/* * Copyright (c) 2018-2021, Andreas Kling * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #include namespace AK { static constexpr Array bitmask_first_byte = { 0xFF, 0xFE, 0xFC, 0xF8, 0xF0, 0xE0, 0xC0, 0x80 }; static constexpr Array bitmask_last_byte = { 0x00, 0x1, 0x3, 0x7, 0xF, 0x1F, 0x3F, 0x7F }; class BitmapView { public: BitmapView() = default; BitmapView(u8* data, size_t size) : m_data(data) , m_size(size) { } [[nodiscard]] size_t size() const { return m_size; } [[nodiscard]] size_t size_in_bytes() const { return ceil_div(m_size, static_cast(8)); } [[nodiscard]] bool get(size_t index) const { VERIFY(index < m_size); return 0 != (m_data[index / 8] & (1u << (index % 8))); } [[nodiscard]] size_t count_slow(bool value) const { return count_in_range(0, m_size, value); } [[nodiscard]] size_t count_in_range(size_t start, size_t len, bool value) const { VERIFY(start < m_size); VERIFY(start + len <= m_size); if (len == 0) return 0; size_t count; u8 const* first = &m_data[start / 8]; u8 const* last = &m_data[(start + len) / 8]; u8 byte = *first; byte &= bitmask_first_byte[start % 8]; if (first == last) { byte &= bitmask_last_byte[(start + len) % 8]; count = popcount(byte); } else { count = popcount(byte); // Don't access *last if it's out of bounds if (last < &m_data[size_in_bytes()]) { byte = *last; byte &= bitmask_last_byte[(start + len) % 8]; count += popcount(byte); } if (++first < last) { size_t const* ptr_large = reinterpret_cast((reinterpret_cast(first) + sizeof(size_t) - 1) & ~(sizeof(size_t) - 1)); if (reinterpret_cast(ptr_large) > last) ptr_large = reinterpret_cast(last); while (first < reinterpret_cast(ptr_large)) { count += popcount(*first); first++; } size_t const* last_large = reinterpret_cast(reinterpret_cast(last) & ~(sizeof(size_t) - 1)); while (ptr_large < last_large) { count += popcount(*ptr_large); ptr_large++; } for (first = reinterpret_cast(ptr_large); first < last; first++) count += popcount(*first); } } if (!value) count = len - count; return count; } [[nodiscard]] bool is_null() const { return m_data == nullptr; } [[nodiscard]] u8 const* data() const { return m_data; } template Optional find_one_anywhere(size_t hint = 0) const { VERIFY(hint < m_size); u8 const* end = &m_data[m_size / 8]; for (;;) { // We will use hint as what it is: a hint. Because we try to // scan over entire 32 bit words, we may start searching before // the hint! size_t const* ptr_large = reinterpret_cast(reinterpret_cast(&m_data[hint / 8]) & ~(sizeof(size_t) - 1)); if (reinterpret_cast(ptr_large) < &m_data[0]) { ptr_large++; // m_data isn't aligned, check first bytes size_t start_ptr_large = reinterpret_cast(ptr_large) - &m_data[0]; size_t i = 0; u8 byte = VALUE ? 0x00 : 0xff; while (i < start_ptr_large && m_data[i] == byte) i++; if (i < start_ptr_large) { byte = m_data[i]; if constexpr (!VALUE) byte = ~byte; VERIFY(byte != 0); return i * 8 + bit_scan_forward(byte) - 1; } } size_t val_large = VALUE ? 0x0 : NumericLimits::max(); size_t const* end_large = reinterpret_cast(reinterpret_cast(end) & ~(sizeof(size_t) - 1)); while (ptr_large < end_large && *ptr_large == val_large) ptr_large++; if (ptr_large == end_large) { // We didn't find anything, check the remaining few bytes (if any) u8 byte = VALUE ? 0x00 : 0xff; size_t i = reinterpret_cast(ptr_large) - &m_data[0]; size_t byte_count = m_size / 8; VERIFY(i <= byte_count); while (i < byte_count && m_data[i] == byte) i++; if (i == byte_count) { if (hint <= 8) return {}; // We already checked from the beginning // Try scanning before the hint end = reinterpret_cast(reinterpret_cast(&m_data[hint / 8]) & ~(sizeof(size_t) - 1)); hint = 0; continue; } byte = m_data[i]; if constexpr (!VALUE) byte = ~byte; VERIFY(byte != 0); return i * 8 + bit_scan_forward(byte) - 1; } // NOTE: We don't really care about byte ordering. We found *one* // free bit, just calculate the position and return it val_large = *ptr_large; if constexpr (!VALUE) val_large = ~val_large; VERIFY(val_large != 0); return (reinterpret_cast(ptr_large) - &m_data[0]) * 8 + bit_scan_forward(val_large) - 1; } } Optional find_one_anywhere_set(size_t hint = 0) const { return find_one_anywhere(hint); } Optional find_one_anywhere_unset(size_t hint = 0) const { return find_one_anywhere(hint); } template Optional find_first() const { size_t byte_count = m_size / 8; size_t i = 0; u8 byte = VALUE ? 0x00 : 0xff; while (i < byte_count && m_data[i] == byte) i++; if (i == byte_count) return {}; byte = m_data[i]; if constexpr (!VALUE) byte = ~byte; VERIFY(byte != 0); return i * 8 + bit_scan_forward(byte) - 1; } Optional find_first_set() const { return find_first(); } Optional find_first_unset() const { return find_first(); } // The function will return the next range of unset bits starting from the // @from value. // @from: the position from which the search starts. The var will be // changed and new value is the offset of the found block. // @min_length: minimum size of the range which will be returned. // @max_length: maximum size of the range which will be returned. // This is used to increase performance, since the range of // unset bits can be long, and we don't need the while range, // so we can stop when we've reached @max_length. inline Optional find_next_range_of_unset_bits(size_t& from, size_t min_length = 1, size_t max_length = max_size) const { if (min_length > max_length) { return {}; } size_t bit_size = 8 * sizeof(size_t); size_t* bitmap = reinterpret_cast(m_data); // Calculating the start offset. size_t start_bucket_index = from / bit_size; size_t start_bucket_bit = from % bit_size; size_t* start_of_free_chunks = &from; size_t free_chunks = 0; for (size_t bucket_index = start_bucket_index; bucket_index < m_size / bit_size; ++bucket_index) { if (bitmap[bucket_index] == NumericLimits::max()) { // Skip over completely full bucket of size bit_size. if (free_chunks >= min_length) { return min(free_chunks, max_length); } free_chunks = 0; start_bucket_bit = 0; continue; } if (bitmap[bucket_index] == 0x0) { // Skip over completely empty bucket of size bit_size. if (free_chunks == 0) { *start_of_free_chunks = bucket_index * bit_size; } free_chunks += bit_size; if (free_chunks >= max_length) { return max_length; } start_bucket_bit = 0; continue; } size_t bucket = bitmap[bucket_index]; u8 viewed_bits = start_bucket_bit; u32 trailing_zeroes = 0; bucket >>= viewed_bits; start_bucket_bit = 0; while (viewed_bits < bit_size) { if (bucket == 0) { if (free_chunks == 0) { *start_of_free_chunks = bucket_index * bit_size + viewed_bits; } free_chunks += bit_size - viewed_bits; viewed_bits = bit_size; } else { trailing_zeroes = count_trailing_zeroes(bucket); bucket >>= trailing_zeroes; if (free_chunks == 0) { *start_of_free_chunks = bucket_index * bit_size + viewed_bits; } free_chunks += trailing_zeroes; viewed_bits += trailing_zeroes; if (free_chunks >= min_length) { return min(free_chunks, max_length); } // Deleting trailing ones. u32 trailing_ones = count_trailing_zeroes(~bucket); bucket >>= trailing_ones; viewed_bits += trailing_ones; free_chunks = 0; } } } if (free_chunks < min_length) { size_t first_trailing_bit = (m_size / bit_size) * bit_size; size_t trailing_bits = size() % bit_size; for (size_t i = 0; i < trailing_bits; ++i) { if (!get(first_trailing_bit + i)) { if (free_chunks == 0) *start_of_free_chunks = first_trailing_bit + i; if (++free_chunks >= min_length) return min(free_chunks, max_length); } else { free_chunks = 0; } } return {}; } return min(free_chunks, max_length); } Optional find_longest_range_of_unset_bits(size_t max_length, size_t& found_range_size) const { size_t start = 0; size_t max_region_start = 0; size_t max_region_size = 0; while (true) { // Look for the next block which is bigger than currunt. auto length_of_found_range = find_next_range_of_unset_bits(start, max_region_size + 1, max_length); if (length_of_found_range.has_value()) { max_region_start = start; max_region_size = length_of_found_range.value(); start += max_region_size; } else { // No ranges which are bigger than current were found. break; } } found_range_size = max_region_size; if (max_region_size != 0) { return max_region_start; } return {}; } Optional find_first_fit(size_t minimum_length) const { size_t start = 0; auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, minimum_length); if (length_of_found_range.has_value()) { return start; } return {}; } Optional find_best_fit(size_t minimum_length) const { size_t start = 0; size_t best_region_start = 0; size_t best_region_size = max_size; bool found = false; while (true) { // Look for the next block which is bigger than requested length. auto length_of_found_range = find_next_range_of_unset_bits(start, minimum_length, best_region_size); if (length_of_found_range.has_value()) { if (best_region_size > length_of_found_range.value() || !found) { best_region_start = start; best_region_size = length_of_found_range.value(); found = true; } start += length_of_found_range.value(); } else { // There are no ranges which can fit requested length. break; } } if (found) { return best_region_start; } return {}; } static constexpr size_t max_size = 0xffffffff; protected: u8* m_data { nullptr }; size_t m_size { 0 }; }; } #if USING_AK_GLOBALLY using AK::BitmapView; #endif