1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
|
#![no_std]
#![feature(generic_associated_types)]
#![feature(type_alias_impl_trait)]
#![warn(missing_docs)]
#![doc = include_str!("../../README.md")]
mod fmt;
pub use embassy_boot::{AlignedBuffer, BootFlash, FirmwareUpdater, FlashConfig, Partition, SingleFlashConfig};
use embassy_nrf::nvmc::{Nvmc, PAGE_SIZE};
use embassy_nrf::peripherals::WDT;
use embassy_nrf::wdt;
use embedded_storage::nor_flash::{ErrorType, NorFlash, ReadNorFlash};
/// A bootloader for nRF devices.
pub struct BootLoader {
boot: embassy_boot::BootLoader,
magic: AlignedBuffer<4>,
page: AlignedBuffer<PAGE_SIZE>,
}
impl BootLoader {
/// Create a new bootloader instance using parameters from linker script
pub fn default() -> Self {
extern "C" {
static __bootloader_state_start: u32;
static __bootloader_state_end: u32;
static __bootloader_active_start: u32;
static __bootloader_active_end: u32;
static __bootloader_dfu_start: u32;
static __bootloader_dfu_end: u32;
}
let active = unsafe {
Partition::new(
&__bootloader_active_start as *const u32 as usize,
&__bootloader_active_end as *const u32 as usize,
)
};
let dfu = unsafe {
Partition::new(
&__bootloader_dfu_start as *const u32 as usize,
&__bootloader_dfu_end as *const u32 as usize,
)
};
let state = unsafe {
Partition::new(
&__bootloader_state_start as *const u32 as usize,
&__bootloader_state_end as *const u32 as usize,
)
};
trace!("ACTIVE: 0x{:x} - 0x{:x}", active.from, active.to);
trace!("DFU: 0x{:x} - 0x{:x}", dfu.from, dfu.to);
trace!("STATE: 0x{:x} - 0x{:x}", state.from, state.to);
Self::new(active, dfu, state)
}
/// Create a new bootloader instance using the supplied partitions for active, dfu and state.
pub fn new(active: Partition, dfu: Partition, state: Partition) -> Self {
Self {
boot: embassy_boot::BootLoader::new(active, dfu, state),
magic: AlignedBuffer([0; 4]),
page: AlignedBuffer([0; PAGE_SIZE]),
}
}
/// Inspect the bootloader state and perform actions required before booting, such as swapping
/// firmware.
pub fn prepare<F: FlashConfig>(&mut self, flash: &mut F) -> usize {
match self.boot.prepare_boot(flash, &mut self.magic.0, &mut self.page.0) {
Ok(_) => self.boot.boot_address(),
Err(_) => panic!("boot prepare error!"),
}
}
/// Boots the application without softdevice mechanisms.
///
/// # Safety
///
/// This modifies the stack pointer and reset vector and will run code placed in the active partition.
#[cfg(not(feature = "softdevice"))]
pub unsafe fn load(&mut self, start: usize) -> ! {
let mut p = cortex_m::Peripherals::steal();
p.SCB.invalidate_icache();
p.SCB.vtor.write(start as u32);
cortex_m::asm::bootload(start as *const u32)
}
/// Boots the application assuming softdevice is present.
///
/// # Safety
///
/// This modifies the stack pointer and reset vector and will run code placed in the active partition.
#[cfg(feature = "softdevice")]
pub unsafe fn load(&mut self, _app: usize) -> ! {
use nrf_softdevice_mbr as mbr;
const NRF_SUCCESS: u32 = 0;
// Address of softdevice which we'll forward interrupts to
let addr = 0x1000;
let mut cmd = mbr::sd_mbr_command_t {
command: mbr::NRF_MBR_COMMANDS_SD_MBR_COMMAND_IRQ_FORWARD_ADDRESS_SET,
params: mbr::sd_mbr_command_t__bindgen_ty_1 {
irq_forward_address_set: mbr::sd_mbr_command_irq_forward_address_set_t { address: addr },
},
};
let ret = mbr::sd_mbr_command(&mut cmd);
assert_eq!(ret, NRF_SUCCESS);
let msp = *(addr as *const u32);
let rv = *((addr + 4) as *const u32);
trace!("msp = {=u32:x}, rv = {=u32:x}", msp, rv);
// These instructions perform the following operations:
//
// * Modify control register to use MSP as stack pointer (clear spsel bit)
// * Synchronize instruction barrier
// * Initialize stack pointer (0x1000)
// * Set link register to not return (0xFF)
// * Jump to softdevice reset vector
core::arch::asm!(
"mrs {tmp}, CONTROL",
"bics {tmp}, {spsel}",
"msr CONTROL, {tmp}",
"isb",
"msr MSP, {msp}",
"mov lr, {new_lr}",
"bx {rv}",
// `out(reg) _` is not permitted in a `noreturn` asm! call,
// so instead use `in(reg) 0` and don't restore it afterwards.
tmp = in(reg) 0,
spsel = in(reg) 2,
new_lr = in(reg) 0xFFFFFFFFu32,
msp = in(reg) msp,
rv = in(reg) rv,
options(noreturn),
);
}
}
/// A flash implementation that wraps NVMC and will pet a watchdog when touching flash.
pub struct WatchdogFlash<'d> {
flash: Nvmc<'d>,
wdt: wdt::WatchdogHandle,
}
impl<'d> WatchdogFlash<'d> {
/// Start a new watchdog with a given flash and WDT peripheral and a timeout
pub fn start(flash: Nvmc<'d>, wdt: WDT, timeout: u32) -> Self {
let mut config = wdt::Config::default();
config.timeout_ticks = 32768 * timeout; // timeout seconds
config.run_during_sleep = true;
config.run_during_debug_halt = false;
let (_wdt, [wdt]) = match wdt::Watchdog::try_new(wdt, config) {
Ok(x) => x,
Err(_) => {
// In case the watchdog is already running, just spin and let it expire, since
// we can't configure it anyway. This usually happens when we first program
// the device and the watchdog was previously active
info!("Watchdog already active with wrong config, waiting for it to timeout...");
loop {}
}
};
Self { flash, wdt }
}
}
impl<'d> ErrorType for WatchdogFlash<'d> {
type Error = <Nvmc<'d> as ErrorType>::Error;
}
impl<'d> NorFlash for WatchdogFlash<'d> {
const WRITE_SIZE: usize = <Nvmc<'d> as NorFlash>::WRITE_SIZE;
const ERASE_SIZE: usize = <Nvmc<'d> as NorFlash>::ERASE_SIZE;
fn erase(&mut self, from: u32, to: u32) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.erase(from, to)
}
fn write(&mut self, offset: u32, data: &[u8]) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.write(offset, data)
}
}
impl<'d> ReadNorFlash for WatchdogFlash<'d> {
const READ_SIZE: usize = <Nvmc<'d> as ReadNorFlash>::READ_SIZE;
fn read(&mut self, offset: u32, data: &mut [u8]) -> Result<(), Self::Error> {
self.wdt.pet();
self.flash.read(offset, data)
}
fn capacity(&self) -> usize {
self.flash.capacity()
}
}
|