/* * Copyright (c) 2018-2022, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern u8 start_of_kernel_image[]; extern u8 end_of_kernel_image[]; extern u8 start_of_kernel_text[]; extern u8 start_of_kernel_data[]; extern u8 end_of_kernel_bss[]; extern u8 start_of_ro_after_init[]; extern u8 end_of_ro_after_init[]; extern u8 start_of_unmap_after_init[]; extern u8 end_of_unmap_after_init[]; extern u8 start_of_kernel_ksyms[]; extern u8 end_of_kernel_ksyms[]; extern multiboot_module_entry_t multiboot_copy_boot_modules_array[16]; extern size_t multiboot_copy_boot_modules_count; namespace Kernel::Memory { ErrorOr page_round_up(FlatPtr x) { if (x > (explode_byte(0xFF) & ~0xFFF)) { return Error::from_errno(EINVAL); } return (((FlatPtr)(x)) + PAGE_SIZE - 1) & (~(PAGE_SIZE - 1)); } // NOTE: We can NOT use Singleton for this class, because // MemoryManager::initialize is called *before* global constructors are // run. If we do, then Singleton would get re-initialized, causing // the memory manager to be initialized twice! static MemoryManager* s_the; MemoryManager& MemoryManager::the() { return *s_the; } bool MemoryManager::is_initialized() { return s_the != nullptr; } static UNMAP_AFTER_INIT VirtualRange kernel_virtual_range() { #if ARCH(AARCH64) // NOTE: This is not the same as x86_64, because the aarch64 kernel currently doesn't use the pre-kernel. return VirtualRange { VirtualAddress(kernel_mapping_base), KERNEL_PD_END - kernel_mapping_base }; #else size_t kernel_range_start = kernel_mapping_base + 2 * MiB; // The first 2 MiB are used for mapping the pre-kernel return VirtualRange { VirtualAddress(kernel_range_start), KERNEL_PD_END - kernel_range_start }; #endif } MemoryManager::GlobalData::GlobalData() : region_tree(kernel_virtual_range()) { } UNMAP_AFTER_INIT MemoryManager::MemoryManager() { s_the = this; parse_memory_map(); activate_kernel_page_directory(kernel_page_directory()); protect_kernel_image(); // We're temporarily "committing" to two pages that we need to allocate below auto committed_pages = commit_physical_pages(2).release_value(); m_shared_zero_page = committed_pages.take_one(); // We're wasting a page here, we just need a special tag (physical // address) so that we know when we need to lazily allocate a page // that we should be drawing this page from the committed pool rather // than potentially failing if no pages are available anymore. // By using a tag we don't have to query the VMObject for every page // whether it was committed or not m_lazy_committed_page = committed_pages.take_one(); } UNMAP_AFTER_INIT MemoryManager::~MemoryManager() = default; UNMAP_AFTER_INIT void MemoryManager::protect_kernel_image() { SpinlockLocker page_lock(kernel_page_directory().get_lock()); // Disable writing to the kernel text and rodata segments. for (auto const* i = start_of_kernel_text; i < start_of_kernel_data; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); } if (Processor::current().has_nx()) { // Disable execution of the kernel data, bss and heap segments. for (auto const* i = start_of_kernel_data; i < end_of_kernel_image; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_execute_disabled(true); } } } UNMAP_AFTER_INIT void MemoryManager::unmap_prekernel() { SpinlockLocker page_lock(kernel_page_directory().get_lock()); auto start = start_of_prekernel_image.page_base().get(); auto end = end_of_prekernel_image.page_base().get(); for (auto i = start; i <= end; i += PAGE_SIZE) release_pte(kernel_page_directory(), VirtualAddress(i), i == end ? IsLastPTERelease::Yes : IsLastPTERelease::No); flush_tlb(&kernel_page_directory(), VirtualAddress(start), (end - start) / PAGE_SIZE); } UNMAP_AFTER_INIT void MemoryManager::protect_readonly_after_init_memory() { SpinlockLocker page_lock(kernel_page_directory().get_lock()); // Disable writing to the .ro_after_init section for (auto i = (FlatPtr)&start_of_ro_after_init; i < (FlatPtr)&end_of_ro_after_init; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } } void MemoryManager::unmap_text_after_init() { SpinlockLocker page_lock(kernel_page_directory().get_lock()); auto start = page_round_down((FlatPtr)&start_of_unmap_after_init); auto end = page_round_up((FlatPtr)&end_of_unmap_after_init).release_value_but_fixme_should_propagate_errors(); // Unmap the entire .unmap_after_init section for (auto i = start; i < end; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.clear(); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } dmesgln("Unmapped {} KiB of kernel text after init! :^)", (end - start) / KiB); } UNMAP_AFTER_INIT void MemoryManager::protect_ksyms_after_init() { SpinlockLocker page_lock(kernel_page_directory().get_lock()); auto start = page_round_down((FlatPtr)start_of_kernel_ksyms); auto end = page_round_up((FlatPtr)end_of_kernel_ksyms).release_value_but_fixme_should_propagate_errors(); for (auto i = start; i < end; i += PAGE_SIZE) { auto& pte = *ensure_pte(kernel_page_directory(), VirtualAddress(i)); pte.set_writable(false); flush_tlb(&kernel_page_directory(), VirtualAddress(i)); } dmesgln("Write-protected kernel symbols after init."); } IterationDecision MemoryManager::for_each_physical_memory_range(Function callback) { return m_global_data.with([&](auto& global_data) { VERIFY(!global_data.physical_memory_ranges.is_empty()); for (auto& current_range : global_data.physical_memory_ranges) { IterationDecision decision = callback(current_range); if (decision != IterationDecision::Continue) return decision; } return IterationDecision::Continue; }); } UNMAP_AFTER_INIT void MemoryManager::register_reserved_ranges() { m_global_data.with([&](auto& global_data) { VERIFY(!global_data.physical_memory_ranges.is_empty()); ContiguousReservedMemoryRange range; for (auto& current_range : global_data.physical_memory_ranges) { if (current_range.type != PhysicalMemoryRangeType::Reserved) { if (range.start.is_null()) continue; global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, current_range.start.get() - range.start.get() }); range.start.set((FlatPtr) nullptr); continue; } if (!range.start.is_null()) { continue; } range.start = current_range.start; } if (global_data.physical_memory_ranges.last().type != PhysicalMemoryRangeType::Reserved) return; if (range.start.is_null()) return; global_data.reserved_memory_ranges.append(ContiguousReservedMemoryRange { range.start, global_data.physical_memory_ranges.last().start.get() + global_data.physical_memory_ranges.last().length - range.start.get() }); }); } bool MemoryManager::is_allowed_to_read_physical_memory_for_userspace(PhysicalAddress start_address, size_t read_length) const { // Note: Guard against overflow in case someone tries to mmap on the edge of // the RAM if (start_address.offset_addition_would_overflow(read_length)) return false; auto end_address = start_address.offset(read_length); return m_global_data.with([&](auto& global_data) { for (auto const& current_range : global_data.reserved_memory_ranges) { if (current_range.start > start_address) continue; if (current_range.start.offset(current_range.length) < end_address) continue; return true; } return false; }); } UNMAP_AFTER_INIT void MemoryManager::parse_memory_map() { // Register used memory regions that we know of. m_global_data.with([&](auto& global_data) { global_data.used_memory_ranges.ensure_capacity(4); #if ARCH(X86_64) // NOTE: We don't touch the first 1 MiB of RAM on x86-64 even if it's usable as indicated // by a certain memory map. There are 2 reasons for this: // // The first reason is specified for Linux doing the same thing in // https://cateee.net/lkddb/web-lkddb/X86_RESERVE_LOW.html - // "By default we reserve the first 64K of physical RAM, as a number of BIOSes are known // to corrupt that memory range during events such as suspend/resume or monitor cable insertion, // so it must not be used by the kernel." // // Linux also allows configuring this knob in compiletime for this reserved range length, that might // also include the EBDA and other potential ranges in the first 1 MiB that could be corrupted by the BIOS: // "You can set this to 4 if you are absolutely sure that you trust the BIOS to get all its memory // reservations and usages right. If you know your BIOS have problems beyond the default 64K area, // you can set this to 640 to avoid using the entire low memory range." // // The second reason is that the first 1 MiB memory range should also include the actual BIOS blob // together with possible execution blob code for various option ROMs, which should not be touched // by our kernel. // // **To be completely on the safe side** and never worry about where the EBDA is located, how BIOS might // corrupt the low memory range during power state changing, other bad behavior of some BIOS might change // a value in the very first 64k bytes of RAM, etc - we should just ignore this range completely. global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::LowMemory, PhysicalAddress(0x00000000), PhysicalAddress(1 * MiB) }); #endif global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::Kernel, PhysicalAddress(virtual_to_low_physical((FlatPtr)start_of_kernel_image)), PhysicalAddress(page_round_up(virtual_to_low_physical((FlatPtr)end_of_kernel_image)).release_value_but_fixme_should_propagate_errors()) }); if (multiboot_flags & 0x4) { auto* bootmods_start = multiboot_copy_boot_modules_array; auto* bootmods_end = bootmods_start + multiboot_copy_boot_modules_count; for (auto* bootmod = bootmods_start; bootmod < bootmods_end; bootmod++) { global_data.used_memory_ranges.append(UsedMemoryRange { UsedMemoryRangeType::BootModule, PhysicalAddress(bootmod->start), PhysicalAddress(bootmod->end) }); } } auto* mmap_begin = multiboot_memory_map; auto* mmap_end = multiboot_memory_map + multiboot_memory_map_count; struct ContiguousPhysicalVirtualRange { PhysicalAddress lower; PhysicalAddress upper; }; Vector contiguous_physical_ranges; for (auto* mmap = mmap_begin; mmap < mmap_end; mmap++) { // We have to copy these onto the stack, because we take a reference to these when printing them out, // and doing so on a packed struct field is UB. auto address = mmap->addr; auto length = mmap->len; ArmedScopeGuard write_back_guard = [&]() { mmap->addr = address; mmap->len = length; }; dmesgln("MM: Multiboot mmap: address={:p}, length={}, type={}", address, length, mmap->type); auto start_address = PhysicalAddress(address); switch (mmap->type) { case (MULTIBOOT_MEMORY_AVAILABLE): global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Usable, start_address, length }); break; case (MULTIBOOT_MEMORY_RESERVED): #if ARCH(X86_64) // Workaround for https://gitlab.com/qemu-project/qemu/-/commit/8504f129450b909c88e199ca44facd35d38ba4de // That commit added a reserved 12GiB entry for the benefit of virtual firmware. // We can safely ignore this block as it isn't actually reserved on any real hardware. // From: https://lore.kernel.org/all/20220701161014.3850-1-joao.m.martins@oracle.com/ // "Always add the HyperTransport range into e820 even when the relocation isn't // done *and* there's >= 40 phys bit that would put max phyusical boundary to 1T // This should allow virtual firmware to avoid the reserved range at the // 1T boundary on VFs with big bars." if (address != 0x000000fd00000000 || length != (0x000000ffffffffff - 0x000000fd00000000) + 1) #endif global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Reserved, start_address, length }); break; case (MULTIBOOT_MEMORY_ACPI_RECLAIMABLE): global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_Reclaimable, start_address, length }); break; case (MULTIBOOT_MEMORY_NVS): global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::ACPI_NVS, start_address, length }); break; case (MULTIBOOT_MEMORY_BADRAM): dmesgln("MM: Warning, detected bad memory range!"); global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::BadMemory, start_address, length }); break; default: dbgln("MM: Unknown range!"); global_data.physical_memory_ranges.append(PhysicalMemoryRange { PhysicalMemoryRangeType::Unknown, start_address, length }); break; } if (mmap->type != MULTIBOOT_MEMORY_AVAILABLE) continue; // Fix up unaligned memory regions. auto diff = (FlatPtr)address % PAGE_SIZE; if (diff != 0) { dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting {:p} by {} bytes", address, diff); diff = PAGE_SIZE - diff; address += diff; length -= diff; } if ((length % PAGE_SIZE) != 0) { dmesgln("MM: Got an unaligned physical_region from the bootloader; correcting length {} by {} bytes", length, length % PAGE_SIZE); length -= length % PAGE_SIZE; } if (length < PAGE_SIZE) { dmesgln("MM: Memory physical_region from bootloader is too small; we want >= {} bytes, but got {} bytes", PAGE_SIZE, length); continue; } for (PhysicalSize page_base = address; page_base <= (address + length); page_base += PAGE_SIZE) { auto addr = PhysicalAddress(page_base); // Skip used memory ranges. bool should_skip = false; for (auto& used_range : global_data.used_memory_ranges) { if (addr.get() >= used_range.start.get() && addr.get() <= used_range.end.get()) { should_skip = true; break; } } if (should_skip) continue; if (contiguous_physical_ranges.is_empty() || contiguous_physical_ranges.last().upper.offset(PAGE_SIZE) != addr) { contiguous_physical_ranges.append(ContiguousPhysicalVirtualRange { .lower = addr, .upper = addr, }); } else { contiguous_physical_ranges.last().upper = addr; } } } for (auto& range : contiguous_physical_ranges) { global_data.physical_regions.append(PhysicalRegion::try_create(range.lower, range.upper).release_nonnull()); } for (auto& region : global_data.physical_regions) global_data.system_memory_info.physical_pages += region->size(); register_reserved_ranges(); for (auto& range : global_data.reserved_memory_ranges) { dmesgln("MM: Contiguous reserved range from {}, length is {}", range.start, range.length); } initialize_physical_pages(); VERIFY(global_data.system_memory_info.physical_pages > 0); // We start out with no committed pages global_data.system_memory_info.physical_pages_uncommitted = global_data.system_memory_info.physical_pages; for (auto& used_range : global_data.used_memory_ranges) { dmesgln("MM: {} range @ {} - {} (size {:#x})", UserMemoryRangeTypeNames[to_underlying(used_range.type)], used_range.start, used_range.end.offset(-1), used_range.end.as_ptr() - used_range.start.as_ptr()); } for (auto& region : global_data.physical_regions) { dmesgln("MM: User physical region: {} - {} (size {:#x})", region->lower(), region->upper().offset(-1), PAGE_SIZE * region->size()); region->initialize_zones(); } }); } UNMAP_AFTER_INIT void MemoryManager::initialize_physical_pages() { m_global_data.with([&](auto& global_data) { // We assume that the physical page range is contiguous and doesn't contain huge gaps! PhysicalAddress highest_physical_address; for (auto& range : global_data.used_memory_ranges) { if (range.end.get() > highest_physical_address.get()) highest_physical_address = range.end; } for (auto& region : global_data.physical_memory_ranges) { auto range_end = PhysicalAddress(region.start).offset(region.length); if (range_end.get() > highest_physical_address.get()) highest_physical_address = range_end; } // Calculate how many total physical pages the array will have m_physical_page_entries_count = PhysicalAddress::physical_page_index(highest_physical_address.get()) + 1; VERIFY(m_physical_page_entries_count != 0); VERIFY(!Checked::multiplication_would_overflow(m_physical_page_entries_count, sizeof(PhysicalPageEntry))); // Calculate how many bytes the array will consume auto physical_page_array_size = m_physical_page_entries_count * sizeof(PhysicalPageEntry); auto physical_page_array_pages = page_round_up(physical_page_array_size).release_value_but_fixme_should_propagate_errors() / PAGE_SIZE; VERIFY(physical_page_array_pages * PAGE_SIZE >= physical_page_array_size); // Calculate how many page tables we will need to be able to map them all auto needed_page_table_count = (physical_page_array_pages + 512 - 1) / 512; auto physical_page_array_pages_and_page_tables_count = physical_page_array_pages + needed_page_table_count; // Now that we know how much memory we need for a contiguous array of PhysicalPage instances, find a memory region that can fit it PhysicalRegion* found_region { nullptr }; Optional found_region_index; for (size_t i = 0; i < global_data.physical_regions.size(); ++i) { auto& region = global_data.physical_regions[i]; if (region->size() >= physical_page_array_pages_and_page_tables_count) { found_region = region; found_region_index = i; break; } } if (!found_region) { dmesgln("MM: Need {} bytes for physical page management, but no memory region is large enough!", physical_page_array_pages_and_page_tables_count); VERIFY_NOT_REACHED(); } VERIFY(global_data.system_memory_info.physical_pages >= physical_page_array_pages_and_page_tables_count); global_data.system_memory_info.physical_pages -= physical_page_array_pages_and_page_tables_count; if (found_region->size() == physical_page_array_pages_and_page_tables_count) { // We're stealing the entire region global_data.physical_pages_region = global_data.physical_regions.take(*found_region_index); } else { global_data.physical_pages_region = found_region->try_take_pages_from_beginning(physical_page_array_pages_and_page_tables_count); } global_data.used_memory_ranges.append({ UsedMemoryRangeType::PhysicalPages, global_data.physical_pages_region->lower(), global_data.physical_pages_region->upper() }); // Create the bare page directory. This is not a fully constructed page directory and merely contains the allocators! m_kernel_page_directory = PageDirectory::must_create_kernel_page_directory(); { // Carve out the whole page directory covering the kernel image to make MemoryManager::initialize_physical_pages() happy FlatPtr start_of_range = ((FlatPtr)start_of_kernel_image & ~(FlatPtr)0x1fffff); FlatPtr end_of_range = ((FlatPtr)end_of_kernel_image & ~(FlatPtr)0x1fffff) + 0x200000; MUST(global_data.region_tree.place_specifically(*MUST(Region::create_unbacked()).leak_ptr(), VirtualRange { VirtualAddress(start_of_range), end_of_range - start_of_range })); } // Allocate a virtual address range for our array // This looks awkward, but it basically creates a dummy region to occupy the address range permanently. auto& region = *MUST(Region::create_unbacked()).leak_ptr(); MUST(global_data.region_tree.place_anywhere(region, RandomizeVirtualAddress::No, physical_page_array_pages * PAGE_SIZE)); auto range = region.range(); // Now that we have our special m_physical_pages_region region with enough pages to hold the entire array // try to map the entire region into kernel space so we always have it // We can't use ensure_pte here because it would try to allocate a PhysicalPage and we don't have the array // mapped yet so we can't create them // Create page tables at the beginning of m_physical_pages_region, followed by the PhysicalPageEntry array auto page_tables_base = global_data.physical_pages_region->lower(); auto physical_page_array_base = page_tables_base.offset(needed_page_table_count * PAGE_SIZE); auto physical_page_array_current_page = physical_page_array_base.get(); auto virtual_page_array_base = range.base().get(); auto virtual_page_array_current_page = virtual_page_array_base; for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) { auto virtual_page_base_for_this_pt = virtual_page_array_current_page; auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE); auto* pt = reinterpret_cast(quickmap_page(pt_paddr)); __builtin_memset(pt, 0, PAGE_SIZE); for (size_t pte_index = 0; pte_index < PAGE_SIZE / sizeof(PageTableEntry); pte_index++) { auto& pte = pt[pte_index]; pte.set_physical_page_base(physical_page_array_current_page); pte.set_user_allowed(false); pte.set_writable(true); if (Processor::current().has_nx()) pte.set_execute_disabled(false); pte.set_global(true); pte.set_present(true); physical_page_array_current_page += PAGE_SIZE; virtual_page_array_current_page += PAGE_SIZE; } unquickmap_page(); // Hook the page table into the kernel page directory u32 page_directory_index = (virtual_page_base_for_this_pt >> 21) & 0x1ff; auto* pd = reinterpret_cast(quickmap_page(boot_pd_kernel)); PageDirectoryEntry& pde = pd[page_directory_index]; VERIFY(!pde.is_present()); // Nothing should be using this PD yet // We can't use ensure_pte quite yet! pde.set_page_table_base(pt_paddr.get()); pde.set_user_allowed(false); pde.set_present(true); pde.set_writable(true); pde.set_global(true); unquickmap_page(); flush_tlb_local(VirtualAddress(virtual_page_base_for_this_pt)); } // We now have the entire PhysicalPageEntry array mapped! m_physical_page_entries = (PhysicalPageEntry*)range.base().get(); for (size_t i = 0; i < m_physical_page_entries_count; i++) new (&m_physical_page_entries[i]) PageTableEntry(); // Now we should be able to allocate PhysicalPage instances, // so finish setting up the kernel page directory m_kernel_page_directory->allocate_kernel_directory(); // Now create legit PhysicalPage objects for the page tables we created. virtual_page_array_current_page = virtual_page_array_base; for (size_t pt_index = 0; pt_index < needed_page_table_count; pt_index++) { VERIFY(virtual_page_array_current_page <= range.end().get()); auto pt_paddr = page_tables_base.offset(pt_index * PAGE_SIZE); auto physical_page_index = PhysicalAddress::physical_page_index(pt_paddr.get()); auto& physical_page_entry = m_physical_page_entries[physical_page_index]; auto physical_page = adopt_lock_ref(*new (&physical_page_entry.allocated.physical_page) PhysicalPage(MayReturnToFreeList::No)); // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte() (void)physical_page.leak_ref(); virtual_page_array_current_page += (PAGE_SIZE / sizeof(PageTableEntry)) * PAGE_SIZE; } dmesgln("MM: Physical page entries: {}", range); }); } PhysicalPageEntry& MemoryManager::get_physical_page_entry(PhysicalAddress physical_address) { auto physical_page_entry_index = PhysicalAddress::physical_page_index(physical_address.get()); VERIFY(physical_page_entry_index < m_physical_page_entries_count); return m_physical_page_entries[physical_page_entry_index]; } PhysicalAddress MemoryManager::get_physical_address(PhysicalPage const& physical_page) { PhysicalPageEntry const& physical_page_entry = *reinterpret_cast((u8 const*)&physical_page - __builtin_offsetof(PhysicalPageEntry, allocated.physical_page)); size_t physical_page_entry_index = &physical_page_entry - m_physical_page_entries; VERIFY(physical_page_entry_index < m_physical_page_entries_count); return PhysicalAddress((PhysicalPtr)physical_page_entry_index * PAGE_SIZE); } PageTableEntry* MemoryManager::pte(PageDirectory& page_directory, VirtualAddress vaddr) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(page_directory.get_lock().is_locked_by_current_processor()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(const_cast(page_directory), page_directory_table_index); PageDirectoryEntry const& pde = pd[page_directory_index]; if (!pde.is_present()) return nullptr; return &quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base()))[page_table_index]; } PageTableEntry* MemoryManager::ensure_pte(PageDirectory& page_directory, VirtualAddress vaddr) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(page_directory.get_lock().is_locked_by_current_processor()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); auto& pde = pd[page_directory_index]; if (pde.is_present()) return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index]; bool did_purge = false; auto page_table_or_error = allocate_physical_page(ShouldZeroFill::Yes, &did_purge); if (page_table_or_error.is_error()) { dbgln("MM: Unable to allocate page table to map {}", vaddr); return nullptr; } auto page_table = page_table_or_error.release_value(); if (did_purge) { // If any memory had to be purged, ensure_pte may have been called as part // of the purging process. So we need to re-map the pd in this case to ensure // we're writing to the correct underlying physical page pd = quickmap_pd(page_directory, page_directory_table_index); VERIFY(&pde == &pd[page_directory_index]); // Sanity check VERIFY(!pde.is_present()); // Should have not changed } pde.set_page_table_base(page_table->paddr().get()); pde.set_user_allowed(true); pde.set_present(true); pde.set_writable(true); pde.set_global(&page_directory == m_kernel_page_directory.ptr()); // NOTE: This leaked ref is matched by the unref in MemoryManager::release_pte() (void)page_table.leak_ref(); return &quickmap_pt(PhysicalAddress(pde.page_table_base()))[page_table_index]; } void MemoryManager::release_pte(PageDirectory& page_directory, VirtualAddress vaddr, IsLastPTERelease is_last_pte_release) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(page_directory.get_lock().is_locked_by_current_processor()); u32 page_directory_table_index = (vaddr.get() >> 30) & 0x1ff; u32 page_directory_index = (vaddr.get() >> 21) & 0x1ff; u32 page_table_index = (vaddr.get() >> 12) & 0x1ff; auto* pd = quickmap_pd(page_directory, page_directory_table_index); PageDirectoryEntry& pde = pd[page_directory_index]; if (pde.is_present()) { auto* page_table = quickmap_pt(PhysicalAddress((FlatPtr)pde.page_table_base())); auto& pte = page_table[page_table_index]; pte.clear(); if (is_last_pte_release == IsLastPTERelease::Yes || page_table_index == 0x1ff) { // If this is the last PTE in a region or the last PTE in a page table then // check if we can also release the page table bool all_clear = true; for (u32 i = 0; i <= 0x1ff; i++) { if (!page_table[i].is_null()) { all_clear = false; break; } } if (all_clear) { get_physical_page_entry(PhysicalAddress { pde.page_table_base() }).allocated.physical_page.unref(); pde.clear(); } } } } UNMAP_AFTER_INIT void MemoryManager::initialize(u32 cpu) { dmesgln("Initialize MMU"); ProcessorSpecific::initialize(); if (cpu == 0) { new MemoryManager; kmalloc_enable_expand(); } } Region* MemoryManager::find_user_region_from_vaddr(AddressSpace& space, VirtualAddress vaddr) { return space.find_region_containing({ vaddr, 1 }); } void MemoryManager::validate_syscall_preconditions(Process& process, RegisterState const& regs) { bool should_crash = false; char const* crash_description = nullptr; int crash_signal = 0; auto unlock_and_handle_crash = [&](char const* description, int signal) { should_crash = true; crash_description = description; crash_signal = signal; }; process.address_space().with([&](auto& space) -> void { VirtualAddress userspace_sp = VirtualAddress { regs.userspace_sp() }; if (!MM.validate_user_stack(*space, userspace_sp)) { dbgln("Invalid stack pointer: {}", userspace_sp); return unlock_and_handle_crash("Bad stack on syscall entry", SIGSEGV); } VirtualAddress ip = VirtualAddress { regs.ip() }; auto* calling_region = MM.find_user_region_from_vaddr(*space, ip); if (!calling_region) { dbgln("Syscall from {:p} which has no associated region", ip); return unlock_and_handle_crash("Syscall from unknown region", SIGSEGV); } if (calling_region->is_writable()) { dbgln("Syscall from writable memory at {:p}", ip); return unlock_and_handle_crash("Syscall from writable memory", SIGSEGV); } if (space->enforces_syscall_regions() && !calling_region->is_syscall_region()) { dbgln("Syscall from non-syscall region"); return unlock_and_handle_crash("Syscall from non-syscall region", SIGSEGV); } }); if (should_crash) { handle_crash(regs, crash_description, crash_signal); } } PageFaultResponse MemoryManager::handle_page_fault(PageFault const& fault) { auto faulted_in_range = [&fault](auto const* start, auto const* end) { return fault.vaddr() >= VirtualAddress { start } && fault.vaddr() < VirtualAddress { end }; }; if (faulted_in_range(&start_of_ro_after_init, &end_of_ro_after_init)) { dbgln("Attempt to write into READONLY_AFTER_INIT section"); return PageFaultResponse::ShouldCrash; } if (faulted_in_range(&start_of_unmap_after_init, &end_of_unmap_after_init)) { auto const* kernel_symbol = symbolicate_kernel_address(fault.vaddr().get()); dbgln("Attempt to access UNMAP_AFTER_INIT section ({}: {})", fault.vaddr(), kernel_symbol ? kernel_symbol->name : "(Unknown)"); return PageFaultResponse::ShouldCrash; } if (faulted_in_range(&start_of_kernel_ksyms, &end_of_kernel_ksyms)) { dbgln("Attempt to access KSYMS section"); return PageFaultResponse::ShouldCrash; } if (Processor::current_in_irq()) { dbgln("CPU[{}] BUG! Page fault while handling IRQ! code={}, vaddr={}, irq level: {}", Processor::current_id(), fault.code(), fault.vaddr(), Processor::current_in_irq()); dump_kernel_regions(); return PageFaultResponse::ShouldCrash; } dbgln_if(PAGE_FAULT_DEBUG, "MM: CPU[{}] handle_page_fault({:#04x}) at {}", Processor::current_id(), fault.code(), fault.vaddr()); // The faulting region may be unmapped concurrently to handling this page fault, and since // regions are singly-owned it would usually result in the region being immediately // de-allocated. To ensure the region is not de-allocated while we're still handling the // fault we increase a page fault counter on the region, and the region will refrain from // de-allocating itself until the counter reaches zero. (Since unmapping the region also // includes removing it from the region tree while holding the address space spinlock, and // because we increment the counter while still holding the spinlock it is guaranteed that // we always increment the counter before it gets a chance to be deleted) Region* region = nullptr; if (is_user_address(fault.vaddr())) { auto page_directory = PageDirectory::find_current(); if (!page_directory) return PageFaultResponse::ShouldCrash; auto* process = page_directory->process(); VERIFY(process); region = process->address_space().with([&](auto& space) -> Region* { auto* region = find_user_region_from_vaddr(*space, fault.vaddr()); if (!region) return nullptr; region->start_handling_page_fault({}); return region; }); } else { region = MM.m_global_data.with([&](auto& global_data) -> Region* { auto* region = global_data.region_tree.find_region_containing(fault.vaddr()); if (!region) return nullptr; region->start_handling_page_fault({}); return region; }); } if (!region) return PageFaultResponse::ShouldCrash; auto response = region->handle_fault(fault); region->finish_handling_page_fault({}); return response; } ErrorOr> MemoryManager::allocate_contiguous_kernel_region(size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); OwnPtr name_kstring; if (!name.is_null()) name_kstring = TRY(KString::try_create(name)); auto vmobject = TRY(AnonymousVMObject::try_create_physically_contiguous_with_size(size)); auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable)); TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); })); TRY(region->map(kernel_page_directory())); return region; } ErrorOr> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access, RefPtr& dma_buffer_page) { dma_buffer_page = TRY(allocate_physical_page()); // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default) return allocate_kernel_region(dma_buffer_page->paddr(), PAGE_SIZE, name, access, Region::Cacheable::No); } ErrorOr> MemoryManager::allocate_dma_buffer_page(StringView name, Memory::Region::Access access) { RefPtr dma_buffer_page; return allocate_dma_buffer_page(name, access, dma_buffer_page); } ErrorOr> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access, Vector>& dma_buffer_pages) { VERIFY(!(size % PAGE_SIZE)); dma_buffer_pages = TRY(allocate_contiguous_physical_pages(size)); // Do not enable Cache for this region as physical memory transfers are performed (Most architectures have this behavior by default) return allocate_kernel_region(dma_buffer_pages.first()->paddr(), size, name, access, Region::Cacheable::No); } ErrorOr> MemoryManager::allocate_dma_buffer_pages(size_t size, StringView name, Memory::Region::Access access) { VERIFY(!(size % PAGE_SIZE)); Vector> dma_buffer_pages; return allocate_dma_buffer_pages(size, name, access, dma_buffer_pages); } ErrorOr> MemoryManager::allocate_kernel_region(size_t size, StringView name, Region::Access access, AllocationStrategy strategy, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); OwnPtr name_kstring; if (!name.is_null()) name_kstring = TRY(KString::try_create(name)); auto vmobject = TRY(AnonymousVMObject::try_create_with_size(size, strategy)); auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable)); TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); })); TRY(region->map(kernel_page_directory())); return region; } ErrorOr> MemoryManager::allocate_kernel_region(PhysicalAddress paddr, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); auto vmobject = TRY(AnonymousVMObject::try_create_for_physical_range(paddr, size)); OwnPtr name_kstring; if (!name.is_null()) name_kstring = TRY(KString::try_create(name)); auto region = TRY(Region::create_unplaced(move(vmobject), 0, move(name_kstring), access, cacheable)); TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, PAGE_SIZE); })); TRY(region->map(kernel_page_directory())); return region; } ErrorOr> MemoryManager::allocate_kernel_region_with_vmobject(VMObject& vmobject, size_t size, StringView name, Region::Access access, Region::Cacheable cacheable) { VERIFY(!(size % PAGE_SIZE)); OwnPtr name_kstring; if (!name.is_null()) name_kstring = TRY(KString::try_create(name)); auto region = TRY(Region::create_unplaced(vmobject, 0, move(name_kstring), access, cacheable)); TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size); })); TRY(region->map(kernel_page_directory())); return region; } ErrorOr MemoryManager::commit_physical_pages(size_t page_count) { VERIFY(page_count > 0); auto result = m_global_data.with([&](auto& global_data) -> ErrorOr { if (global_data.system_memory_info.physical_pages_uncommitted < page_count) { dbgln("MM: Unable to commit {} pages, have only {}", page_count, global_data.system_memory_info.physical_pages_uncommitted); return ENOMEM; } global_data.system_memory_info.physical_pages_uncommitted -= page_count; global_data.system_memory_info.physical_pages_committed += page_count; return CommittedPhysicalPageSet { {}, page_count }; }); if (result.is_error()) { Process::for_each_ignoring_jails([&](Process const& process) { size_t amount_resident = 0; size_t amount_shared = 0; size_t amount_virtual = 0; process.address_space().with([&](auto& space) { amount_resident = space->amount_resident(); amount_shared = space->amount_shared(); amount_virtual = space->amount_virtual(); }); process.name().with([&](auto& process_name) { dbgln("{}({}) resident:{}, shared:{}, virtual:{}", process_name->view(), process.pid(), amount_resident / PAGE_SIZE, amount_shared / PAGE_SIZE, amount_virtual / PAGE_SIZE); }); return IterationDecision::Continue; }); } return result; } void MemoryManager::uncommit_physical_pages(Badge, size_t page_count) { VERIFY(page_count > 0); m_global_data.with([&](auto& global_data) { VERIFY(global_data.system_memory_info.physical_pages_committed >= page_count); global_data.system_memory_info.physical_pages_uncommitted += page_count; global_data.system_memory_info.physical_pages_committed -= page_count; }); } void MemoryManager::deallocate_physical_page(PhysicalAddress paddr) { return m_global_data.with([&](auto& global_data) { // Are we returning a user page? for (auto& region : global_data.physical_regions) { if (!region->contains(paddr)) continue; region->return_page(paddr); --global_data.system_memory_info.physical_pages_used; // Always return pages to the uncommitted pool. Pages that were // committed and allocated are only freed upon request. Once // returned there is no guarantee being able to get them back. ++global_data.system_memory_info.physical_pages_uncommitted; return; } PANIC("MM: deallocate_physical_page couldn't figure out region for page @ {}", paddr); }); } RefPtr MemoryManager::find_free_physical_page(bool committed) { RefPtr page; m_global_data.with([&](auto& global_data) { if (committed) { // Draw from the committed pages pool. We should always have these pages available VERIFY(global_data.system_memory_info.physical_pages_committed > 0); global_data.system_memory_info.physical_pages_committed--; } else { // We need to make sure we don't touch pages that we have committed to if (global_data.system_memory_info.physical_pages_uncommitted == 0) return; global_data.system_memory_info.physical_pages_uncommitted--; } for (auto& region : global_data.physical_regions) { page = region->take_free_page(); if (!page.is_null()) { ++global_data.system_memory_info.physical_pages_used; break; } } }); if (page.is_null()) dbgln("MM: couldn't find free physical page. Continuing..."); return page; } NonnullRefPtr MemoryManager::allocate_committed_physical_page(Badge, ShouldZeroFill should_zero_fill) { auto page = find_free_physical_page(true); VERIFY(page); if (should_zero_fill == ShouldZeroFill::Yes) { InterruptDisabler disabler; auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } return page.release_nonnull(); } ErrorOr> MemoryManager::allocate_physical_page(ShouldZeroFill should_zero_fill, bool* did_purge) { return m_global_data.with([&](auto&) -> ErrorOr> { auto page = find_free_physical_page(false); bool purged_pages = false; if (!page) { // We didn't have a single free physical page. Let's try to free something up! // First, we look for a purgeable VMObject in the volatile state. for_each_vmobject([&](auto& vmobject) { if (!vmobject.is_anonymous()) return IterationDecision::Continue; auto& anonymous_vmobject = static_cast(vmobject); if (!anonymous_vmobject.is_purgeable() || !anonymous_vmobject.is_volatile()) return IterationDecision::Continue; if (auto purged_page_count = anonymous_vmobject.purge()) { dbgln("MM: Purge saved the day! Purged {} pages from AnonymousVMObject", purged_page_count); page = find_free_physical_page(false); purged_pages = true; VERIFY(page); return IterationDecision::Break; } return IterationDecision::Continue; }); } if (!page) { // Second, we look for a file-backed VMObject with clean pages. for_each_vmobject([&](auto& vmobject) { if (!vmobject.is_inode()) return IterationDecision::Continue; auto& inode_vmobject = static_cast(vmobject); if (auto released_page_count = inode_vmobject.try_release_clean_pages(1)) { dbgln("MM: Clean inode release saved the day! Released {} pages from InodeVMObject", released_page_count); page = find_free_physical_page(false); VERIFY(page); return IterationDecision::Break; } return IterationDecision::Continue; }); } if (!page) { dmesgln("MM: no physical pages available"); return ENOMEM; } if (should_zero_fill == ShouldZeroFill::Yes) { auto* ptr = quickmap_page(*page); memset(ptr, 0, PAGE_SIZE); unquickmap_page(); } if (did_purge) *did_purge = purged_pages; return page.release_nonnull(); }); } ErrorOr>> MemoryManager::allocate_contiguous_physical_pages(size_t size) { VERIFY(!(size % PAGE_SIZE)); size_t page_count = ceil_div(size, static_cast(PAGE_SIZE)); auto physical_pages = TRY(m_global_data.with([&](auto& global_data) -> ErrorOr>> { // We need to make sure we don't touch pages that we have committed to if (global_data.system_memory_info.physical_pages_uncommitted < page_count) return ENOMEM; for (auto& physical_region : global_data.physical_regions) { auto physical_pages = physical_region->take_contiguous_free_pages(page_count); if (!physical_pages.is_empty()) { global_data.system_memory_info.physical_pages_uncommitted -= page_count; global_data.system_memory_info.physical_pages_used += page_count; return physical_pages; } } dmesgln("MM: no contiguous physical pages available"); return ENOMEM; })); { auto cleanup_region = TRY(MM.allocate_kernel_region(physical_pages[0]->paddr(), PAGE_SIZE * page_count, {}, Region::Access::Read | Region::Access::Write)); memset(cleanup_region->vaddr().as_ptr(), 0, PAGE_SIZE * page_count); } return physical_pages; } void MemoryManager::enter_process_address_space(Process& process) { process.address_space().with([](auto& space) { enter_address_space(*space); }); } void MemoryManager::enter_address_space(AddressSpace& space) { auto* current_thread = Thread::current(); VERIFY(current_thread != nullptr); activate_page_directory(space.page_directory(), current_thread); } void MemoryManager::flush_tlb_local(VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb_local(vaddr, page_count); } void MemoryManager::flush_tlb(PageDirectory const* page_directory, VirtualAddress vaddr, size_t page_count) { Processor::flush_tlb(page_directory, vaddr, page_count); } PageDirectoryEntry* MemoryManager::quickmap_pd(PageDirectory& directory, size_t pdpt_index) { VERIFY_INTERRUPTS_DISABLED(); VirtualAddress vaddr(KERNEL_QUICKMAP_PD_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE); size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = boot_pd_kernel_pt1023[pte_index]; auto pd_paddr = directory.m_directory_pages[pdpt_index]->paddr(); if (pte.physical_page_base() != pd_paddr.get()) { pte.set_physical_page_base(pd_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); flush_tlb_local(vaddr); } return (PageDirectoryEntry*)vaddr.get(); } PageTableEntry* MemoryManager::quickmap_pt(PhysicalAddress pt_paddr) { VERIFY_INTERRUPTS_DISABLED(); VirtualAddress vaddr(KERNEL_QUICKMAP_PT_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE); size_t pte_index = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_index]; if (pte.physical_page_base() != pt_paddr.get()) { pte.set_physical_page_base(pt_paddr.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); flush_tlb_local(vaddr); } return (PageTableEntry*)vaddr.get(); } u8* MemoryManager::quickmap_page(PhysicalAddress const& physical_address) { VERIFY_INTERRUPTS_DISABLED(); auto& mm_data = get_data(); mm_data.m_quickmap_previous_interrupts_state = mm_data.m_quickmap_in_use.lock(); VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE); u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx]; if (pte.physical_page_base() != physical_address.get()) { pte.set_physical_page_base(physical_address.get()); pte.set_present(true); pte.set_writable(true); pte.set_user_allowed(false); flush_tlb_local(vaddr); } return vaddr.as_ptr(); } void MemoryManager::unquickmap_page() { VERIFY_INTERRUPTS_DISABLED(); auto& mm_data = get_data(); VERIFY(mm_data.m_quickmap_in_use.is_locked()); VirtualAddress vaddr(KERNEL_QUICKMAP_PER_CPU_BASE + Processor::current_id() * PAGE_SIZE); u32 pte_idx = (vaddr.get() - KERNEL_PT1024_BASE) / PAGE_SIZE; auto& pte = ((PageTableEntry*)boot_pd_kernel_pt1023)[pte_idx]; pte.clear(); flush_tlb_local(vaddr); mm_data.m_quickmap_in_use.unlock(mm_data.m_quickmap_previous_interrupts_state); } bool MemoryManager::validate_user_stack(AddressSpace& space, VirtualAddress vaddr) const { if (!is_user_address(vaddr)) return false; auto* region = find_user_region_from_vaddr(space, vaddr); return region && region->is_user() && region->is_stack(); } void MemoryManager::unregister_kernel_region(Region& region) { VERIFY(region.is_kernel()); m_global_data.with([&](auto& global_data) { global_data.region_tree.remove(region); }); } void MemoryManager::dump_kernel_regions() { dbgln("Kernel regions:"); char const* addr_padding = " "; dbgln("BEGIN{} END{} SIZE{} ACCESS NAME", addr_padding, addr_padding, addr_padding); m_global_data.with([&](auto& global_data) { for (auto& region : global_data.region_tree.regions()) { dbgln("{:p} -- {:p} {:p} {:c}{:c}{:c}{:c}{:c}{:c} {}", region.vaddr().get(), region.vaddr().offset(region.size() - 1).get(), region.size(), region.is_readable() ? 'R' : ' ', region.is_writable() ? 'W' : ' ', region.is_executable() ? 'X' : ' ', region.is_shared() ? 'S' : ' ', region.is_stack() ? 'T' : ' ', region.is_syscall_region() ? 'C' : ' ', region.name()); } }); } void MemoryManager::set_page_writable_direct(VirtualAddress vaddr, bool writable) { SpinlockLocker page_lock(kernel_page_directory().get_lock()); auto* pte = ensure_pte(kernel_page_directory(), vaddr); VERIFY(pte); if (pte->is_writable() == writable) return; pte->set_writable(writable); flush_tlb(&kernel_page_directory(), vaddr); } CommittedPhysicalPageSet::~CommittedPhysicalPageSet() { if (m_page_count) MM.uncommit_physical_pages({}, m_page_count); } NonnullRefPtr CommittedPhysicalPageSet::take_one() { VERIFY(m_page_count > 0); --m_page_count; return MM.allocate_committed_physical_page({}, MemoryManager::ShouldZeroFill::Yes); } void CommittedPhysicalPageSet::uncommit_one() { VERIFY(m_page_count > 0); --m_page_count; MM.uncommit_physical_pages({}, 1); } void MemoryManager::copy_physical_page(PhysicalPage& physical_page, u8 page_buffer[PAGE_SIZE]) { auto* quickmapped_page = quickmap_page(physical_page); memcpy(page_buffer, quickmapped_page, PAGE_SIZE); unquickmap_page(); } ErrorOr> MemoryManager::create_identity_mapped_region(PhysicalAddress address, size_t size) { auto vmobject = TRY(Memory::AnonymousVMObject::try_create_for_physical_range(address, size)); auto region = TRY(Memory::Region::create_unplaced(move(vmobject), 0, {}, Memory::Region::Access::ReadWriteExecute)); Memory::VirtualRange range { VirtualAddress { (FlatPtr)address.get() }, size }; region->m_range = range; TRY(region->map(MM.kernel_page_directory())); return region; } ErrorOr> MemoryManager::allocate_unbacked_region_anywhere(size_t size, size_t alignment) { auto region = TRY(Region::create_unbacked()); TRY(m_global_data.with([&](auto& global_data) { return global_data.region_tree.place_anywhere(*region, RandomizeVirtualAddress::No, size, alignment); })); return region; } MemoryManager::SystemMemoryInfo MemoryManager::get_system_memory_info() { return m_global_data.with([&](auto& global_data) { auto physical_pages_unused = global_data.system_memory_info.physical_pages_committed + global_data.system_memory_info.physical_pages_uncommitted; VERIFY(global_data.system_memory_info.physical_pages == (global_data.system_memory_info.physical_pages_used + physical_pages_unused)); return global_data.system_memory_info; }); } }