diff options
-rw-r--r-- | embassy-nrf/src/uarte.rs | 398 | ||||
-rw-r--r-- | embassy-rp/src/i2c.rs | 400 | ||||
-rw-r--r-- | examples/nrf/src/bin/uart_idle.rs | 7 | ||||
-rw-r--r-- | examples/rp/Cargo.toml | 3 | ||||
-rw-r--r-- | examples/rp/src/bin/i2c_async.rs | 102 |
5 files changed, 620 insertions, 290 deletions
diff --git a/embassy-nrf/src/uarte.rs b/embassy-nrf/src/uarte.rs index d9959911..636d6c7a 100644 --- a/embassy-nrf/src/uarte.rs +++ b/embassy-nrf/src/uarte.rs @@ -173,6 +173,61 @@ impl<'d, T: Instance> Uarte<'d, T> { (self.tx, self.rx) } + /// Split the Uarte into a transmitter and receiver that will + /// return on idle, which is determined as the time it takes + /// for two bytes to be received. + pub fn split_with_idle<U: TimerInstance>( + self, + timer: impl Peripheral<P = U> + 'd, + ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, + ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, + ) -> (UarteTx<'d, T>, UarteRxWithIdle<'d, T, U>) { + let mut timer = Timer::new(timer); + + into_ref!(ppi_ch1, ppi_ch2); + + let r = T::regs(); + + // BAUDRATE register values are `baudrate * 2^32 / 16000000` + // source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values + // + // We want to stop RX if line is idle for 2 bytes worth of time + // That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit) + // This gives us the amount of 16M ticks for 20 bits. + let baudrate = r.baudrate.read().baudrate().variant().unwrap(); + let timeout = 0x8000_0000 / (baudrate as u32 / 40); + + timer.set_frequency(Frequency::F16MHz); + timer.cc(0).write(timeout); + timer.cc(0).short_compare_clear(); + timer.cc(0).short_compare_stop(); + + let mut ppi_ch1 = Ppi::new_one_to_two( + ppi_ch1.map_into(), + Event::from_reg(&r.events_rxdrdy), + timer.task_clear(), + timer.task_start(), + ); + ppi_ch1.enable(); + + let mut ppi_ch2 = Ppi::new_one_to_one( + ppi_ch2.map_into(), + timer.cc(0).event_compare(), + Task::from_reg(&r.tasks_stoprx), + ); + ppi_ch2.enable(); + + ( + self.tx, + UarteRxWithIdle { + rx: self.rx, + timer, + ppi_ch1: ppi_ch1, + _ppi_ch2: ppi_ch2, + }, + ) + } + /// Return the endtx event for use with PPI pub fn event_endtx(&self) -> Event { let r = T::regs(); @@ -597,236 +652,14 @@ impl<'a, T: Instance> Drop for UarteRx<'a, T> { } } -#[cfg(not(any(feature = "_nrf9160", feature = "nrf5340")))] -pub(crate) fn apply_workaround_for_enable_anomaly(_r: &crate::pac::uarte0::RegisterBlock) { - // Do nothing -} - -#[cfg(any(feature = "_nrf9160", feature = "nrf5340"))] -pub(crate) fn apply_workaround_for_enable_anomaly(r: &crate::pac::uarte0::RegisterBlock) { - use core::ops::Deref; - - // Apply workaround for anomalies: - // - nRF9160 - anomaly 23 - // - nRF5340 - anomaly 44 - let rxenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x564) as *const u32; - let txenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x568) as *const u32; - - // NB Safety: This is taken from Nordic's driver - - // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 - if unsafe { core::ptr::read_volatile(txenable_reg) } == 1 { - r.tasks_stoptx.write(|w| unsafe { w.bits(1) }); - } - - // NB Safety: This is taken from Nordic's driver - - // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 - if unsafe { core::ptr::read_volatile(rxenable_reg) } == 1 { - r.enable.write(|w| w.enable().enabled()); - r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); - - let mut workaround_succeded = false; - // The UARTE is able to receive up to four bytes after the STOPRX task has been triggered. - // On lowest supported baud rate (1200 baud), with parity bit and two stop bits configured - // (resulting in 12 bits per data byte sent), this may take up to 40 ms. - for _ in 0..40000 { - // NB Safety: This is taken from Nordic's driver - - // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 - if unsafe { core::ptr::read_volatile(rxenable_reg) } == 0 { - workaround_succeded = true; - break; - } else { - // Need to sleep for 1us here - } - } - - if !workaround_succeded { - panic!("Failed to apply workaround for UART"); - } - - let errors = r.errorsrc.read().bits(); - // NB Safety: safe to write back the bits we just read to clear them - r.errorsrc.write(|w| unsafe { w.bits(errors) }); - r.enable.write(|w| w.enable().disabled()); - } -} - -pub(crate) fn drop_tx_rx(r: &pac::uarte0::RegisterBlock, s: &sealed::State) { - if s.tx_rx_refcount.fetch_sub(1, Ordering::Relaxed) == 1 { - // Finally we can disable, and we do so for the peripheral - // i.e. not just rx concerns. - r.enable.write(|w| w.enable().disabled()); - - gpio::deconfigure_pin(r.psel.rxd.read().bits()); - gpio::deconfigure_pin(r.psel.txd.read().bits()); - gpio::deconfigure_pin(r.psel.rts.read().bits()); - gpio::deconfigure_pin(r.psel.cts.read().bits()); - - trace!("uarte tx and rx drop: done"); - } -} - -/// Interface to an UARTE peripheral that uses an additional timer and two PPI channels, -/// allowing it to implement the ReadUntilIdle trait. -pub struct UarteWithIdle<'d, U: Instance, T: TimerInstance> { - tx: UarteTx<'d, U>, - rx: UarteRxWithIdle<'d, U, T>, -} - -impl<'d, U: Instance, T: TimerInstance> UarteWithIdle<'d, U, T> { - /// Create a new UARTE without hardware flow control - pub fn new( - uarte: impl Peripheral<P = U> + 'd, - timer: impl Peripheral<P = T> + 'd, - ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - irq: impl Peripheral<P = U::Interrupt> + 'd, - rxd: impl Peripheral<P = impl GpioPin> + 'd, - txd: impl Peripheral<P = impl GpioPin> + 'd, - config: Config, - ) -> Self { - into_ref!(rxd, txd); - Self::new_inner( - uarte, - timer, - ppi_ch1, - ppi_ch2, - irq, - rxd.map_into(), - txd.map_into(), - None, - None, - config, - ) - } - - /// Create a new UARTE with hardware flow control (RTS/CTS) - pub fn new_with_rtscts( - uarte: impl Peripheral<P = U> + 'd, - timer: impl Peripheral<P = T> + 'd, - ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - irq: impl Peripheral<P = U::Interrupt> + 'd, - rxd: impl Peripheral<P = impl GpioPin> + 'd, - txd: impl Peripheral<P = impl GpioPin> + 'd, - cts: impl Peripheral<P = impl GpioPin> + 'd, - rts: impl Peripheral<P = impl GpioPin> + 'd, - config: Config, - ) -> Self { - into_ref!(rxd, txd, cts, rts); - Self::new_inner( - uarte, - timer, - ppi_ch1, - ppi_ch2, - irq, - rxd.map_into(), - txd.map_into(), - Some(cts.map_into()), - Some(rts.map_into()), - config, - ) - } - - fn new_inner( - uarte: impl Peripheral<P = U> + 'd, - timer: impl Peripheral<P = T> + 'd, - ppi_ch1: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - ppi_ch2: impl Peripheral<P = impl ConfigurableChannel + 'd> + 'd, - irq: impl Peripheral<P = U::Interrupt> + 'd, - rxd: PeripheralRef<'d, AnyPin>, - txd: PeripheralRef<'d, AnyPin>, - cts: Option<PeripheralRef<'d, AnyPin>>, - rts: Option<PeripheralRef<'d, AnyPin>>, - config: Config, - ) -> Self { - let baudrate = config.baudrate; - let (tx, rx) = Uarte::new_inner(uarte, irq, rxd, txd, cts, rts, config).split(); - - let mut timer = Timer::new(timer); - - into_ref!(ppi_ch1, ppi_ch2); - - let r = U::regs(); - - // BAUDRATE register values are `baudrate * 2^32 / 16000000` - // source: https://devzone.nordicsemi.com/f/nordic-q-a/391/uart-baudrate-register-values - // - // We want to stop RX if line is idle for 2 bytes worth of time - // That is 20 bits (each byte is 1 start bit + 8 data bits + 1 stop bit) - // This gives us the amount of 16M ticks for 20 bits. - let timeout = 0x8000_0000 / (baudrate as u32 / 40); - - timer.set_frequency(Frequency::F16MHz); - timer.cc(0).write(timeout); - timer.cc(0).short_compare_clear(); - timer.cc(0).short_compare_stop(); - - let mut ppi_ch1 = Ppi::new_one_to_two( - ppi_ch1.map_into(), - Event::from_reg(&r.events_rxdrdy), - timer.task_clear(), - timer.task_start(), - ); - ppi_ch1.enable(); - - let mut ppi_ch2 = Ppi::new_one_to_one( - ppi_ch2.map_into(), - timer.cc(0).event_compare(), - Task::from_reg(&r.tasks_stoprx), - ); - ppi_ch2.enable(); - - Self { - tx, - rx: UarteRxWithIdle { - rx, - timer, - ppi_ch1: ppi_ch1, - _ppi_ch2: ppi_ch2, - }, - } - } - - /// Split the Uarte into a transmitter and receiver, which is - /// particuarly useful when having two tasks correlating to - /// transmitting and receiving. - pub fn split(self) -> (UarteTx<'d, U>, UarteRxWithIdle<'d, U, T>) { - (self.tx, self.rx) - } - - pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { - self.rx.read(buffer).await - } - - pub async fn write(&mut self, buffer: &[u8]) -> Result<(), Error> { - self.tx.write(buffer).await - } - - pub fn blocking_read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { - self.rx.blocking_read(buffer) - } - - pub fn blocking_write(&mut self, buffer: &[u8]) -> Result<(), Error> { - self.tx.blocking_write(buffer) - } - - pub async fn read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> { - self.rx.read_until_idle(buffer).await - } - - pub fn blocking_read_until_idle(&mut self, buffer: &mut [u8]) -> Result<usize, Error> { - self.rx.blocking_read_until_idle(buffer) - } -} - -pub struct UarteRxWithIdle<'d, U: Instance, T: TimerInstance> { - rx: UarteRx<'d, U>, - timer: Timer<'d, T>, +pub struct UarteRxWithIdle<'d, T: Instance, U: TimerInstance> { + rx: UarteRx<'d, T>, + timer: Timer<'d, U>, ppi_ch1: Ppi<'d, AnyConfigurableChannel, 1, 2>, _ppi_ch2: Ppi<'d, AnyConfigurableChannel, 1, 1>, } -impl<'d, U: Instance, T: TimerInstance> UarteRxWithIdle<'d, U, T> { +impl<'d, T: Instance, U: TimerInstance> UarteRxWithIdle<'d, T, U> { pub async fn read(&mut self, buffer: &mut [u8]) -> Result<(), Error> { self.ppi_ch1.disable(); self.rx.read(buffer).await @@ -848,8 +681,8 @@ impl<'d, U: Instance, T: TimerInstance> UarteRxWithIdle<'d, U, T> { let ptr = buffer.as_ptr(); let len = buffer.len(); - let r = U::regs(); - let s = U::state(); + let r = T::regs(); + let s = T::state(); self.ppi_ch1.enable(); @@ -904,7 +737,7 @@ impl<'d, U: Instance, T: TimerInstance> UarteRxWithIdle<'d, U, T> { let ptr = buffer.as_ptr(); let len = buffer.len(); - let r = U::regs(); + let r = T::regs(); self.ppi_ch1.enable(); @@ -929,6 +762,75 @@ impl<'d, U: Instance, T: TimerInstance> UarteRxWithIdle<'d, U, T> { Ok(n) } } + +#[cfg(not(any(feature = "_nrf9160", feature = "nrf5340")))] +pub(crate) fn apply_workaround_for_enable_anomaly(_r: &crate::pac::uarte0::RegisterBlock) { + // Do nothing +} + +#[cfg(any(feature = "_nrf9160", feature = "nrf5340"))] +pub(crate) fn apply_workaround_for_enable_anomaly(r: &crate::pac::uarte0::RegisterBlock) { + use core::ops::Deref; + + // Apply workaround for anomalies: + // - nRF9160 - anomaly 23 + // - nRF5340 - anomaly 44 + let rxenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x564) as *const u32; + let txenable_reg: *const u32 = ((r.deref() as *const _ as usize) + 0x568) as *const u32; + + // NB Safety: This is taken from Nordic's driver - + // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 + if unsafe { core::ptr::read_volatile(txenable_reg) } == 1 { + r.tasks_stoptx.write(|w| unsafe { w.bits(1) }); + } + + // NB Safety: This is taken from Nordic's driver - + // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 + if unsafe { core::ptr::read_volatile(rxenable_reg) } == 1 { + r.enable.write(|w| w.enable().enabled()); + r.tasks_stoprx.write(|w| unsafe { w.bits(1) }); + + let mut workaround_succeded = false; + // The UARTE is able to receive up to four bytes after the STOPRX task has been triggered. + // On lowest supported baud rate (1200 baud), with parity bit and two stop bits configured + // (resulting in 12 bits per data byte sent), this may take up to 40 ms. + for _ in 0..40000 { + // NB Safety: This is taken from Nordic's driver - + // https://github.com/NordicSemiconductor/nrfx/blob/master/drivers/src/nrfx_uarte.c#L197 + if unsafe { core::ptr::read_volatile(rxenable_reg) } == 0 { + workaround_succeded = true; + break; + } else { + // Need to sleep for 1us here + } + } + + if !workaround_succeded { + panic!("Failed to apply workaround for UART"); + } + + let errors = r.errorsrc.read().bits(); + // NB Safety: safe to write back the bits we just read to clear them + r.errorsrc.write(|w| unsafe { w.bits(errors) }); + r.enable.write(|w| w.enable().disabled()); + } +} + +pub(crate) fn drop_tx_rx(r: &pac::uarte0::RegisterBlock, s: &sealed::State) { + if s.tx_rx_refcount.fetch_sub(1, Ordering::Relaxed) == 1 { + // Finally we can disable, and we do so for the peripheral + // i.e. not just rx concerns. + r.enable.write(|w| w.enable().disabled()); + + gpio::deconfigure_pin(r.psel.rxd.read().bits()); + gpio::deconfigure_pin(r.psel.txd.read().bits()); + gpio::deconfigure_pin(r.psel.rts.read().bits()); + gpio::deconfigure_pin(r.psel.cts.read().bits()); + + trace!("uarte tx and rx drop: done"); + } +} + pub(crate) mod sealed { use core::sync::atomic::AtomicU8; @@ -1006,18 +908,6 @@ mod eh02 { Ok(()) } } - - impl<'d, U: Instance, T: TimerInstance> embedded_hal_02::blocking::serial::Write<u8> for UarteWithIdle<'d, U, T> { - type Error = Error; - - fn bwrite_all(&mut self, buffer: &[u8]) -> Result<(), Self::Error> { - self.blocking_write(buffer) - } - - fn bflush(&mut self) -> Result<(), Self::Error> { - Ok(()) - } - } } #[cfg(feature = "unstable-traits")] @@ -1067,10 +957,6 @@ mod eh1 { impl<'d, T: Instance> embedded_hal_1::serial::ErrorType for UarteRx<'d, T> { type Error = Error; } - - impl<'d, U: Instance, T: TimerInstance> embedded_hal_1::serial::ErrorType for UarteWithIdle<'d, U, T> { - type Error = Error; - } } #[cfg(all( @@ -1126,26 +1012,4 @@ mod eha { self.read(buffer) } } - - impl<'d, U: Instance, T: TimerInstance> embedded_hal_async::serial::Read for UarteWithIdle<'d, U, T> { - type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; - - fn read<'a>(&'a mut self, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> { - self.read(buffer) - } - } - - impl<'d, U: Instance, T: TimerInstance> embedded_hal_async::serial::Write for UarteWithIdle<'d, U, T> { - type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; - - fn write<'a>(&'a mut self, buffer: &'a [u8]) -> Self::WriteFuture<'a> { - self.write(buffer) - } - - type FlushFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a where Self: 'a; - - fn flush<'a>(&'a mut self) -> Self::FlushFuture<'a> { - async move { Ok(()) } - } - } } diff --git a/embassy-rp/src/i2c.rs b/embassy-rp/src/i2c.rs index 52f910ce..68cfc653 100644 --- a/embassy-rp/src/i2c.rs +++ b/embassy-rp/src/i2c.rs @@ -1,9 +1,12 @@ +use core::future; use core::marker::PhantomData; +use core::task::Poll; +use embassy_cortex_m::interrupt::InterruptExt; use embassy_hal_common::{into_ref, PeripheralRef}; +use embassy_sync::waitqueue::AtomicWaker; use pac::i2c; -use crate::dma::AnyChannel; use crate::gpio::sealed::Pin; use crate::gpio::AnyPin; use crate::{pac, peripherals, Peripheral}; @@ -52,31 +55,278 @@ impl Default for Config { const FIFO_SIZE: u8 = 16; pub struct I2c<'d, T: Instance, M: Mode> { - _tx_dma: Option<PeripheralRef<'d, AnyChannel>>, - _rx_dma: Option<PeripheralRef<'d, AnyChannel>>, - _dma_buf: [u16; 256], phantom: PhantomData<(&'d mut T, M)>, } impl<'d, T: Instance> I2c<'d, T, Blocking> { pub fn new_blocking( - _peri: impl Peripheral<P = T> + 'd, + peri: impl Peripheral<P = T> + 'd, scl: impl Peripheral<P = impl SclPin<T>> + 'd, sda: impl Peripheral<P = impl SdaPin<T>> + 'd, config: Config, ) -> Self { into_ref!(scl, sda); - Self::new_inner(_peri, scl.map_into(), sda.map_into(), None, None, config) + Self::new_inner(peri, scl.map_into(), sda.map_into(), config) } } -impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { +static I2C_WAKER: AtomicWaker = AtomicWaker::new(); + +impl<'d, T: Instance> I2c<'d, T, Async> { + pub fn new_async( + peri: impl Peripheral<P = T> + 'd, + scl: impl Peripheral<P = impl SclPin<T>> + 'd, + sda: impl Peripheral<P = impl SdaPin<T>> + 'd, + irq: impl Peripheral<P = T::Interrupt> + 'd, + config: Config, + ) -> Self { + into_ref!(scl, sda, irq); + + let i2c = Self::new_inner(peri, scl.map_into(), sda.map_into(), config); + + irq.set_handler(Self::on_interrupt); + unsafe { + let i2c = T::regs(); + + // mask everything initially + i2c.ic_intr_mask().write_value(i2c::regs::IcIntrMask(0)); + } + irq.unpend(); + debug_assert!(!irq.is_pending()); + irq.enable(); + + i2c + } + + /// Calls `f` to check if we are ready or not. + /// If not, `g` is called once the waker is set (to eg enable the required interrupts). + async fn wait_on<F, U, G>(&mut self, mut f: F, mut g: G) -> U + where + F: FnMut(&mut Self) -> Poll<U>, + G: FnMut(&mut Self), + { + future::poll_fn(|cx| { + let r = f(self); + + if r.is_pending() { + I2C_WAKER.register(cx.waker()); + g(self); + } + r + }) + .await + } + + // Mask interrupts and wake any task waiting for this interrupt + unsafe fn on_interrupt(_: *mut ()) { + let i2c = T::regs(); + i2c.ic_intr_mask().write_value(pac::i2c::regs::IcIntrMask::default()); + + I2C_WAKER.wake(); + } + + async fn read_async_internal(&mut self, buffer: &mut [u8], restart: bool, send_stop: bool) -> Result<(), Error> { + if buffer.is_empty() { + return Err(Error::InvalidReadBufferLength); + } + + let p = T::regs(); + + let mut remaining = buffer.len(); + let mut remaining_queue = buffer.len(); + + let mut abort_reason = Ok(()); + + while remaining > 0 { + // Waggle SCK - basically the same as write + let tx_fifo_space = Self::tx_fifo_capacity(); + let mut batch = 0; + + debug_assert!(remaining_queue > 0); + + for _ in 0..remaining_queue.min(tx_fifo_space as usize) { + remaining_queue -= 1; + let last = remaining_queue == 0; + batch += 1; + + unsafe { + p.ic_data_cmd().write(|w| { + w.set_restart(restart && remaining_queue == buffer.len() - 1); + w.set_stop(last && send_stop); + w.set_cmd(true); + }); + } + } + + // We've either run out of txfifo or just plain finished setting up + // the clocks for the message - either way we need to wait for rx + // data. + + debug_assert!(batch > 0); + let res = self + .wait_on( + |me| { + let rxfifo = Self::rx_fifo_len(); + if let Err(abort_reason) = me.read_and_clear_abort_reason() { + Poll::Ready(Err(abort_reason)) + } else if rxfifo >= batch { + Poll::Ready(Ok(rxfifo)) + } else { + Poll::Pending + } + }, + |_me| unsafe { + // Set the read threshold to the number of bytes we're + // expecting so we don't get spurious interrupts. + p.ic_rx_tl().write(|w| w.set_rx_tl(batch - 1)); + + p.ic_intr_mask().modify(|w| { + w.set_m_rx_full(true); + w.set_m_tx_abrt(true); + }); + }, + ) + .await; + + match res { + Err(reason) => { + abort_reason = Err(reason); + break; + } + Ok(rxfifo) => { + // Fetch things from rx fifo. We're assuming we're the only + // rxfifo reader, so nothing else can take things from it. + let rxbytes = (rxfifo as usize).min(remaining); + let received = buffer.len() - remaining; + for b in &mut buffer[received..received + rxbytes] { + *b = unsafe { p.ic_data_cmd().read().dat() }; + } + remaining -= rxbytes; + } + }; + } + + self.wait_stop_det(abort_reason, send_stop).await + } + + async fn write_async_internal( + &mut self, + bytes: impl IntoIterator<Item = u8>, + send_stop: bool, + ) -> Result<(), Error> { + let p = T::regs(); + + let mut bytes = bytes.into_iter().peekable(); + + let res = 'xmit: loop { + let tx_fifo_space = Self::tx_fifo_capacity(); + + for _ in 0..tx_fifo_space { + if let Some(byte) = bytes.next() { + let last = bytes.peek().is_none(); + + unsafe { + p.ic_data_cmd().write(|w| { + w.set_stop(last && send_stop); + w.set_cmd(false); + w.set_dat(byte); + }); + } + } else { + break 'xmit Ok(()); + } + } + + let res = self + .wait_on( + |me| { + if let abort_reason @ Err(_) = me.read_and_clear_abort_reason() { + Poll::Ready(abort_reason) + } else if !Self::tx_fifo_full() { + // resume if there's any space free in the tx fifo + Poll::Ready(Ok(())) + } else { + Poll::Pending + } + }, + |_me| unsafe { + // Set tx "free" threshold a little high so that we get + // woken before the fifo completely drains to minimize + // transfer stalls. + p.ic_tx_tl().write(|w| w.set_tx_tl(1)); + + p.ic_intr_mask().modify(|w| { + w.set_m_tx_empty(true); + w.set_m_tx_abrt(true); + }) + }, + ) + .await; + if res.is_err() { + break res; + } + }; + + self.wait_stop_det(res, send_stop).await + } + + /// Helper to wait for a stop bit, for both tx and rx. If we had an abort, + /// then we'll get a hardware-generated stop, otherwise wait for a stop if + /// we're expecting it. + /// + /// Also handles an abort which arises while processing the tx fifo. + async fn wait_stop_det(&mut self, had_abort: Result<(), Error>, do_stop: bool) -> Result<(), Error> { + if had_abort.is_err() || do_stop { + let p = T::regs(); + + let had_abort2 = self + .wait_on( + |me| unsafe { + // We could see an abort while processing fifo backlog, + // so handle it here. + let abort = me.read_and_clear_abort_reason(); + if had_abort.is_ok() && abort.is_err() { + Poll::Ready(abort) + } else if p.ic_raw_intr_stat().read().stop_det() { + Poll::Ready(Ok(())) + } else { + Poll::Pending + } + }, + |_me| unsafe { + p.ic_intr_mask().modify(|w| { + w.set_m_stop_det(true); + w.set_m_tx_abrt(true); + }); + }, + ) + .await; + unsafe { + p.ic_clr_stop_det().read(); + } + + had_abort.and(had_abort2) + } else { + had_abort + } + } + + pub async fn read_async(&mut self, addr: u16, buffer: &mut [u8]) -> Result<(), Error> { + Self::setup(addr)?; + self.read_async_internal(buffer, false, true).await + } + + pub async fn write_async(&mut self, addr: u16, bytes: impl IntoIterator<Item = u8>) -> Result<(), Error> { + Self::setup(addr)?; + self.write_async_internal(bytes, true).await + } +} + +impl<'d, T: Instance + 'd, M: Mode> I2c<'d, T, M> { fn new_inner( _peri: impl Peripheral<P = T> + 'd, scl: PeripheralRef<'d, AnyPin>, sda: PeripheralRef<'d, AnyPin>, - _tx_dma: Option<PeripheralRef<'d, AnyChannel>>, - _rx_dma: Option<PeripheralRef<'d, AnyChannel>>, config: Config, ) -> Self { into_ref!(_peri); @@ -87,6 +337,10 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { let p = T::regs(); unsafe { + let reset = T::reset(); + crate::reset::reset(reset); + crate::reset::unreset_wait(reset); + p.ic_enable().write(|w| w.set_enable(false)); // Select controller mode & speed @@ -172,12 +426,7 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { p.ic_enable().write(|w| w.set_enable(true)); } - Self { - _tx_dma, - _rx_dma, - _dma_buf: [0; 256], - phantom: PhantomData, - } + Self { phantom: PhantomData } } fn setup(addr: u16) -> Result<(), Error> { @@ -198,6 +447,23 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { Ok(()) } + #[inline] + fn tx_fifo_full() -> bool { + Self::tx_fifo_capacity() == 0 + } + + #[inline] + fn tx_fifo_capacity() -> u8 { + let p = T::regs(); + unsafe { FIFO_SIZE - p.ic_txflr().read().txflr() } + } + + #[inline] + fn rx_fifo_len() -> u8 { + let p = T::regs(); + unsafe { p.ic_rxflr().read().rxflr() } + } + fn read_and_clear_abort_reason(&mut self) -> Result<(), Error> { let p = T::regs(); unsafe { @@ -240,7 +506,7 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { // NOTE(unsafe) We have &mut self unsafe { // wait until there is space in the FIFO to write the next byte - while p.ic_txflr().read().txflr() == FIFO_SIZE {} + while Self::tx_fifo_full() {} p.ic_data_cmd().write(|w| { w.set_restart(restart && first); @@ -249,7 +515,7 @@ impl<'d, T: Instance, M: Mode> I2c<'d, T, M> { w.set_cmd(true); }); - while p.ic_rxflr().read().rxflr() == 0 { + while Self::rx_fifo_len() == 0 { self.read_and_clear_abort_reason()?; } @@ -451,6 +717,91 @@ mod eh1 { } } } +#[cfg(all(feature = "unstable-traits", feature = "nightly"))] +mod nightly { + use core::future::Future; + + use embedded_hal_1::i2c::Operation; + use embedded_hal_async::i2c::AddressMode; + + use super::*; + + impl<'d, A, T> embedded_hal_async::i2c::I2c<A> for I2c<'d, T, Async> + where + A: AddressMode + Into<u16> + 'static, + T: Instance + 'd, + { + type ReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a + where Self: 'a; + type WriteFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a + where Self: 'a; + type WriteReadFuture<'a> = impl Future<Output = Result<(), Self::Error>> + 'a + where Self: 'a; + type TransactionFuture<'a, 'b> = impl Future<Output = Result<(), Error>> + 'a + where Self: 'a, 'b: 'a; + + fn read<'a>(&'a mut self, address: A, buffer: &'a mut [u8]) -> Self::ReadFuture<'a> { + let addr: u16 = address.into(); + + async move { + Self::setup(addr)?; + self.read_async_internal(buffer, false, true).await + } + } + + fn write<'a>(&'a mut self, address: A, write: &'a [u8]) -> Self::WriteFuture<'a> { + let addr: u16 = address.into(); + + async move { + Self::setup(addr)?; + self.write_async_internal(write.iter().copied(), true).await + } + } + + fn write_read<'a>( + &'a mut self, + address: A, + bytes: &'a [u8], + buffer: &'a mut [u8], + ) -> Self::WriteReadFuture<'a> { + let addr: u16 = address.into(); + + async move { + Self::setup(addr)?; + self.write_async_internal(bytes.iter().cloned(), false).await?; + self.read_async_internal(buffer, false, true).await + } + } + + fn transaction<'a, 'b>( + &'a mut self, + address: A, + operations: &'a mut [Operation<'b>], + ) -> Self::TransactionFuture<'a, 'b> { + let addr: u16 = address.into(); + + async move { + let mut iterator = operations.iter_mut(); + + while let Some(op) = iterator.next() { + let last = iterator.len() == 0; + + match op { + Operation::Read(buffer) => { + Self::setup(addr)?; + self.read_async_internal(buffer, false, last).await?; + } + Operation::Write(buffer) => { + Self::setup(addr)?; + self.write_async_internal(buffer.into_iter().cloned(), last).await?; + } + } + } + Ok(()) + } + } + } +} fn i2c_reserved_addr(addr: u16) -> bool { (addr & 0x78) == 0 || (addr & 0x78) == 0x78 @@ -466,6 +817,7 @@ mod sealed { type Interrupt: Interrupt; fn regs() -> crate::pac::i2c::I2c; + fn reset() -> crate::pac::resets::regs::Peripherals; } pub trait Mode {} @@ -492,23 +844,31 @@ impl_mode!(Async); pub trait Instance: sealed::Instance {} macro_rules! impl_instance { - ($type:ident, $irq:ident, $tx_dreq:expr, $rx_dreq:expr) => { + ($type:ident, $irq:ident, $reset:ident, $tx_dreq:expr, $rx_dreq:expr) => { impl sealed::Instance for peripherals::$type { const TX_DREQ: u8 = $tx_dreq; const RX_DREQ: u8 = $rx_dreq; type Interrupt = crate::interrupt::$irq; + #[inline] fn regs() -> pac::i2c::I2c { pac::$type } + + #[inline] + fn reset() -> pac::resets::regs::Peripherals { + let mut ret = pac::resets::regs::Peripherals::default(); + ret.$reset(true); + ret + } } impl Instance for peripherals::$type {} }; } -impl_instance!(I2C0, I2C0_IRQ, 32, 33); -impl_instance!(I2C1, I2C1_IRQ, 34, 35); +impl_instance!(I2C0, I2C0_IRQ, set_i2c0, 32, 33); +impl_instance!(I2C1, I2C1_IRQ, set_i2c1, 34, 35); pub trait SdaPin<T: Instance>: sealed::SdaPin<T> + crate::gpio::Pin {} pub trait SclPin<T: Instance>: sealed::SclPin<T> + crate::gpio::Pin {} diff --git a/examples/nrf/src/bin/uart_idle.rs b/examples/nrf/src/bin/uart_idle.rs index 09ec624c..6af4f709 100644 --- a/examples/nrf/src/bin/uart_idle.rs +++ b/examples/nrf/src/bin/uart_idle.rs @@ -15,7 +15,8 @@ async fn main(_spawner: Spawner) { config.baudrate = uarte::Baudrate::BAUD115200; let irq = interrupt::take!(UARTE0_UART0); - let mut uart = uarte::UarteWithIdle::new(p.UARTE0, p.TIMER0, p.PPI_CH0, p.PPI_CH1, irq, p.P0_08, p.P0_06, config); + let uart = uarte::Uarte::new(p.UARTE0, irq, p.P0_08, p.P0_06, config); + let (mut tx, mut rx) = uart.split_with_idle(p.TIMER0, p.PPI_CH0, p.PPI_CH1); info!("uarte initialized!"); @@ -23,12 +24,12 @@ async fn main(_spawner: Spawner) { let mut buf = [0; 8]; buf.copy_from_slice(b"Hello!\r\n"); - unwrap!(uart.write(&buf).await); + unwrap!(tx.write(&buf).await); info!("wrote hello in uart!"); loop { info!("reading..."); - let n = unwrap!(uart.read_until_idle(&mut buf).await); + let n = unwrap!(rx.read_until_idle(&mut buf).await); info!("got {} bytes", n); } } diff --git a/examples/rp/Cargo.toml b/examples/rp/Cargo.toml index a5af8b2f..747dde51 100644 --- a/examples/rp/Cargo.toml +++ b/examples/rp/Cargo.toml @@ -31,3 +31,6 @@ embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-alpha.9" } embedded-hal-async = { version = "0.1.0-alpha.1" } embedded-io = { version = "0.3.0", features = ["async", "defmt"] } static_cell = "1.0.0" + +[profile.release] +debug = true diff --git a/examples/rp/src/bin/i2c_async.rs b/examples/rp/src/bin/i2c_async.rs new file mode 100644 index 00000000..d1a2e3cd --- /dev/null +++ b/examples/rp/src/bin/i2c_async.rs @@ -0,0 +1,102 @@ +#![no_std] +#![no_main] +#![feature(type_alias_impl_trait)] + +use defmt::*; +use embassy_executor::Spawner; +use embassy_rp::i2c::{self, Config}; +use embassy_rp::interrupt; +use embassy_time::{Duration, Timer}; +use embedded_hal_async::i2c::I2c; +use {defmt_rtt as _, panic_probe as _}; + +#[allow(dead_code)] +mod mcp23017 { + pub const ADDR: u8 = 0x20; // default addr + + macro_rules! mcpregs { + ($($name:ident : $val:expr),* $(,)?) => { + $( + pub const $name: u8 = $val; + )* + + pub fn regname(reg: u8) -> &'static str { + match reg { + $( + $val => stringify!($name), + )* + _ => panic!("bad reg"), + } + } + } + } + + // These are correct for IOCON.BANK=0 + mcpregs! { + IODIRA: 0x00, + IPOLA: 0x02, + GPINTENA: 0x04, + DEFVALA: 0x06, + INTCONA: 0x08, + IOCONA: 0x0A, + GPPUA: 0x0C, + INTFA: 0x0E, + INTCAPA: 0x10, + GPIOA: 0x12, + OLATA: 0x14, + IODIRB: 0x01, + IPOLB: 0x03, + GPINTENB: 0x05, + DEFVALB: 0x07, + INTCONB: 0x09, + IOCONB: 0x0B, + GPPUB: 0x0D, + INTFB: 0x0F, + INTCAPB: 0x11, + GPIOB: 0x13, + OLATB: 0x15, + } +} + +#[embassy_executor::main] +async fn main(_spawner: Spawner) { + let p = embassy_rp::init(Default::default()); + + let sda = p.PIN_14; + let scl = p.PIN_15; + let irq = interrupt::take!(I2C1_IRQ); + + info!("set up i2c "); + let mut i2c = i2c::I2c::new_async(p.I2C1, scl, sda, irq, Config::default()); + + use mcp23017::*; + + info!("init mcp23017 config for IxpandO"); + // init - a outputs, b inputs + i2c.write(ADDR, &[IODIRA, 0x00]).await.unwrap(); + i2c.write(ADDR, &[IODIRB, 0xff]).await.unwrap(); + i2c.write(ADDR, &[GPPUB, 0xff]).await.unwrap(); // pullups + + let mut val = 1; + loop { + let mut portb = [0]; + + i2c.write_read(mcp23017::ADDR, &[GPIOB], &mut portb).await.unwrap(); + info!("portb = {:02x}", portb[0]); + i2c.write(mcp23017::ADDR, &[GPIOA, val | portb[0]]).await.unwrap(); + val = val.rotate_left(1); + + // get a register dump + info!("getting register dump"); + let mut regs = [0; 22]; + i2c.write_read(ADDR, &[0], &mut regs).await.unwrap(); + // always get the regdump but only display it if portb'0 is set + if portb[0] & 1 != 0 { + for (idx, reg) in regs.into_iter().enumerate() { + info!("{} => {:02x}", regname(idx as u8), reg); + } + } + + Timer::after(Duration::from_millis(100)).await; + } +} |