summaryrefslogtreecommitdiff
path: root/embassy-stm32/src/rcc/h7/mod.rs
blob: ee0ba5a35084fceeeefbabc388757841c5909d80 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
use core::marker::PhantomData;

use embassy::util::Unborrow;

use crate::pac::rcc::vals::Timpre;
use crate::pac::{DBGMCU, RCC, SYSCFG};
use crate::peripherals;
use crate::pwr::{Power, VoltageScale};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;

mod pll;
use pll::pll_setup;
pub use pll::PllConfig;

const HSI: Hertz = Hertz(64_000_000);
const CSI: Hertz = Hertz(4_000_000);
const HSI48: Hertz = Hertz(48_000_000);
const LSI: Hertz = Hertz(32_000);

/// Core clock frequencies
#[derive(Clone, Copy)]
pub struct CoreClocks {
    pub hclk: Hertz,
    pub pclk1: Hertz,
    pub pclk2: Hertz,
    pub pclk3: Hertz,
    pub pclk4: Hertz,
    pub ppre1: u8,
    pub ppre2: u8,
    pub ppre3: u8,
    pub ppre4: u8,
    pub csi_ck: Option<Hertz>,
    pub hsi_ck: Option<Hertz>,
    pub hsi48_ck: Option<Hertz>,
    pub lsi_ck: Option<Hertz>,
    pub per_ck: Option<Hertz>,
    pub hse_ck: Option<Hertz>,
    pub pll1_p_ck: Option<Hertz>,
    pub pll1_q_ck: Option<Hertz>,
    pub pll1_r_ck: Option<Hertz>,
    pub pll2_p_ck: Option<Hertz>,
    pub pll2_q_ck: Option<Hertz>,
    pub pll2_r_ck: Option<Hertz>,
    pub pll3_p_ck: Option<Hertz>,
    pub pll3_q_ck: Option<Hertz>,
    pub pll3_r_ck: Option<Hertz>,
    pub timx_ker_ck: Option<Hertz>,
    pub timy_ker_ck: Option<Hertz>,
    pub sys_ck: Hertz,
    pub c_ck: Hertz,
}

/// Configuration of the core clocks
#[non_exhaustive]
#[derive(Default)]
pub struct Config {
    pub hse: Option<Hertz>,
    pub bypass_hse: bool,
    pub sys_ck: Option<Hertz>,
    pub per_ck: Option<Hertz>,
    rcc_hclk: Option<Hertz>,
    pub hclk: Option<Hertz>,
    pub pclk1: Option<Hertz>,
    pub pclk2: Option<Hertz>,
    pub pclk3: Option<Hertz>,
    pub pclk4: Option<Hertz>,
    pub pll1: PllConfig,
    pub pll2: PllConfig,
    pub pll3: PllConfig,
}

impl Config {
    pub fn sys_ck<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.sys_ck = Some(freq.into());
        self
    }

    pub fn per_ck<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.per_ck = Some(freq.into());
        self
    }

    pub fn pclk1<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pclk1 = Some(freq.into());
        self
    }

    pub fn pclk2<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pclk2 = Some(freq.into());
        self
    }

    pub fn pclk3<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pclk3 = Some(freq.into());
        self
    }

    pub fn pclk4<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pclk4 = Some(freq.into());
        self
    }

    pub fn pll1_p<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll1.p_ck = Some(freq.into());
        self
    }

    pub fn pll1_q<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll1.q_ck = Some(freq.into());
        self
    }

    pub fn pll1_r<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll1.r_ck = Some(freq.into());
        self
    }

    pub fn pll2_p<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll2.p_ck = Some(freq.into());
        self
    }

    pub fn pll2_q<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll2.q_ck = Some(freq.into());
        self
    }

    pub fn pll2_r<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll2.r_ck = Some(freq.into());
        self
    }

    pub fn pll3_p<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll3.p_ck = Some(freq.into());
        self
    }

    pub fn pll3_q<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll3.q_ck = Some(freq.into());
        self
    }

    pub fn pll3_r<T:Into<Hertz>>(mut self, freq: T) -> Self {
        self.pll3.r_ck = Some(freq.into());
        self
    }

}

pub struct Rcc<'d> {
    inner: PhantomData<&'d ()>,
    config: Config,
}

impl<'d> Rcc<'d> {
    pub fn new(_rcc: impl Unborrow<Target = peripherals::RCC> + 'd, config: Config) -> Self {
        Self {
            inner: PhantomData,
            config,
        }
    }

    /// Freeze the core clocks, returning a Core Clocks Distribution
    /// and Reset (CCDR) structure. The actual frequency of the clocks
    /// configured is returned in the `clocks` member of the CCDR
    /// structure.
    ///
    /// Note that `freeze` will never result in a clock _faster_ than
    /// that specified. It may result in a clock that is a factor of [1,
    /// 2) slower.
    ///
    /// `syscfg` is required to enable the I/O compensation cell.
    ///
    /// # Panics
    ///
    /// If a clock specification cannot be achieved within the
    /// hardware specification then this function will panic. This
    /// function may also panic if a clock specification can be
    /// achieved, but the mechanism for doing so is not yet
    /// implemented here.
    pub fn freeze(mut self, pwr: &Power) -> CoreClocks {
        use crate::pac::rcc::vals::{Ckpersel, Dppre, Hpre, Hsebyp, Hsidiv, Pllsrc, Sw};

        let srcclk = self.config.hse.unwrap_or(HSI); // Available clocks
        let (sys_ck, sys_use_pll1_p) = self.sys_ck_setup(srcclk);

        // Configure traceclk from PLL if needed
        self.traceclk_setup(sys_use_pll1_p);

        // NOTE(unsafe) We have exclusive access to the RCC
        let (pll1_p_ck, pll1_q_ck, pll1_r_ck) =
            unsafe { pll_setup(srcclk.0, &self.config.pll1, 0) };
        let (pll2_p_ck, pll2_q_ck, pll2_r_ck) =
            unsafe { pll_setup(srcclk.0, &self.config.pll2, 1) };
        let (pll3_p_ck, pll3_q_ck, pll3_r_ck) =
            unsafe { pll_setup(srcclk.0, &self.config.pll3, 2) };

        let sys_ck = if sys_use_pll1_p {
            Hertz(pll1_p_ck.unwrap()) // Must have been set by sys_ck_setup
        } else {
            sys_ck
        };

        // NOTE(unsafe) We own the regblock
        unsafe {
            // This routine does not support HSIDIV != 1. To
            // do so it would need to ensure all PLLxON bits are clear
            // before changing the value of HSIDIV
            let cr = RCC.cr().read();
            assert!(cr.hsion());
            assert!(cr.hsidiv() == Hsidiv::DIV1);

            RCC.csr().modify(|w| w.set_lsion(true));
            while !RCC.csr().read().lsirdy() {}
        }

        // per_ck from HSI by default
        let (per_ck, ckpersel) = match (self.config.per_ck == self.config.hse, self.config.per_ck) {
            (true, Some(hse)) => (hse, Ckpersel::HSE), // HSE
            (_, Some(CSI)) => (CSI, Ckpersel::CSI),    // CSI
            _ => (HSI, Ckpersel::HSI),                 // HSI
        };

        // D1 Core Prescaler
        // Set to 1
        let d1cpre_bits = 0;
        let d1cpre_div = 1;
        let sys_d1cpre_ck = sys_ck.0 / d1cpre_div;

        // Refer to part datasheet "General operating conditions"
        // table for (rev V). We do not assert checks for earlier
        // revisions which may have lower limits.
        let (sys_d1cpre_ck_max, rcc_hclk_max, pclk_max) = match pwr.vos {
            VoltageScale::Scale0 => (480_000_000, 240_000_000, 120_000_000),
            VoltageScale::Scale1 => (400_000_000, 200_000_000, 100_000_000),
            VoltageScale::Scale2 => (300_000_000, 150_000_000, 75_000_000),
            _ => (200_000_000, 100_000_000, 50_000_000),
        };
        assert!(sys_d1cpre_ck <= sys_d1cpre_ck_max);

        let rcc_hclk = self
            .config
            .rcc_hclk
            .map(|v| v.0)
            .unwrap_or(sys_d1cpre_ck / 2);
        assert!(rcc_hclk <= rcc_hclk_max);

        // Estimate divisor
        let (hpre_bits, hpre_div) = match (sys_d1cpre_ck + rcc_hclk - 1) / rcc_hclk {
            0 => panic!(),
            1 => (Hpre::DIV1, 1),
            2 => (Hpre::DIV2, 2),
            3..=5 => (Hpre::DIV4, 4),
            6..=11 => (Hpre::DIV8, 8),
            12..=39 => (Hpre::DIV16, 16),
            40..=95 => (Hpre::DIV64, 64),
            96..=191 => (Hpre::DIV128, 128),
            192..=383 => (Hpre::DIV256, 256),
            _ => (Hpre::DIV512, 512),
        };
        // Calculate real AXI and AHB clock
        let rcc_hclk = sys_d1cpre_ck / hpre_div;
        assert!(rcc_hclk <= rcc_hclk_max);
        let rcc_aclk = rcc_hclk; // AXI clock is always equal to AHB clock on H7
                                 // Timer prescaler selection
        let timpre = Timpre::DEFAULTX2;

        let requested_pclk1 = self
            .config
            .pclk1
            .map(|v| v.0)
            .unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
        let (rcc_pclk1, ppre1_bits, ppre1, rcc_timerx_ker_ck) =
            Self::ppre_calculate(requested_pclk1, rcc_hclk, pclk_max, Some(timpre));

        let requested_pclk2 = self
            .config
            .pclk2
            .map(|v| v.0)
            .unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
        let (rcc_pclk2, ppre2_bits, ppre2, rcc_timery_ker_ck) =
            Self::ppre_calculate(requested_pclk2, rcc_hclk, pclk_max, Some(timpre));

        let requested_pclk3 = self
            .config
            .pclk3
            .map(|v| v.0)
            .unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
        let (rcc_pclk3, ppre3_bits, ppre3, _) =
            Self::ppre_calculate(requested_pclk3, rcc_hclk, pclk_max, None);

        let requested_pclk4 = self
            .config
            .pclk4
            .map(|v| v.0)
            .unwrap_or_else(|| pclk_max.min(rcc_hclk / 2));
        let (rcc_pclk4, ppre4_bits, ppre4, _) =
            Self::ppre_calculate(requested_pclk4, rcc_hclk, pclk_max, None);

        Self::flash_setup(rcc_aclk, pwr.vos);

        // Start switching clocks -------------------
        // NOTE(unsafe) We have the RCC singleton
        unsafe {
            // Ensure CSI is on and stable
            RCC.cr().modify(|w| w.set_csion(true));
            while !RCC.cr().read().csirdy() {}

            // Ensure HSI48 is on and stable
            RCC.cr().modify(|w| w.set_hsi48on(true));
            while !RCC.cr().read().hsi48on() {}

            // XXX: support MCO ?

            let hse_ck = match self.config.hse {
                Some(hse) => {
                    // Ensure HSE is on and stable
                    RCC.cr().modify(|w| {
                        w.set_hseon(true);
                        w.set_hsebyp(if self.config.bypass_hse {
                            Hsebyp::BYPASSED
                        } else {
                            Hsebyp::NOTBYPASSED
                        });
                    });
                    while !RCC.cr().read().hserdy() {}
                    Some(hse)
                }
                None => None,
            };

            let pllsrc = if self.config.hse.is_some() {
                Pllsrc::HSE
            } else {
                Pllsrc::HSI
            };
            RCC.pllckselr().modify(|w| w.set_pllsrc(pllsrc));

            let enable_pll = |pll| {
                RCC.cr().modify(|w| w.set_pllon(pll, true));
                while !RCC.cr().read().pllrdy(pll) {}
            };

            if pll1_p_ck.is_some() {
                enable_pll(0);
            }

            if pll2_p_ck.is_some() {
                enable_pll(1);
            }

            if pll3_p_ck.is_some() {
                enable_pll(2);
            }

            // Core Prescaler / AHB Prescaler / APB3 Prescaler
            RCC.d1cfgr().modify(|w| {
                w.set_d1cpre(Hpre(d1cpre_bits));
                w.set_d1ppre(Dppre(ppre3_bits));
                w.set_hpre(hpre_bits)
            });
            // Ensure core prescaler value is valid before future lower
            // core voltage
            while RCC.d1cfgr().read().d1cpre().0 != d1cpre_bits {}

            // APB1 / APB2 Prescaler
            RCC.d2cfgr().modify(|w| {
                w.set_d2ppre1(Dppre(ppre1_bits));
                w.set_d2ppre2(Dppre(ppre2_bits));
            });

            // APB4 Prescaler
            RCC.d3cfgr().modify(|w| w.set_d3ppre(Dppre(ppre4_bits)));

            // Peripheral Clock (per_ck)
            RCC.d1ccipr().modify(|w| w.set_ckpersel(ckpersel));

            // Set timer clocks prescaler setting
            RCC.cfgr().modify(|w| w.set_timpre(timpre));

            // Select system clock source
            let sw = match (sys_use_pll1_p, self.config.hse.is_some()) {
                (true, _) => Sw::PLL1,
                (false, true) => Sw::HSE,
                _ => Sw::HSI,
            };
            RCC.cfgr().modify(|w| w.set_sw(sw));
            while RCC.cfgr().read().sws() != sw.0 {}

            // IO compensation cell - Requires CSI clock and SYSCFG
            assert!(RCC.cr().read().csirdy());
            RCC.apb4enr().modify(|w| w.set_syscfgen(true));

            // Enable the compensation cell, using back-bias voltage code
            // provide by the cell.
            critical_section::with(|_| {
                SYSCFG.cccsr().modify(|w| {
                    w.set_en(true);
                    w.set_cs(false);
                    w.set_hslv(false);
                })
            });
            while !SYSCFG.cccsr().read().ready() {}

            CoreClocks {
                hclk: Hertz(rcc_hclk),
                pclk1: Hertz(rcc_pclk1),
                pclk2: Hertz(rcc_pclk2),
                pclk3: Hertz(rcc_pclk3),
                pclk4: Hertz(rcc_pclk4),
                ppre1,
                ppre2,
                ppre3,
                ppre4,
                csi_ck: Some(CSI),
                hsi_ck: Some(HSI),
                hsi48_ck: Some(HSI48),
                lsi_ck: Some(LSI),
                per_ck: Some(per_ck),
                hse_ck,
                pll1_p_ck: pll1_p_ck.map(Hertz),
                pll1_q_ck: pll1_q_ck.map(Hertz),
                pll1_r_ck: pll1_r_ck.map(Hertz),
                pll2_p_ck: pll2_p_ck.map(Hertz),
                pll2_q_ck: pll2_q_ck.map(Hertz),
                pll2_r_ck: pll2_r_ck.map(Hertz),
                pll3_p_ck: pll3_p_ck.map(Hertz),
                pll3_q_ck: pll3_q_ck.map(Hertz),
                pll3_r_ck: pll3_r_ck.map(Hertz),
                timx_ker_ck: rcc_timerx_ker_ck.map(Hertz),
                timy_ker_ck: rcc_timery_ker_ck.map(Hertz),
                sys_ck,
                c_ck: Hertz(sys_d1cpre_ck),
            }
        }
    }

    /// Enables debugging during WFI/WFE
    ///
    /// Set `enable_dma1` to true if you do not have at least one bus master (other than the CPU)
    /// enable during WFI/WFE
    pub fn enable_debug_wfe(&mut self, _dbg: &mut peripherals::DBGMCU, enable_dma1: bool) {
        // NOTE(unsafe) We have exclusive access to the RCC and DBGMCU
        unsafe {
            if enable_dma1 {
                RCC.ahb1enr().modify(|w| w.set_dma1en(true));
            }

            DBGMCU.cr().modify(|w| {
                w.set_dbgsleep_d1(true);
                w.set_dbgstby_d1(true);
                w.set_dbgstop_d1(true);
            });
        }
    }

    /// Setup traceclk
    /// Returns a pll1_r_ck
    fn traceclk_setup(&mut self, sys_use_pll1_p: bool) {
        let pll1_r_ck = match (sys_use_pll1_p, self.config.pll1.r_ck) {
            // pll1_p_ck selected as system clock but pll1_r_ck not
            // set. The traceclk mux is synchronous with the system
            // clock mux, but has pll1_r_ck as an input. In order to
            // keep traceclk running, we force a pll1_r_ck.
            (true, None) => Some(Hertz(self.config.pll1.p_ck.unwrap().0 / 2)),

            // Either pll1 not selected as system clock, free choice
            // of pll1_r_ck. Or pll1 is selected, assume user has set
            // a suitable pll1_r_ck frequency.
            _ => self.config.pll1.r_ck,
        };
        self.config.pll1.r_ck = pll1_r_ck;
    }

    /// Divider calculator for pclk 1 - 4
    ///
    /// Returns real pclk, bits, ppre and the timer kernel clock
    fn ppre_calculate(
        requested_pclk: u32,
        hclk: u32,
        max_pclk: u32,
        tim_pre: Option<Timpre>,
    ) -> (u32, u8, u8, Option<u32>) {
        let (bits, ppre) = match (hclk + requested_pclk - 1) / requested_pclk {
            0 => panic!(),
            1 => (0b000, 1),
            2 => (0b100, 2),
            3..=5 => (0b101, 4),
            6..=11 => (0b110, 8),
            _ => (0b111, 16),
        };
        let real_pclk = hclk / u32::from(ppre);
        assert!(real_pclk <= max_pclk);

        let tim_ker_clk = if let Some(tim_pre) = tim_pre {
            let clk = match (bits, tim_pre) {
                (0b101, Timpre::DEFAULTX2) => hclk / 2,
                (0b110, Timpre::DEFAULTX4) => hclk / 2,
                (0b110, Timpre::DEFAULTX2) => hclk / 4,
                (0b111, Timpre::DEFAULTX4) => hclk / 4,
                (0b111, Timpre::DEFAULTX2) => hclk / 8,
                _ => hclk,
            };
            Some(clk)
        } else {
            None
        };
        (real_pclk, bits, ppre, tim_ker_clk)
    }

    /// Setup sys_ck
    /// Returns sys_ck frequency, and a pll1_p_ck
    fn sys_ck_setup(&mut self, srcclk: Hertz) -> (Hertz, bool) {
        // Compare available with wanted clocks
        let sys_ck = self.config.sys_ck.unwrap_or(srcclk);

        if sys_ck != srcclk {
            // The requested system clock is not the immediately available
            // HSE/HSI clock. Perhaps there are other ways of obtaining
            // the requested system clock (such as `HSIDIV`) but we will
            // ignore those for now.
            //
            // Therefore we must use pll1_p_ck
            let pll1_p_ck = match self.config.pll1.p_ck {
                Some(p_ck) => {
                    assert!(p_ck == sys_ck,
                            "Error: Cannot set pll1_p_ck independently as it must be used to generate sys_ck");
                    Some(p_ck)
                }
                None => Some(sys_ck),
            };
            self.config.pll1.p_ck = pll1_p_ck;

            (sys_ck, true)
        } else {
            // sys_ck is derived directly from a source clock
            // (HSE/HSI). pll1_p_ck can be as requested
            (sys_ck, false)
        }
    }

    fn flash_setup(rcc_aclk: u32, vos: VoltageScale) {
        use crate::pac::FLASH;

        // ACLK in MHz, round down and subtract 1 from integers. eg.
        // 61_999_999 -> 61MHz
        // 62_000_000 -> 61MHz
        // 62_000_001 -> 62MHz
        let rcc_aclk_mhz = (rcc_aclk - 1) / 1_000_000;

        // See RM0433 Rev 7 Table 17. FLASH recommended number of wait
        // states and programming delay
        let (wait_states, progr_delay) = match vos {
            // VOS 0 range VCORE 1.26V - 1.40V
            VoltageScale::Scale0 => match rcc_aclk_mhz {
                0..=69 => (0, 0),
                70..=139 => (1, 1),
                140..=184 => (2, 1),
                185..=209 => (2, 2),
                210..=224 => (3, 2),
                225..=239 => (4, 2),
                _ => (7, 3),
            },
            // VOS 1 range VCORE 1.15V - 1.26V
            VoltageScale::Scale1 => match rcc_aclk_mhz {
                0..=69 => (0, 0),
                70..=139 => (1, 1),
                140..=184 => (2, 1),
                185..=209 => (2, 2),
                210..=224 => (3, 2),
                _ => (7, 3),
            },
            // VOS 2 range VCORE 1.05V - 1.15V
            VoltageScale::Scale2 => match rcc_aclk_mhz {
                0..=54 => (0, 0),
                55..=109 => (1, 1),
                110..=164 => (2, 1),
                165..=224 => (3, 2),
                _ => (7, 3),
            },
            // VOS 3 range VCORE 0.95V - 1.05V
            VoltageScale::Scale3 => match rcc_aclk_mhz {
                0..=44 => (0, 0),
                45..=89 => (1, 1),
                90..=134 => (2, 1),
                135..=179 => (3, 2),
                180..=224 => (4, 2),
                _ => (7, 3),
            },
        };

        // NOTE(unsafe) Atomic write
        unsafe {
            FLASH.acr().write(|w| {
                w.set_wrhighfreq(progr_delay);
                w.set_latency(wait_states)
            });
            while FLASH.acr().read().latency() != wait_states {}
        }
    }
}

pub unsafe fn init(config: Config) {
    let mut power = Power::new(<peripherals::PWR as embassy::util::Steal>::steal(), false);
    let rcc = Rcc::new(<peripherals::RCC as embassy::util::Steal>::steal(), config);
    let core_clocks = rcc.freeze(&mut power);
    set_freqs(Clocks {
        sys: core_clocks.c_ck,
        ahb1: core_clocks.hclk,
        ahb2: core_clocks.hclk,
        ahb3: core_clocks.hclk,
        ahb4: core_clocks.hclk,
        apb1: core_clocks.pclk1,
        apb2: core_clocks.pclk2,
        apb4: core_clocks.pclk4,
        apb1_tim: core_clocks.timx_ker_ck.unwrap_or(core_clocks.pclk1),
        apb2_tim: core_clocks.timy_ker_ck.unwrap_or(core_clocks.pclk2),
    });
}