summaryrefslogtreecommitdiff
path: root/fi/hardware/supported-peripherals.xml
diff options
context:
space:
mode:
Diffstat (limited to 'fi/hardware/supported-peripherals.xml')
-rw-r--r--fi/hardware/supported-peripherals.xml187
1 files changed, 187 insertions, 0 deletions
diff --git a/fi/hardware/supported-peripherals.xml b/fi/hardware/supported-peripherals.xml
new file mode 100644
index 000000000..f3ab5db99
--- /dev/null
+++ b/fi/hardware/supported-peripherals.xml
@@ -0,0 +1,187 @@
+<!-- retain these comments for translator revision tracking -->
+<!-- original version: 29467 untranslated -->
+
+ <sect1 id="supported-peripherals">
+ <title>Peripherals and Other Hardware</title>
+<para arch="not-s390">
+
+Linux supports a large variety of hardware devices such as mice,
+printers, scanners, PCMCIA and USB devices. However, most of these
+devices are not required while installing the system.
+
+</para><para arch="i386">
+
+USB hardware generally works fine, only some
+USB keyboards may require additional configuration
+(see <xref linkend="usb-keyboard-config"/>).
+
+</para><para arch="i386">
+
+Again, see the
+<ulink url="&url-hardware-howto;">Linux Hardware Compatibility HOWTO</ulink>
+to determine whether your specific hardware is supported by Linux.
+
+</para><para arch="s390">
+
+Package installations from XPRAM and tape are not supported by this
+system. All packages that you want to install need to be available on a
+DASD or over the network using NFS, HTTP or FTP.
+
+</para><para arch="mips">
+
+The Broadcom BCM91250A evaluation board offers standard 3.3v 32 bit and 64
+bit PCI slots as well as USB connectors.
+
+</para><para arch="mipsel">
+
+The Broadcom BCM91250A evaluation board offers standard 3.3v 32 bit and 64
+bit PCI slots as well as USB connectors. The Cobalt RaQ has no support for
+additional devices but the Qube has one PCI slot.
+
+</para>
+</sect1>
+
+ <sect1 arch="not-s390"><title>Purchasing Hardware Specifically for GNU/Linux</title>
+
+<para>
+
+There are several vendors, who ship systems with Debian or other
+distributions of GNU/Linux
+<ulink url="&url-pre-installed;">pre-installed</ulink>. You might pay more
+for the privilege, but it does buy a level of peace of mind, since you can
+be sure that the hardware is well-supported by GNU/Linux.
+
+</para><para arch="m68k">
+
+Unfortunately, it's quite rare to find any vendor shipping
+new &arch-title; machines at all.
+
+</para><para arch="i386">
+
+If you do have to buy a machine with Windows bundled, carefully read
+the software license that comes with Windows; you may be able to
+reject the license and obtain a rebate from your vendor. Searching
+the Internet for <quote>windows refund</quote> may get you some useful
+information to help with that.
+
+</para><para>
+
+Whether or not you are purchasing a system with Linux bundled, or even
+a used system, it is still important to check that your hardware is
+supported by the Linux kernel. Check if your hardware is listed in
+the references found above. Let your salesperson (if any) know that
+you're shopping for a Linux system. Support Linux-friendly hardware
+vendors.
+
+</para>
+
+ <sect2><title>Avoid Proprietary or Closed Hardware</title>
+<para>
+
+Some hardware manufacturers simply won't tell us how to write drivers
+for their hardware. Others won't allow us access to the documentation
+without a non-disclosure agreement that would prevent us from
+releasing the Linux source code.
+
+</para><para arch="m68k">
+
+Another example is the proprietary hardware in the older
+Macintosh line. In fact, no specifications or documentation have ever
+been released for any Macintosh hardware, most notably the ADB
+controller (used by the mouse and keyboard), the floppy controller,
+and all acceleration and CLUT manipulation of the video hardware
+(though we do now support CLUT manipulation on nearly all internal
+video chips). In a nutshell, this explains why the Macintosh Linux
+port lags behind other Linux ports.
+
+</para><para>
+
+Since we haven't been granted access to the documentation on these
+devices, they simply won't work under Linux. You can help by asking
+the manufacturers of such hardware to release the documentation. If
+enough people ask, they will realize that the free software community
+is an important market.
+
+</para>
+</sect2>
+
+
+ <sect2 arch="i386"><title>Windows-specific Hardware</title>
+<para>
+
+A disturbing trend is the proliferation of Windows-specific modems and
+printers. In some cases these are specially designed to be operated by
+the Microsoft Windows operating system and bear the legend <quote>WinModem</quote>
+or <quote>Made especially for Windows-based computers</quote>. This
+is generally done by removing the embedded processors of the hardware
+and shifting the work they do over to a Windows driver that is run by
+your computer's main CPU. This strategy makes the hardware less
+expensive, but the savings are often <emphasis>not</emphasis> passed on to the
+user and this hardware may even be more expensive than equivalent
+devices that retain their embedded intelligence.
+
+</para><para>
+
+You should avoid Windows-specific hardware for two reasons. The first
+is that the manufacturers do not generally make the resources
+available to write a Linux driver. Generally, the hardware and
+software interface to the device is proprietary, and documentation is
+not available without a non-disclosure agreement, if it is available
+at all. This precludes its being used for free software, since free
+software writers disclose the source code of their programs. The
+second reason is that when devices like these have had their embedded
+processors removed, the operating system must perform the work of the
+embedded processors, often at <emphasis>real-time</emphasis> priority,
+and thus the CPU is not available to run your programs while it is
+driving these devices. Since the typical Windows user does not
+multi-process as intensively as a Linux user, the manufacturers hope
+that the Windows user simply won't notice the burden this hardware
+places on their CPU. However, any multi-processing operating system,
+even Windows 2000 or XP, suffers from degraded performance when
+peripheral manufacturers skimp on the embedded processing power of
+their hardware.
+
+</para><para>
+
+You can help this situation by encouraging these manufacturers to
+release the documentation and other resources necessary for us to
+program their hardware, but the best strategy is simply to avoid this
+sort of hardware until it is listed as working in the
+<ulink url="&url-hardware-howto;">Linux Hardware Compatibility HOWTO</ulink>.
+
+</para>
+</sect2>
+
+
+ <sect2 id="Parity-RAM">
+ <title>Fake or <quote>Virtual</quote> Parity RAM</title>
+<para>
+
+If you ask for Parity RAM in a computer store, you'll probably get
+<emphasis>virtual parity</emphasis> memory modules instead of
+<emphasis>true parity</emphasis> ones. Virtual parity SIMMs can often
+(but not always) be distinguished because they only have one more chip
+than an equivalent non-parity SIMM, and that one extra chip is smaller
+than all the others. Virtual-parity SIMMs work exactly like non-parity
+memory. They can't tell you when you have a single-bit RAM error the
+way true-parity SIMMs do in a motherboard that implements
+parity. Don't ever pay more for a virtual-parity SIMM than a
+non-parity one. Do expect to pay a little more for true-parity SIMMs,
+because you are actually buying one extra bit of memory for every 8
+bits.
+
+</para><para>
+
+If you want complete information on &arch-title; RAM issues, and what
+is the best RAM to buy, see the
+<ulink url="&url-pc-hw-faq;">PC Hardware FAQ</ulink>.
+
+</para><para arch="alpha">
+
+Most, if not all, Alpha systems require true-parity RAM.
+
+</para>
+
+ </sect2>
+
+ </sect1>