1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
|
use core::marker::PhantomData;
use embassy_hal_common::into_ref;
use embedded_hal_02::blocking::delay::DelayUs;
use crate::adc::{AdcPin, Instance};
use crate::Peripheral;
pub const VDDA_CALIB_MV: u32 = 3000;
/// Sadly we cannot use `RccPeripheral::enable` since devices are quite inconsistent ADC clock
/// configuration.
fn enable() {
critical_section::with(|_| unsafe {
#[cfg(stm32h7)]
crate::pac::RCC.apb2enr().modify(|w| w.set_adcen(true));
#[cfg(stm32g0)]
crate::pac::RCC.apbenr2().modify(|w| w.set_adcen(true));
#[cfg(any(stm32l4, stm32l5, stm32wb))]
crate::pac::RCC.ahb2enr().modify(|w| w.set_adcen(true));
});
}
pub enum Resolution {
TwelveBit,
TenBit,
EightBit,
SixBit,
}
impl Default for Resolution {
fn default() -> Self {
Self::TwelveBit
}
}
impl Resolution {
fn res(&self) -> crate::pac::adc::vals::Res {
match self {
Resolution::TwelveBit => crate::pac::adc::vals::Res::TWELVEBIT,
Resolution::TenBit => crate::pac::adc::vals::Res::TENBIT,
Resolution::EightBit => crate::pac::adc::vals::Res::EIGHTBIT,
Resolution::SixBit => crate::pac::adc::vals::Res::SIXBIT,
}
}
fn to_max_count(&self) -> u32 {
match self {
Resolution::TwelveBit => (1 << 12) - 1,
Resolution::TenBit => (1 << 10) - 1,
Resolution::EightBit => (1 << 8) - 1,
Resolution::SixBit => (1 << 6) - 1,
}
}
}
pub struct Vref;
impl<T: Instance> AdcPin<T> for Vref {}
impl<T: Instance> super::sealed::AdcPin<T> for Vref {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 0;
#[cfg(stm32g0)]
let val = 13;
val
}
}
pub struct Temperature;
impl<T: Instance> AdcPin<T> for Temperature {}
impl<T: Instance> super::sealed::AdcPin<T> for Temperature {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 17;
#[cfg(stm32g0)]
let val = 12;
val
}
}
pub struct Vbat;
impl<T: Instance> AdcPin<T> for Vbat {}
impl<T: Instance> super::sealed::AdcPin<T> for Vbat {
fn channel(&self) -> u8 {
#[cfg(not(stm32g0))]
let val = 18;
#[cfg(stm32g0)]
let val = 14;
val
}
}
#[cfg(not(adc_g0))]
mod sample_time {
/// ADC sample time
///
/// The default setting is 2.5 ADC clock cycles.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum SampleTime {
/// 2.5 ADC clock cycles
Cycles2_5 = 0b000,
/// 6.5 ADC clock cycles
Cycles6_5 = 0b001,
/// 12.5 ADC clock cycles
Cycles12_5 = 0b010,
/// 24.5 ADC clock cycles
Cycles24_5 = 0b011,
/// 47.5 ADC clock cycles
Cycles47_5 = 0b100,
/// 92.5 ADC clock cycles
Cycles92_5 = 0b101,
/// 247.5 ADC clock cycles
Cycles247_5 = 0b110,
/// 640.5 ADC clock cycles
Cycles640_5 = 0b111,
}
impl SampleTime {
pub(crate) fn sample_time(&self) -> crate::pac::adc::vals::SampleTime {
match self {
SampleTime::Cycles2_5 => crate::pac::adc::vals::SampleTime::CYCLES2_5,
SampleTime::Cycles6_5 => crate::pac::adc::vals::SampleTime::CYCLES6_5,
SampleTime::Cycles12_5 => crate::pac::adc::vals::SampleTime::CYCLES12_5,
SampleTime::Cycles24_5 => crate::pac::adc::vals::SampleTime::CYCLES24_5,
SampleTime::Cycles47_5 => crate::pac::adc::vals::SampleTime::CYCLES47_5,
SampleTime::Cycles92_5 => crate::pac::adc::vals::SampleTime::CYCLES92_5,
SampleTime::Cycles247_5 => crate::pac::adc::vals::SampleTime::CYCLES247_5,
SampleTime::Cycles640_5 => crate::pac::adc::vals::SampleTime::CYCLES640_5,
}
}
}
impl Default for SampleTime {
fn default() -> Self {
Self::Cycles2_5
}
}
}
#[cfg(adc_g0)]
mod sample_time {
/// ADC sample time
///
/// The default setting is 1.5 ADC clock cycles.
#[derive(Clone, Copy, Debug, Eq, PartialEq, Ord, PartialOrd)]
pub enum SampleTime {
/// 1.5 ADC clock cycles
Cycles1_5 = 0b000,
/// 3.5 ADC clock cycles
Cycles3_5 = 0b001,
/// 7.5 ADC clock cycles
Cycles7_5 = 0b010,
/// 12.5 ADC clock cycles
Cycles12_5 = 0b011,
/// 19.5 ADC clock cycles
Cycles19_5 = 0b100,
/// 39.5 ADC clock cycles
Cycles39_5 = 0b101,
/// 79.5 ADC clock cycles
Cycles79_5 = 0b110,
/// 160.5 ADC clock cycles
Cycles160_5 = 0b111,
}
impl SampleTime {
pub(crate) fn sample_time(&self) -> crate::pac::adc::vals::SampleTime {
match self {
SampleTime::Cycles1_5 => crate::pac::adc::vals::SampleTime::CYCLES1_5,
SampleTime::Cycles3_5 => crate::pac::adc::vals::SampleTime::CYCLES3_5,
SampleTime::Cycles7_5 => crate::pac::adc::vals::SampleTime::CYCLES7_5,
SampleTime::Cycles12_5 => crate::pac::adc::vals::SampleTime::CYCLES12_5,
SampleTime::Cycles19_5 => crate::pac::adc::vals::SampleTime::CYCLES19_5,
SampleTime::Cycles39_5 => crate::pac::adc::vals::SampleTime::CYCLES39_5,
SampleTime::Cycles79_5 => crate::pac::adc::vals::SampleTime::CYCLES79_5,
SampleTime::Cycles160_5 => crate::pac::adc::vals::SampleTime::CYCLES160_5,
}
}
}
impl Default for SampleTime {
fn default() -> Self {
Self::Cycles1_5
}
}
}
pub use sample_time::SampleTime;
pub struct Adc<'d, T: Instance> {
sample_time: SampleTime,
calibrated_vdda: u32,
resolution: Resolution,
phantom: PhantomData<&'d mut T>,
}
impl<'d, T: Instance> Adc<'d, T> {
pub fn new(_peri: impl Peripheral<P = T> + 'd, delay: &mut impl DelayUs<u32>) -> Self {
into_ref!(_peri);
enable();
unsafe {
T::regs().cr().modify(|reg| {
#[cfg(not(adc_g0))]
reg.set_deeppwd(false);
reg.set_advregen(true);
});
#[cfg(adc_g0)]
T::regs().cfgr1().modify(|reg| {
reg.set_chselrmod(true);
});
}
delay.delay_us(20);
unsafe {
T::regs().cr().modify(|reg| {
reg.set_adcal(true);
});
while T::regs().cr().read().adcal() {
// spin
}
}
delay.delay_us(1);
Self {
sample_time: Default::default(),
resolution: Resolution::default(),
calibrated_vdda: VDDA_CALIB_MV,
phantom: PhantomData,
}
}
pub fn enable_vref(&self, delay: &mut impl DelayUs<u32>) -> Vref {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_vrefen(true);
});
}
// "Table 24. Embedded internal voltage reference" states that it takes a maximum of 12 us
// to stabilize the internal voltage reference, we wait a little more.
// TODO: delay 15us
//cortex_m::asm::delay(20_000_000);
delay.delay_us(15);
Vref {}
}
pub fn enable_temperature(&self) -> Temperature {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_ch17sel(true);
});
}
Temperature {}
}
pub fn enable_vbat(&self) -> Vbat {
unsafe {
T::common_regs().ccr().modify(|reg| {
reg.set_ch18sel(true);
});
}
Vbat {}
}
/// Calculates the system VDDA by sampling the internal VREF channel and comparing
/// the result with the value stored at the factory. If the chip's VDDA is not stable, run
/// this before each ADC conversion.
#[cfg(not(stm32g0))] // TODO is this supposed to be public?
#[allow(unused)] // TODO is this supposed to be public?
fn calibrate(&mut self, vref: &mut Vref) {
#[cfg(stm32l5)]
let vref_cal: u32 = todo!();
#[cfg(not(stm32l5))]
let vref_cal = unsafe { crate::pac::VREFINTCAL.data().read().value() };
let old_sample_time = self.sample_time;
// "Table 24. Embedded internal voltage reference" states that the sample time needs to be
// at a minimum 4 us. With 640.5 ADC cycles we have a minimum of 8 us at 80 MHz, leaving
// some headroom.
self.sample_time = SampleTime::Cycles640_5;
// This can't actually fail, it's just in a result to satisfy hal trait
let vref_samp = self.read(vref);
self.sample_time = old_sample_time;
self.calibrated_vdda = (VDDA_CALIB_MV * u32::from(vref_cal)) / u32::from(vref_samp);
}
pub fn set_sample_time(&mut self, sample_time: SampleTime) {
self.sample_time = sample_time;
}
pub fn set_resolution(&mut self, resolution: Resolution) {
self.resolution = resolution;
}
/// Convert a measurement to millivolts
pub fn to_millivolts(&self, sample: u16) -> u16 {
((u32::from(sample) * self.calibrated_vdda) / self.resolution.to_max_count()) as u16
}
/*
/// Convert a raw sample from the `Temperature` to deg C
pub fn to_degrees_centigrade(sample: u16) -> f32 {
(130.0 - 30.0) / (VtempCal130::get().read() as f32 - VtempCal30::get().read() as f32)
* (sample as f32 - VtempCal30::get().read() as f32)
+ 30.0
}
*/
/// Perform a single conversion.
fn convert(&mut self) -> u16 {
unsafe {
T::regs().isr().modify(|reg| {
reg.set_eos(true);
reg.set_eoc(true);
});
// Start conversion
T::regs().cr().modify(|reg| {
reg.set_adstart(true);
});
while !T::regs().isr().read().eos() {
// spin
}
T::regs().dr().read().0 as u16
}
}
pub fn read(&mut self, pin: &mut impl AdcPin<T>) -> u16 {
unsafe {
// Make sure bits are off
while T::regs().cr().read().addis() {
// spin
}
// Enable ADC
T::regs().isr().modify(|reg| {
reg.set_adrdy(true);
});
T::regs().cr().modify(|reg| {
reg.set_aden(true);
});
while !T::regs().isr().read().adrdy() {
// spin
}
// Configure ADC
#[cfg(not(stm32g0))]
T::regs().cfgr().modify(|reg| reg.set_res(self.resolution.res()));
#[cfg(stm32g0)]
T::regs().cfgr1().modify(|reg| reg.set_res(self.resolution.res()));
// Configure channel
Self::set_channel_sample_time(pin.channel(), self.sample_time);
// Select channel
#[cfg(not(stm32g0))]
T::regs().sqr1().write(|reg| reg.set_sq(0, pin.channel()));
#[cfg(stm32g0)]
T::regs().chselr().write(|reg| reg.set_chsel(pin.channel() as u32));
// Some models are affected by an erratum:
// If we perform conversions slower than 1 kHz, the first read ADC value can be
// corrupted, so we discard it and measure again.
//
// STM32L471xx: Section 2.7.3
// STM32G4: Section 2.7.3
#[cfg(any(rcc_l4, rcc_g4))]
let _ = self.convert();
let val = self.convert();
T::regs().cr().modify(|reg| reg.set_addis(true));
val
}
}
#[cfg(stm32g0)]
unsafe fn set_channel_sample_time(_ch: u8, sample_time: SampleTime) {
T::regs().smpr().modify(|reg| reg.set_smp1(sample_time.sample_time()));
}
#[cfg(not(stm32g0))]
unsafe fn set_channel_sample_time(ch: u8, sample_time: SampleTime) {
if ch <= 9 {
T::regs()
.smpr1()
.modify(|reg| reg.set_smp(ch as _, sample_time.sample_time()));
} else {
T::regs()
.smpr2()
.modify(|reg| reg.set_smp((ch - 10) as _, sample_time.sample_time()));
}
}
}
|