diff options
author | Alex Orlenko <zxteam@protonmail.com> | 2019-08-08 18:54:08 +0100 |
---|---|---|
committer | Alex Orlenko <zxteam@protonmail.com> | 2019-08-08 18:54:08 +0100 |
commit | b1aa8f8a80857d4f83c7f6dea31bf9234d24cf0a (patch) | |
tree | 2fe7811f82ad4c448a6661f41c937a51a6160f00 /lua/lopcodes.h | |
parent | da3d4c49988bddc75fe7944c676af8e3fa44bcfc (diff) | |
download | mlua-b1aa8f8a80857d4f83c7f6dea31bf9234d24cf0a.zip |
Remove builtin lua
Diffstat (limited to 'lua/lopcodes.h')
-rw-r--r-- | lua/lopcodes.h | 297 |
1 files changed, 0 insertions, 297 deletions
diff --git a/lua/lopcodes.h b/lua/lopcodes.h deleted file mode 100644 index 6feaa1c..0000000 --- a/lua/lopcodes.h +++ /dev/null @@ -1,297 +0,0 @@ -/* -** $Id: lopcodes.h,v 1.149.1.1 2017/04/19 17:20:42 roberto Exp $ -** Opcodes for Lua virtual machine -** See Copyright Notice in lua.h -*/ - -#ifndef lopcodes_h -#define lopcodes_h - -#include "llimits.h" - - -/*=========================================================================== - We assume that instructions are unsigned numbers. - All instructions have an opcode in the first 6 bits. - Instructions can have the following fields: - 'A' : 8 bits - 'B' : 9 bits - 'C' : 9 bits - 'Ax' : 26 bits ('A', 'B', and 'C' together) - 'Bx' : 18 bits ('B' and 'C' together) - 'sBx' : signed Bx - - A signed argument is represented in excess K; that is, the number - value is the unsigned value minus K. K is exactly the maximum value - for that argument (so that -max is represented by 0, and +max is - represented by 2*max), which is half the maximum for the corresponding - unsigned argument. -===========================================================================*/ - - -enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */ - - -/* -** size and position of opcode arguments. -*/ -#define SIZE_C 9 -#define SIZE_B 9 -#define SIZE_Bx (SIZE_C + SIZE_B) -#define SIZE_A 8 -#define SIZE_Ax (SIZE_C + SIZE_B + SIZE_A) - -#define SIZE_OP 6 - -#define POS_OP 0 -#define POS_A (POS_OP + SIZE_OP) -#define POS_C (POS_A + SIZE_A) -#define POS_B (POS_C + SIZE_C) -#define POS_Bx POS_C -#define POS_Ax POS_A - - -/* -** limits for opcode arguments. -** we use (signed) int to manipulate most arguments, -** so they must fit in LUAI_BITSINT-1 bits (-1 for sign) -*/ -#if SIZE_Bx < LUAI_BITSINT-1 -#define MAXARG_Bx ((1<<SIZE_Bx)-1) -#define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */ -#else -#define MAXARG_Bx MAX_INT -#define MAXARG_sBx MAX_INT -#endif - -#if SIZE_Ax < LUAI_BITSINT-1 -#define MAXARG_Ax ((1<<SIZE_Ax)-1) -#else -#define MAXARG_Ax MAX_INT -#endif - - -#define MAXARG_A ((1<<SIZE_A)-1) -#define MAXARG_B ((1<<SIZE_B)-1) -#define MAXARG_C ((1<<SIZE_C)-1) - - -/* creates a mask with 'n' 1 bits at position 'p' */ -#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p)) - -/* creates a mask with 'n' 0 bits at position 'p' */ -#define MASK0(n,p) (~MASK1(n,p)) - -/* -** the following macros help to manipulate instructions -*/ - -#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0))) -#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \ - ((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP)))) - -#define getarg(i,pos,size) (cast(int, ((i)>>pos) & MASK1(size,0))) -#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \ - ((cast(Instruction, v)<<pos)&MASK1(size,pos)))) - -#define GETARG_A(i) getarg(i, POS_A, SIZE_A) -#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A) - -#define GETARG_B(i) getarg(i, POS_B, SIZE_B) -#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B) - -#define GETARG_C(i) getarg(i, POS_C, SIZE_C) -#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C) - -#define GETARG_Bx(i) getarg(i, POS_Bx, SIZE_Bx) -#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx) - -#define GETARG_Ax(i) getarg(i, POS_Ax, SIZE_Ax) -#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax) - -#define GETARG_sBx(i) (GETARG_Bx(i)-MAXARG_sBx) -#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx)) - - -#define CREATE_ABC(o,a,b,c) ((cast(Instruction, o)<<POS_OP) \ - | (cast(Instruction, a)<<POS_A) \ - | (cast(Instruction, b)<<POS_B) \ - | (cast(Instruction, c)<<POS_C)) - -#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \ - | (cast(Instruction, a)<<POS_A) \ - | (cast(Instruction, bc)<<POS_Bx)) - -#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \ - | (cast(Instruction, a)<<POS_Ax)) - - -/* -** Macros to operate RK indices -*/ - -/* this bit 1 means constant (0 means register) */ -#define BITRK (1 << (SIZE_B - 1)) - -/* test whether value is a constant */ -#define ISK(x) ((x) & BITRK) - -/* gets the index of the constant */ -#define INDEXK(r) ((int)(r) & ~BITRK) - -#if !defined(MAXINDEXRK) /* (for debugging only) */ -#define MAXINDEXRK (BITRK - 1) -#endif - -/* code a constant index as a RK value */ -#define RKASK(x) ((x) | BITRK) - - -/* -** invalid register that fits in 8 bits -*/ -#define NO_REG MAXARG_A - - -/* -** R(x) - register -** Kst(x) - constant (in constant table) -** RK(x) == if ISK(x) then Kst(INDEXK(x)) else R(x) -*/ - - -/* -** grep "ORDER OP" if you change these enums -*/ - -typedef enum { -/*---------------------------------------------------------------------- -name args description -------------------------------------------------------------------------*/ -OP_MOVE,/* A B R(A) := R(B) */ -OP_LOADK,/* A Bx R(A) := Kst(Bx) */ -OP_LOADKX,/* A R(A) := Kst(extra arg) */ -OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */ -OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */ -OP_GETUPVAL,/* A B R(A) := UpValue[B] */ - -OP_GETTABUP,/* A B C R(A) := UpValue[B][RK(C)] */ -OP_GETTABLE,/* A B C R(A) := R(B)[RK(C)] */ - -OP_SETTABUP,/* A B C UpValue[A][RK(B)] := RK(C) */ -OP_SETUPVAL,/* A B UpValue[B] := R(A) */ -OP_SETTABLE,/* A B C R(A)[RK(B)] := RK(C) */ - -OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */ - -OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C)] */ - -OP_ADD,/* A B C R(A) := RK(B) + RK(C) */ -OP_SUB,/* A B C R(A) := RK(B) - RK(C) */ -OP_MUL,/* A B C R(A) := RK(B) * RK(C) */ -OP_MOD,/* A B C R(A) := RK(B) % RK(C) */ -OP_POW,/* A B C R(A) := RK(B) ^ RK(C) */ -OP_DIV,/* A B C R(A) := RK(B) / RK(C) */ -OP_IDIV,/* A B C R(A) := RK(B) // RK(C) */ -OP_BAND,/* A B C R(A) := RK(B) & RK(C) */ -OP_BOR,/* A B C R(A) := RK(B) | RK(C) */ -OP_BXOR,/* A B C R(A) := RK(B) ~ RK(C) */ -OP_SHL,/* A B C R(A) := RK(B) << RK(C) */ -OP_SHR,/* A B C R(A) := RK(B) >> RK(C) */ -OP_UNM,/* A B R(A) := -R(B) */ -OP_BNOT,/* A B R(A) := ~R(B) */ -OP_NOT,/* A B R(A) := not R(B) */ -OP_LEN,/* A B R(A) := length of R(B) */ - -OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */ - -OP_JMP,/* A sBx pc+=sBx; if (A) close all upvalues >= R(A - 1) */ -OP_EQ,/* A B C if ((RK(B) == RK(C)) ~= A) then pc++ */ -OP_LT,/* A B C if ((RK(B) < RK(C)) ~= A) then pc++ */ -OP_LE,/* A B C if ((RK(B) <= RK(C)) ~= A) then pc++ */ - -OP_TEST,/* A C if not (R(A) <=> C) then pc++ */ -OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */ - -OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */ -OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */ -OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */ - -OP_FORLOOP,/* A sBx R(A)+=R(A+2); - if R(A) <?= R(A+1) then { pc+=sBx; R(A+3)=R(A) }*/ -OP_FORPREP,/* A sBx R(A)-=R(A+2); pc+=sBx */ - -OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */ -OP_TFORLOOP,/* A sBx if R(A+1) ~= nil then { R(A)=R(A+1); pc += sBx }*/ - -OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */ - -OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */ - -OP_VARARG,/* A B R(A), R(A+1), ..., R(A+B-2) = vararg */ - -OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */ -} OpCode; - - -#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1) - - - -/*=========================================================================== - Notes: - (*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is - set to last_result+1, so next open instruction (OP_CALL, OP_RETURN, - OP_SETLIST) may use 'top'. - - (*) In OP_VARARG, if (B == 0) then use actual number of varargs and - set top (like in OP_CALL with C == 0). - - (*) In OP_RETURN, if (B == 0) then return up to 'top'. - - (*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next - 'instruction' is EXTRAARG(real C). - - (*) In OP_LOADKX, the next 'instruction' is always EXTRAARG. - - (*) For comparisons, A specifies what condition the test should accept - (true or false). - - (*) All 'skips' (pc++) assume that next instruction is a jump. - -===========================================================================*/ - - -/* -** masks for instruction properties. The format is: -** bits 0-1: op mode -** bits 2-3: C arg mode -** bits 4-5: B arg mode -** bit 6: instruction set register A -** bit 7: operator is a test (next instruction must be a jump) -*/ - -enum OpArgMask { - OpArgN, /* argument is not used */ - OpArgU, /* argument is used */ - OpArgR, /* argument is a register or a jump offset */ - OpArgK /* argument is a constant or register/constant */ -}; - -LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES]; - -#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 3)) -#define getBMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 4) & 3)) -#define getCMode(m) (cast(enum OpArgMask, (luaP_opmodes[m] >> 2) & 3)) -#define testAMode(m) (luaP_opmodes[m] & (1 << 6)) -#define testTMode(m) (luaP_opmodes[m] & (1 << 7)) - - -LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */ - - -/* number of list items to accumulate before a SETLIST instruction */ -#define LFIELDS_PER_FLUSH 50 - - -#endif |