA_OK { // `LUA_OK` is only returned when the `do_call` function has completed successfully, so // `params.result` is definitely initialized. Ok(params.result.init) } else { Err(pop_error(state, ret)) } } // Pops an error off of the stack and returns it. The specific behavior depends on the type of the // error at the top of the stack: // 1) If the error is actually a WrappedPanic, this will continue the panic. // 2) If the error on the top of the stack is actually a WrappedError, just returns it. // 3) Otherwise, interprets the error as the appropriate lua error. // Uses 2 stack spaces, does not call checkstack. pub unsafe fn pop_error(state: *mut ffi::lua_State, err_code: c_int) -> Error { mlua_debug_assert!( err_code != ffi::LUA_OK && err_code != ffi::LUA_YIELD, "pop_error called with non-error return code" ); match get_gc_userdata::(state, -1).as_mut() { Some(WrappedFailure::Error(err)) => { ffi::lua_pop(state, 1); err.clone() } Some(WrappedFailure::Panic(panic)) => { if let Some(p) = panic.take() { resume_unwind(p); } else { Error::PreviouslyResumedPanic } } _ => { let err_string = to_string(state, -1); ffi::lua_pop(state, 1); match err_code { ffi::LUA_ERRRUN => Error::RuntimeError(err_string), ffi::LUA_ERRSYNTAX => { Error::SyntaxError { // This seems terrible, but as far as I can tell, this is exactly what the // stock Lua REPL does. incomplete_input: err_string.ends_with("") || err_string.ends_with("''"), message: err_string, } } ffi::LUA_ERRERR => { // This error is raised when the error handler raises an error too many times // recursively, and continuing to trigger the error handler would cause a stack // overflow. It is not very useful to differentiate between this and "ordinary" // runtime errors, so we handle them the same way. Error::RuntimeError(err_string) } ffi::LUA_ERRMEM => Error::MemoryError(err_string), #[cfg(any(feature = "lua53", feature = "lua52"))] ffi::LUA_ERRGCMM => Error::GarbageCollectorError(err_string), _ => mlua_panic!("unrecognized lua error code"), } } } } // Uses 3 stack spaces, does not call checkstack. #[inline] pub unsafe fn push_string + ?Sized>( state: *mut ffi::lua_State, s: &S, ) -> Result<()> { let s = s.as_ref(); protect_lua!(state, 0, 1, |state| { ffi::lua_pushlstring(state, s.as_ptr() as *const c_char, s.len()); }) } // Uses 3 stack spaces, does not call checkstack. #[inline] pub unsafe fn push_table(state: *mut ffi::lua_State, narr: c_int, nrec: c_int) -> Result<()> { protect_lua!(state, 0, 1, |state| ffi::lua_createtable(state, narr, nrec)) } // Uses 4 stack spaces, does not call checkstack. pub unsafe fn rawset_field(state: *mut ffi::lua_State, table: c_int, field: &S) -> Result<()> where S: AsRef<[u8]> + ?Sized, { let field = field.as_ref(); ffi::lua_pushvalue(state, table); protect_lua!(state, 2, 0, |state| { ffi::lua_pushlstring(state, field.as_ptr() as *const c_char, field.len()); ffi::lua_rotate(state, -3, 2); ffi::lua_rawset(state, -3); }) } // Internally uses 3 stack spaces, does not call checkstack. #[inline] pub unsafe fn push_userdata(state: *mut ffi::lua_State, t: T) -> Result<()> { let ud = protect_lua!(state, 0, 1, |state| { ffi::lua_newuserdata(state, mem::size_of::()) as *mut T })?; ptr::write(ud, t); Ok(()) } // Internally uses 3 stack spaces, does not call checkstack. #[cfg(feature = "lua54")] #[inline] pub unsafe fn push_userdata_uv(state: *mut ffi::lua_State, t: T, nuvalue: c_int) -> Result<()> { let ud = protect_lua!(state, 0, 1, |state| { ffi::lua_newuserdatauv(state, mem::size_of::(), nuvalue) as *mut T })?; ptr::write(ud, t); Ok(()) } #[inline] pub unsafe fn get_userdata(state: *mut ffi::lua_State, index: c_int) -> *mut T { let ud = ffi::lua_touserdata(state, index) as *mut T; mlua_debug_assert!(!ud.is_null(), "userdata pointer is null"); ud } // Pops the userdata off of the top of the stack and returns it to rust, invalidating the lua // userdata and gives it the special "destructed" userdata metatable. Userdata must not have been // previously invalidated, and this method does not check for this. // Uses 1 extra stack space and does not call checkstack. pub unsafe fn take_userdata(state: *mut ffi::lua_State) -> T { // We set the metatable of userdata on __gc to a special table with no __gc method and with // metamethods that trigger an error on access. We do this so that it will not be double // dropped, and also so that it cannot be used or identified as any particular userdata type // after the first call to __gc. get_destructed_userdata_metatable(state); ffi::lua_setmetatable(state, -2); let ud = get_userdata(state, -1); ffi::lua_pop(state, 1); ptr::read(ud) } // Pushes the userdata and attaches a metatable with __gc method. // Internally uses 3 stack spaces, does not call checkstack. pub unsafe fn push_gc_userdata(state: *mut ffi::lua_State, t: T) -> Result<()> { push_userdata(state, t)?; get_gc_metatable::(state); ffi::lua_setmetatable(state, -2); Ok(()) } // Uses 2 stack spaces, does not call checkstack pub unsafe fn get_gc_userdata(state: *mut ffi::lua_State, index: c_int) -> *mut T { let ud = ffi::lua_touserdata(state, index) as *mut T; if ud.is_null() || ffi::lua_getmetatable(state, index) == 0 { return ptr::null_mut(); } get_gc_metatable::(state); let res = ffi::lua_rawequal(state, -1, -2); ffi::lua_pop(state, 2); if res == 0 { return ptr::null_mut(); } ud } // Populates the given table with the appropriate members to be a userdata metatable for the given type. // This function takes the given table at the `metatable` index, and adds an appropriate `__gc` member // to it for the given type and a `__metatable` entry to protect the table from script access. // The function also, if given a `field_getters` or `methods` tables, will create an `__index` metamethod // (capturing previous one) to lookup in `field_getters` first, then `methods` and falling back to the // captured `__index` if no matches found. // The same is also applicable for `__newindex` metamethod and `field_setters` table. // Internally uses 9 stack spaces and does not call checkstack. pub unsafe fn init_userdata_metatable( state: *mut ffi::lua_State, metatable: c_int, field_getters: Option, field_setters: Option, methods: Option, ) -> Result<()> { // Wrapper to lookup in `field_getters` first, then `methods`, ending original `__index`. // Used only if `field_getters` or `methods` set. unsafe extern "C" fn meta_index_impl(state: *mut ffi::lua_State) -> c_int { // stack: self, key ffi::luaL_checkstack(state, 2, ptr::null()); // lookup in `field_getters` table if ffi::lua_isnil(state, ffi::lua_upvalueindex(2)) == 0 { ffi::lua_pushvalue(state, -1); // `key` arg if ffi::lua_rawget(state, ffi::lua_upvalueindex(2)) != ffi::LUA_TNIL { ffi::lua_insert(state, -3); // move function ffi::lua_pop(state, 1); // remove `key` ffi::lua_call(state, 1, 1); return 1; } ffi::lua_pop(state, 1); // pop the nil value } // lookup in `methods` table if ffi::lua_isnil(state, ffi::lua_upvalueindex(3)) == 0 { ffi::lua_pushvalue(state, -1); // `key` arg if ffi::lua_rawget(state, ffi::lua_upvalueindex(3)) != ffi::LUA_TNIL { ffi::lua_insert(state, -3); ffi::lua_pop(state, 2); return 1; } ffi::lua_pop(state, 1); // pop the nil value } // lookup in `__index` ffi::lua_pushvalue(state, ffi::lua_upvalueindex(1)); match ffi::lua_type(state, -1) { ffi::LUA_TNIL => { ffi::lua_pop(state, 1); // pop the nil value let field = ffi::lua_tostring(state, -1); ffi::luaL_error(state, cstr!("attempt to get an unknown field '%s'"), field); } ffi::LUA_TTABLE => { ffi::lua_insert(state, -2); ffi::lua_gettable(state, -2); } ffi::LUA_TFUNCTION => { ffi::lua_insert(state, -3); ffi::lua_call(state, 2, 1); } _ => unreachable!(), } 1 } // Similar to `meta_index_impl`, checks `field_setters` table first, then `__newindex` metamethod. // Used only if `field_setters` set. unsafe extern "C" fn meta_newindex_impl(state: *mut ffi::lua_State) -> c_int { // stack: self, key, value ffi::luaL_checkstack(state, 2, ptr::null()); // lookup in `field_setters` table ffi::lua_pushvalue(state, -2); // `key` arg if ffi::lua_rawget(state, ffi::lua_upvalueindex(2)) != ffi::LUA_TNIL { ffi::lua_remove(state, -3); // remove `key` ffi::lua_insert(state, -3); // move function ffi::lua_call(state, 2, 0); return 0; } ffi::lua_pop(state, 1); // pop the nil value // lookup in `__newindex` ffi::lua_pushvalue(state, ffi::lua_upvalueindex(1)); match ffi::lua_type(state, -1) { ffi::LUA_TNIL => { ffi::lua_pop(state, 1); // pop the nil value let field = ffi::lua_tostring(state, -2); ffi::luaL_error(state, cstr!("attempt to set an unknown field '%s'"), field); } ffi::LUA_TTABLE => { ffi::lua_insert(state, -3); ffi::lua_settable(state, -3); } ffi::LUA_TFUNCTION => { ffi::lua_insert(state, -4); ffi::lua_call(state, 3, 0); } _ => unreachable!(), } 0 } ffi::lua_pushvalue(state, metatable); if field_getters.is_some() || methods.is_some() { push_string(state, "__index")?; let index_type = ffi::lua_rawget(state, -2); match index_type { ffi::LUA_TNIL | ffi::LUA_TTABLE | ffi::LUA_TFUNCTION => { for &idx in &[field_getters, methods] { if let Some(idx) = idx { ffi::lua_pushvalue(state, idx); } else { ffi::lua_pushnil(state); } } protect_lua!(state, 3, 1, fn(state) { ffi::lua_pushcclosure(state, meta_index_impl, 3); })?; } _ => mlua_panic!("improper __index type {}", index_type), } rawset_field(state, -2, "__index")?; } if let Some(field_setters) = field_setters { push_string(state, "__newindex")?; let newindex_type = ffi::lua_rawget(state, -2); match newindex_type { ffi::LUA_TNIL | ffi::LUA_TTABLE | ffi::LUA_TFUNCTION => { ffi::lua_pushvalue(state, field_setters); protect_lua!(state, 2, 1, fn(state) { ffi::lua_pushcclosure(state, meta_newindex_impl, 2); })?; } _ => mlua_panic!("improper __newindex type {}", newindex_type), } rawset_field(state, -2, "__newindex")?; } ffi::lua_pushcfunction(state, userdata_destructor::); rawset_field(state, -2, "__gc")?; ffi::lua_pushboolean(state, 0); rawset_field(state, -2, "__metatable")?; ffi::lua_pop(state, 1); Ok(()) } pub unsafe extern "C" fn userdata_destructor(state: *mut ffi::lua_State) -> c_int { // It's probably NOT a good idea to catch Rust panics in finalizer // Lua 5.4 ignores it, other versions generates `LUA_ERRGCMM` without calling message handler take_userdata::(state); 0 } // In the context of a lua callback, this will call the given function and if the given function // returns an error, *or if the given function panics*, this will result in a call to `lua_error` (a // longjmp). The error or panic is wrapped in such a way that when calling `pop_error` back on // the Rust side, it will resume the panic. // // This function assumes the structure of the stack at the beginning of a callback, that the only // elements on the stack are the arguments to the callback. // // This function uses some of the bottom of the stack for error handling, the given callback will be // given the number of arguments available as an argument, and should return the number of returns // as normal, but cannot assume that the arguments available start at 0. pub unsafe fn callback_error(state: *mut ffi::lua_State, f: F) -> R where F: FnOnce(c_int) -> Result, { let nargs = ffi::lua_gettop(state); // We need 2 extra stack spaces to store preallocated memory and error/panic metatable let extra_stack = if nargs < 2 { 2 - nargs } else { 1 }; ffi::luaL_checkstack( state, extra_stack, cstr!("not enough stack space for callback error handling"), ); // We cannot shadow Rust errors with Lua ones, we pre-allocate enough memory // to store a wrapped error or panic *before* we proceed. let ud = ffi::lua_newuserdata(state, mem::size_of::()); ffi::lua_rotate(state, 1, 1); match catch_unwind(AssertUnwindSafe(|| f(nargs))) { Ok(Ok(r)) => { ffi::lua_remove(state, 1); r } Ok(Err(err)) => { ffi::lua_settop(state, 1); let wrapped_error = ud as *mut WrappedFailure; // Build `CallbackError` with traceback let traceback = if ffi::lua_checkstack(state, ffi::LUA_TRACEBACK_STACK) != 0 { ffi::luaL_traceback(state, state, ptr::null(), 0); let traceback = to_string(state, -1); ffi::lua_pop(state, 1); traceback } else { "".to_string() }; let cause = Arc::new(err); ptr::write( wrapped_error, WrappedFailure::Error(Error::CallbackError { traceback, cause }), ); get_gc_metatable::(state); ffi::lua_setmetatable(state, -2); ffi::lua_error(state) } Err(p) => { ffi::lua_settop(state, 1); ptr::write(ud as *mut WrappedFailure, WrappedFailure::Panic(Some(p))); get_gc_metatable::(state); ffi::lua_setmetatable(state, -2); ffi::lua_error(state) } } } pub unsafe extern "C" fn error_traceback(state: *mut ffi::lua_State) -> c_int { if ffi::lua_checkstack(state, 2) == 0 { // If we don't have enough stack space to even check the error type, do // nothing so we don't risk shadowing a rust panic. return 1; } if get_gc_userdata::(state, -1).is_null() { let s = ffi::luaL_tolstring(state, -1, ptr::null_mut()); if ffi::lua_checkstack(state, ffi::LUA_TRACEBACK_STACK) != 0 { ffi::luaL_traceback(state, state, s, 1); ffi::lua_remove(state, -2); } } 1 } // A variant of `pcall` that does not allow Lua to catch Rust panics from `callback_error`. pub unsafe extern "C" fn safe_pcall(state: *mut ffi::lua_State) -> c_int { ffi::luaL_checkstack(state, 2, ptr::null()); let top = ffi::lua_gettop(state); if top == 0 { ffi::lua_pushstring(state, cstr!("not enough arguments to pcall")); ffi::lua_error(state); } if ffi::lua_pcall(state, top - 1, ffi::LUA_MULTRET, 0) == ffi::LUA_OK { ffi::lua_pushboolean(state, 1); ffi::lua_insert(state, 1); ffi::lua_gettop(state) } else { if let Some(WrappedFailure::Panic(_)) = get_gc_userdata::(state, -1).as_ref() { ffi::lua_error(state); } ffi::lua_pushboolean(state, 0); ffi::lua_insert(state, -2); 2 } } // A variant of `xpcall` that does not allow Lua to catch Rust panics from `callback_error`. pub unsafe extern "C" fn safe_xpcall(state: *mut ffi::lua_State) -> c_int { unsafe extern "C" fn xpcall_msgh(state: *mut ffi::lua_State) -> c_int { ffi::luaL_checkstack(state, 2, ptr::null()); if let Some(WrappedFailure::Panic(_)) = get_gc_userdata::(state, -1).as_ref() { 1 } else { ffi::lua_pushvalue(state, ffi::lua_upvalueindex(1)); ffi::lua_insert(state, 1); ffi::lua_call(state, ffi::lua_gettop(state) - 1, ffi::LUA_MULTRET); ffi::lua_gettop(state) } } ffi::luaL_checkstack(state, 2, ptr::null()); let top = ffi::lua_gettop(state); if top < 2 { ffi::lua_pushstring(state, cstr!("not enough arguments to xpcall")); ffi::lua_error(state); } ffi::lua_pushvalue(state, 2); ffi::lua_pushcclosure(state, xpcall_msgh, 1); ffi::lua_copy(state, 1, 2); ffi::lua_replace(state, 1); if ffi::lua_pcall(state, ffi::lua_gettop(state) - 2, ffi::LUA_MULTRET, 1) == ffi::LUA_OK { ffi::lua_pushboolean(state, 1); ffi::lua_insert(state, 2); ffi::lua_gettop(state) - 1 } else { if let Some(WrappedFailure::Panic(_)) = get_gc_userdata::(state, -1).as_ref() { ffi::lua_error(state); } ffi::lua_pushboolean(state, 0); ffi::lua_insert(state, -2); 2 } } // Returns Lua main thread for Lua >= 5.2 or checks that the passed thread is main for Lua 5.1. // Does not call lua_checkstack, uses 1 stack space. pub unsafe fn get_main_state(state: *mut ffi::lua_State) -> Option<*mut ffi::lua_State> { #[cfg(any(feature = "lua54", feature = "lua53", feature = "lua52"))] { ffi::lua_rawgeti(state, ffi::LUA_REGISTRYINDEX, ffi::LUA_RIDX_MAINTHREAD); let main_state = ffi::lua_tothread(state, -1); ffi::lua_pop(state, 1); Some(main_state) } #[cfg(any(feature = "lua51", feature = "luajit"))] { // Check the current state first let is_main_state = ffi::lua_pushthread(state) == 1; ffi::lua_pop(state, 1); if is_main_state { Some(state) } else { None } } } // Initialize the internal (with __gc method) metatable for a type T. // Uses 6 stack spaces and calls checkstack. pub unsafe fn init_gc_metatable( state: *mut ffi::lua_State, customize_fn: Option Result<()>>, ) -> Result<()> { check_stack(state, 6)?; push_table(state, 0, 3)?; ffi::lua_pushcfunction(state, userdata_destructor::); rawset_field(state, -2, "__gc")?; ffi::lua_pushboolean(state, 0); rawset_field(state, -2, "__metatable")?; if let Some(f) = customize_fn { f(state)?; } let type_id = TypeId::of::(); let ref_addr = &METATABLE_CACHE[&type_id] as *const u8; protect_lua!(state, 1, 0, |state| { ffi::lua_rawsetp(state, ffi::LUA_REGISTRYINDEX, ref_addr as *const c_void); })?; Ok(()) } pub unsafe fn get_gc_metatable(state: *mut ffi::lua_State) { let type_id = TypeId::of::(); let ref_addr = mlua_expect!(METATABLE_CACHE.get(&type_id), "gc metatable does not exist") as *const u8; ffi::lua_rawgetp(state, ffi::LUA_REGISTRYINDEX, ref_addr as *const c_void); } // Initialize the error, panic, and destructed userdata metatables. pub unsafe fn init_error_registry(state: *mut ffi::lua_State) -> Result<()> { check_stack(state, 7)?; // Create error and panic metatables unsafe extern "C" fn error_tostring(state: *mut ffi::lua_State) -> c_int { callback_error(state, |_| { check_stack(state, 3)?; let err_buf = match get_gc_userdata::(state, -1).as_ref() { Some(WrappedFailure::Error(error)) => { let err_buf_key = &ERROR_PRINT_BUFFER_KEY as *const u8 as *const c_void; ffi::lua_rawgetp(state, ffi::LUA_REGISTRYINDEX, err_buf_key); let err_buf = ffi::lua_touserdata(state, -1) as *mut String; ffi::lua_pop(state, 2); (*err_buf).clear(); // Depending on how the API is used and what error types scripts are given, it may // be possible to make this consume arbitrary amounts of memory (for example, some // kind of recursive error structure?) let _ = write!(&mut (*err_buf), "{}", error); Ok(err_buf) } Some(WrappedFailure::Panic(Some(ref panic))) => { let err_buf_key = &ERROR_PRINT_BUFFER_KEY as *const u8 as *const c_void; ffi::lua_rawgetp(state, ffi::LUA_REGISTRYINDEX, err_buf_key); let err_buf = ffi::lua_touserdata(state, -1) as *mut String; (*err_buf).clear(); ffi::lua_pop(state, 2); if let Some(msg) = panic.downcast_ref::<&str>() { let _ = write!(&mut (*err_buf), "{}", msg); } else if let Some(msg) = panic.downcast_ref::() { let _ = write!(&mut (*err_buf), "{}", msg); } else { let _ = write!(&mut (*err_buf), ""); }; Ok(err_buf) } Some(WrappedFailure::Panic(None)) => Err(Error::PreviouslyResumedPanic), _ => { // I'm not sure whether this is possible to trigger without bugs in mlua? Err(Error::UserDataTypeMismatch) } }?; push_string(state, &*err_buf)?; (*err_buf).clear(); Ok(1) }) } init_gc_metatable::( state, Some(|state| { ffi::lua_pushcfunction(state, error_tostring); rawset_field(state, -2, "__tostring") }), )?; // Create destructed userdata metatable unsafe extern "C" fn destructed_error(state: *mut ffi::lua_State) -> c_int { callback_error(state, |_| Err(Error::CallbackDestructed)) } push_table(state, 0, 26)?; ffi::lua_pushcfunction(state, destructed_error); for &method in &[ "__add", "__sub", "__mul", "__div", "__mod", "__pow", "__unm", #[cfg(any(feature = "lua54", feature = "lua53"))] "__idiv", #[cfg(any(feature = "lua54", feature = "lua53"))] "__band", #[cfg(any(feature = "lua54", feature = "lua53"))] "__bor", #[cfg(any(feature = "lua54", feature = "lua53"))] "__bxor", #[cfg(any(feature = "lua54", feature = "lua53"))] "__bnot", #[cfg(any(feature = "lua54", feature = "lua53"))] "__shl", #[cfg(any(feature = "lua54", feature = "lua53"))] "__shr", "__concat", "__len", "__eq", "__lt", "__le", "__index", "__newindex", "__call", "__tostring", #[cfg(any( feature = "lua54", feature = "lua53", feature = "lua52", feature = "luajit52" ))] "__pairs", #[cfg(any(feature = "lua53", feature = "lua52", feature = "luajit52"))] "__ipairs", #[cfg(feature = "lua54")] "__close", ] { ffi::lua_pushvalue(state, -1); rawset_field(state, -3, method)?; } ffi::lua_pop(state, 1); protect_lua!(state, 1, 0, fn(state) { let destructed_mt_key = &DESTRUCTED_USERDATA_METATABLE as *const u8 as *const c_void; ffi::lua_rawsetp(state, ffi::LUA_REGISTRYINDEX, destructed_mt_key); })?; // Create error print buffer init_gc_metatable::(state, None)?; push_gc_userdata(state, String::new())?; protect_lua!(state, 1, 0, fn(state) { let err_buf_key = &ERROR_PRINT_BUFFER_KEY as *const u8 as *const c_void; ffi::lua_rawsetp(state, ffi::LUA_REGISTRYINDEX, err_buf_key); })?; Ok(()) } pub(crate) enum WrappedFailure { Error(Error), Panic(Option>), } // Converts the given lua value to a string in a reasonable format without causing a Lua error or // panicking. pub(crate) unsafe fn to_string(state: *mut ffi::lua_State, index: c_int) -> String { match ffi::lua_type(state, index) { ffi::LUA_TNONE => "".to_string(), ffi::LUA_TNIL => "".to_string(), ffi::LUA_TBOOLEAN => (ffi::lua_toboolean(state, index) != 1).to_string(), ffi::LUA_TLIGHTUSERDATA => { format!("", ffi::lua_topointer(state, index)) } ffi::LUA_TNUMBER => { let mut isint = 0; let i = ffi::lua_tointegerx(state, -1, &mut isint); if isint == 0 { ffi::lua_tonumber(state, index).to_string() } else { i.to_string() } } ffi::LUA_TSTRING => { let mut size = 0; // This will not trigger a 'm' error, because the reference is guaranteed to be of // string type let data = ffi::lua_tolstring(state, index, &mut size); String::from_utf8_lossy(slice::from_raw_parts(data as *const u8, size)).into_owned() } ffi::LUA_TTABLE => format!("", ffi::lua_topointer(state, index)), ffi::LUA_TFUNCTION => format!("", ffi::lua_topointer(state, index)), ffi::LUA_TUSERDATA => format!("", ffi::lua_topointer(state, index)), ffi::LUA_TTHREAD => format!("", ffi::lua_topointer(state, index)), _ => "".to_string(), } } pub(crate) unsafe fn get_destructed_userdata_metatable(state: *mut ffi::lua_State) { let key = &DESTRUCTED_USERDATA_METATABLE as *const u8 as *const c_void; ffi::lua_rawgetp(state, ffi::LUA_REGISTRYINDEX, key); } static DESTRUCTED_USERDATA_METATABLE: u8 = 0; static ERROR_PRINT_BUFFER_KEY: u8 = 0;