PORTNAME= mnn DISTVERSION= 2.6.0 CATEGORIES= misc # machine-learning MAINTAINER= yuri@FreeBSD.org COMMENT= Lightweight deep neural network inference engine WWW= https://github.com/alibaba/MNN LICENSE= APACHE20 BROKEN_i386= always_inline function '_mm_set1_ps' requires target feature 'sse', but would be inlined into function 'Vec4' that is compiled without support for 'sse' BUILD_DEPENDS= bash:shells/bash USES= cmake:testing compiler:c++11-lang localbase shebangfix USE_LDCONFIG= yes USE_GITHUB= yes GH_ACCOUNT= alibaba GH_PROJECT= MNN SHEBANG_GLOB= *.sh CMAKE_TESTING_ON= MNN_BUILD_TEST CMAKE_TESTING_TARGET= CXXFLAGS+= -pthread LDFLAGS+= -pthread CFLAGS+= -fPIC # workaround for https://github.com/alibaba/MNN/issues/553 CXXFLAGS+= -fPIC OPTIONS_DEFINE= APPS CONVERTER HARD_FP OPTIONS_DEFAULT= APPS CONVERTER HARD_FP OPTIONS_SUB= yes APPS_DESC= Build ML training, quantization tools APPS_CMAKE_BOOL= MNN_BUILD_QUANTOOLS MNN_BUILD_TOOLS MNN_BUILD_TRAIN CONVERTER_DESC= Build the model converter tool CONVERTER_CMAKE_BOOL= MNN_BUILD_CONVERTER CONVERTER_LIB_DEPENDS= libprotobuf.so:devel/protobuf HARD_FP_DESC= Hard floating point numbers HARD_FP_CMAKE_BOOL= MNN_BUILD_HARD .include .if ${ARCH} != amd64 && ${ARCH} != i386 CMAKE_ARGS+= -DMNN_USE_AVX:BOOL=OFF \ -DMNN_USE_SSE:BOOL=OFF .endif do-install-APPS-on: .for f in MNNV2Basic.out mobilenetTest.out backendTest.out testModel.out getPerformance.out checkInvalidValue.out timeProfile.out quantized.out \ transformer.out train.out rawDataTransform.out dataTransformer.out runTrainDemo.out ${INSTALL_PROGRAM} ${BUILD_WRKSRC}/${f} ${STAGEDIR}${PREFIX}/bin .endfor do-install-CONVERTER-on: ${INSTALL_PROGRAM} ${BUILD_WRKSRC}/MNNConvert ${STAGEDIR}${PREFIX}/bin ${INSTALL_LIB} ${BUILD_WRKSRC}/tools/converter/libMNNConvertDeps.so ${STAGEDIR}${PREFIX}/lib post-test: @cd ${BUILD_WRKSRC} && \ cd ${BUILD_WRKSRC} && ./run_test.out # 5 tests fail, see https://github.com/alibaba/MNN/issues/2358 .include